Introduction in Statistics - using R -

Anna Vinkhuyzen March 2016

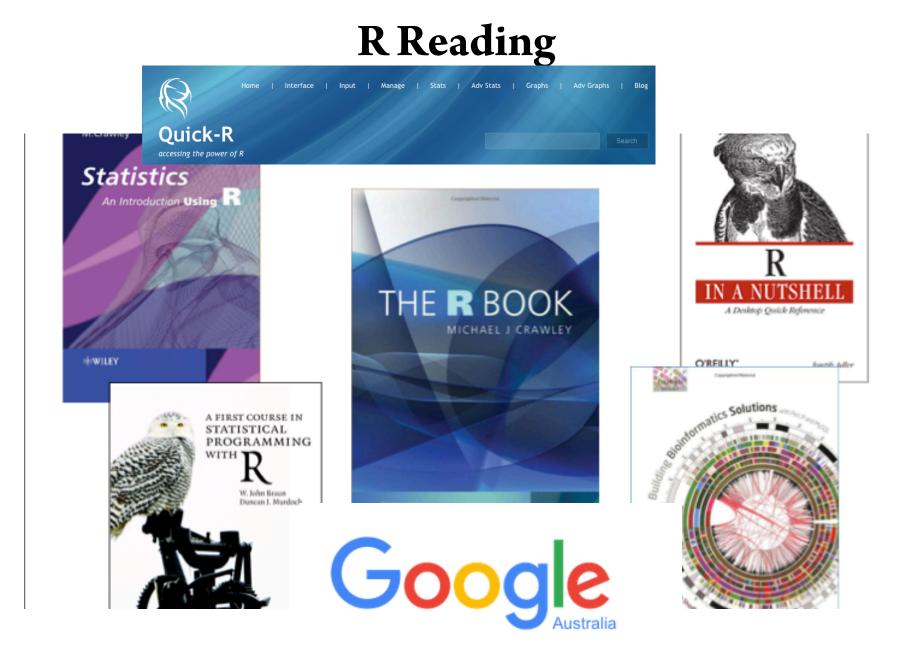
Outline Lecture

- Descriptive statistics
 - 'First stage' statistics, summarizing the sample data
 - Descriptive statistics include proportions, means, variances, covariances, correlations
 - Used to characterize a population
- Inferential statistics
 - Statistics to generalize the information obtained form the measured sample to the population
- Analysis methods
 - Numerous methods to analyse the data
 - Choice of method depends on question asked as well as on the data available
- Analyses tools

– R

Outline Lecture

- Descriptive statistics
 - 'First stage' statistics, summarizing the sample data
 - Descriptive statistics include proportions, means, variances, covariances, correlations
 - Used to characterize a population
- Inferential statistics
 - Statistics to generalize the information obtained form the measured sample to the population
- Analysis methods
 - Numerous methods to analyse the data
 - Choice of method depends on question asked as well as on the data available
- Analyses tools


– R

What is R?

- Statistical programming environment with a command interface
- SAS, SPSS, STATA box standard software with pre-defined algorithms
- Typical R session
 - R console
 - R script
 - R graphic window

R Environment

🐮 🚽 🚍 🛃 🛛 🥌 🛛 🖉 Go to file/function				🖄 Project
oStatsUsingR.R* × 😰 20160322 Questions to clarify with Anna(1).R ×		Environment History		
Source on Save Server S	Run 🖘 Source 🗸	Carl Import Data	et - 🖌 Clear 🛛 🖓	
		Global Environment -	et. V Clear	٩
# covariance, correlation				(4
cov(d\$height, d\$weight) / sqrt(var(d\$height)*var(d\$weight))		Data		
correlation <- cov(d\$height, d\$weight) / sqrt(var(d\$height)*var(d\$weight))		0 d	1000 obs. of 6 variabl	
<pre>cor(d\$height, d\$weight)</pre>		var.sd	chr [1:3, 1:4] "aut.tr	raits" "14.9401841841842" "3.8652
***************************************		Values		
***************************************		correlation	0.727084255266258	
### 2.		lbls	chr [1:2] "female 19%"	" "male 81%"
### Graphs		pct	num [1:2] 19 81	
		slices	int [1:2] 186 814	
***************************************		standard.deviations	num [1:4] 3.87 15.02	15 10
		variables	chr [1:4] "aut.traits'	" "IQ" "height" "weight"
# Pie Chart with Percentages for gender		variances	num [1:4] 14.9 225.5 2	225 100
s rice charcenter releancages for gener Slices <- c(length(d\$gender="female"]), length(d\$gender[d\$gender="male"]))				
bls <- c("female")				
<pre>pct <- round(slices/sum(slices)*100)</pre>				
<pre>lbls <- paste(lbls, pct) # add percents to labels</pre>				
<pre>lbls <- paste(lbls, "%",sep="") # ad % to labels</pre>				
<pre>pie(slices,labels = lbls, col=c("dark blue","light blue"), main="Gender")</pre>				
mathe Gender)				
# Histograms for aut.traits, IQ, height, and weight - combined in matrix				
par(mfrow=c(2,2))				
hist(d\$aut.traits,main="Histogram of Autistic Traits", col="red", xlab="")				
<pre>hist(d\$IQ, main="Histogram of IQ", col="orange", xlab="")</pre>				
hist(d\$height, main="Histogram of Height", col="light blue",xlab="", breaks=50)				
hist(d\$weight, main="Histogram of Weight", col="dark blue", xlab="", breaks=50)				
# scatter plots				
par(mfrow=c(1,1))				
plot(dsut.traits, dsI0,				
main="Scatterplot of Autistic Traits and IQ",		Files Plots Packages	Help Viewer	
<pre>xlab="Autistic Traits",</pre>		🖕 🧅 🔎 Zoom 🛛 🗷	Export 🕶 🧕 🔏 Clear All	
ylab="IQ")				
C (Untitled) ÷	R Script 🗘	Histogram o	of Autistic Traits	Histogram of IQ
Contriled) \$	R Script 🗢	Ū.		nistogram or le
e ~/Documents/Teaching/R/RichardsLab/ 🖒		500	— 、	
2.			Frequency	
		100 -	anb	
Graphs			0	
Graphs ####################################		Frequency	<u>ت</u>	
Graphs ####################################			Line "	○ ┘ ────── ↓ ↓ ↓ ↓ ↓ ↓
		◦ ┘ <mark>╒╍╺</mark>		° ┘┌ ╶╤╡╵╵╵╵╵┍ ┑
Graphs ####################################		◦ ┘ <mark>╒╍╺</mark>	10 15 20	
Graphs ####################################		◦ ┘ <mark>╒╍╺</mark>		° ┘┌ ╶╤╡╵╵╵╵╵┍ ┑
Graphs ####################################		◦ ┘ <mark>╒╍╺</mark>		° ┘┌ ╶╤╡╵╵╵╵╵┍ ┑
Graphs ####################################		◦ ┘ <mark>╒╍╺</mark>		° ┘┌ ╶╤╡╵╵╵╵╵┍ ┑
Graphs ####################################		0 5		° ┘┌ ╶╤╡╵╵╵╵╵┍ ┑
<pre>Graphs ####################################</pre>		0 5	10 15 20	6
<pre>Graphs ####################################</pre>		o J 0 5 Histogra	10 15 20	6
<pre>Graphs ####################################</pre>		o J 0 5 Histogra	10 15 20	6
<pre>Graphs ####################################</pre>		o J 0 5 Histogra	10 15 20	40 60 80 100 120 14
<pre>Graphs ####################################</pre>		o J 0 5 Histogra	10 15 20	6
<pre>Graphs ####################################</pre>		O J O 5	10 15 20	40 60 80 100 120 14
<pre>Graphs ####################################</pre>		0 5 Histogra	10 15 20	Histogram of Weight
<pre>Graphs ####################################</pre>		0 5 Histogra	10 15 20	Histogram of Weight

Managing your R session?

Where does R save/retrieve files?

What is in the current environment?

Where would you like to save/retrieve files?

- > getwd()
- > dir()
- > setwd()
- > ls()
- > a <- 1:10
- # Make an object
- > installed.packages() # R lists all installed packages
- > help.start
- > ?t.test

What files are there?

- # Main help vignette
- # Query a function
- > install.packages("psych") # Install package
- > library(psych) # Make package available
- > help(package='psych')#Query whole package
- > rm() # Remove unwanted objects

Reading In Data

- # helpful packages
 - "foreign"

> head()

- "RODBC"
- > data <- read.table() # general import</pre>
- > data <- read.delim() # tab delimited file</pre>
- > data <- read.csv() # comma separated values</pre>
- > data <- read.spss() # SPSS</pre>
- > data <- read.dta() # STATA</pre>
- # Other useful functions
 - > dim() # returns the number of rows and columns
 - # quick look at first 6 rows of the data
 - > tail() # quick look at last 6 rows of the data

Managing data

- R has data structures: vectors, matrices, arrays, data frames
- Structures can be operated on through functions that perform statistical analyses and create graphs
- > head(d)

	ID	aut.traits	IQ	height	weight	gender
1	Ρ.1	14	129	148.96	64.03	male
Ζ	Ρ.2	11	109	150.61	69.29	male
3	Ρ.3	10	135	172.98	75.91	male
4	Ρ.4	10	88	183.02	83.11	female
5	Ρ.5	8	104	174.68	80.05	male
6	P.6	12	79	164.64	65.25	male

> class(d)[1] "data.frame"

> head(d)

Make new variable

	ID	aut.traits	IQ	height	weight	gender
1	Ρ.1	14	129	148.96	64.03	male
2	Ρ.2	11	109	150.61	69.29	male
3	Ρ.3	10	135	172.98	75.91	male
4	Ρ.4	10	88	183.02	83.11	female
5	Ρ.5	8	104	174.68	80.05	male
6	Ρ.6	12	79	164.64	65.25	male

- Make new variable
- > d\$bmi <- NA # new variable has all missings
- > d\$bmi <- d\$weight/(d\$height/100)^2</pre>
- > head(d)

	ID	aut.traits	IQ	height	weight	gender	asd	bmi	
1	Ρ.1	14	129	148.96	64.03	male	0	28.85653	
Ζ	Ρ.2	11	109	150.61	69.29	male	0	30.54660	
3	Ρ.3	10	135	172.98	75.91	male	0	25.36923	
4	Ρ.4	10	88	183.02	83.11	female	0	24.81168	
5	Ρ.5	8	104	174.68	80.05	male	0	26.23463	
6	Ρ.6	12	79	164.64	65.25	male	0	24.07187	

> head(d)

ID	aut.traits	IQ	height	weight	gender
1 P.1	14	129	148.96	64.03	male
2 P.2	11	109	150.61	69.29	male
3 P.3	10	135	172.98	75.91	male
4 P.4	10	88	183.02	83.11	female
5 P.5	8	104	174.68	80.05	male
6 P.6	12	79	164.64	65.25	male

- Subset data.frame (columns)
 vars <- c("ID", "IQ", "gender")
 d.2 <- d[vars]
- Subset data.frame (rows)

	ID	IQ	gender
1	Ρ.1	129	male
2	Ρ.2	109	male
3	Ρ.3	135	male
4	Ρ.4	88	female
5	Ρ.5	104	male
6	Ρ.6	79	male

> d.3 <- d[which(d\$gender=="female"),]</pre>

	ID	aut.traits	IQ	height	weight	gender
4	Ρ.4	10	88	183.02	83.11	female
9	Ρ.9	11	120	162.49	65.27	female
10	P.10	12	100	187.20	91.92	female
17	P.17	9	85	149.39	56.07	female
37	P.37	8	86	172.91	74.83	female
39	P.39	7	112	164.89	73.56	female

Subsetting

Graphics

?plot() # low level plotting function

Usage

plot(x, y, ...)

Arguments

x the coordinates of points in the plot. Alternatively, a single plotting structure, function or *any* **R** *object with a plot method* can be provided.

y the y coordinates of points in the plot, *optional* if x is an appropriate structure.

... Arguments to be passed to methods, such as <u>graphical parameters</u> (see <u>par</u>). Many methods will accept the following arguments:

Graphics

Selection of useful parameters

main an overall title for the plot

xlab a title for the x axis

ylab a title for the y axis

las numeric in {0,1,2,3} parallel, horizontal, perpendicular, vertical

cex A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default

col colour of the points that are being plotted

1ty The line type. Line types can either be specified as an integer (0=blank, 1=solid (default), 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings "blank", "solid", "dashed", "dotted", "dotdash", "longdash", or "twodash", where "blank" uses 'invisible lines' (i.e., does not draw them).

1wd The line width, a positive number, defaulting to 1. The interpretation is device-specific, and some devices do not implement line widths less than one. (See the help on the device for details of the interpretation.)

Outline Lecture

- Descriptive statistics
 - 'First stage' statistics, summarizing the sample data
 - Descriptive statistics include proportions, means, variances, covariances, correlations
 - Used to characterize a population
- Inferential statistics
 - Statistics to generalize the information obtained form the measured sample to the population
- Analysis methods
 - Numerous methods to analyse the data
 - Choice of method depends on question asked as well as on the data available
- Analyses tools

– R

Descriptive statistics

- Used to check whether the sample and variable characteristics are representative of the population
- Provide information about the distribution of the data
- Check whether statistical assumptions that are necessary to test hypotheses are met
- Explore data
 - differences between subgroups
 - outliers
 - trends
 - correlations

Scale of measurement

- Nominal
 - Gender (male, female)
 - Religion (Christianity, Islam, Baha'i, Hinduism)
 - Political affiliation (liberal, labor, republican)
- Ordinal
 - Educational level (primary, secondary, university)
 - Rank orders (1st, 2nd, 3rd)
 - Political orientation (left, centre, right)
- Interval
 - Temperature on Celsius scale (-3°C, 10°C, 25°C)
 - IQ scores (70, 80, 110, 145)
- Ratio
 - Ruler (inches or centimeters)
 - Years (of work experience)
 - Income (in \$\$ per year)

Descriptive statistics

- **Proportion/probability** $\hat{p} = \frac{x}{n}$ > var.x/n
- Mean $\bar{x} = \sum \frac{x_i}{n}$ > mean(var.x)
- Variance $var = \sigma^2 = \sum \frac{(x_i \bar{x})^2}{n-1}$, > var(var.x)
- Standard deviation $sd = \sigma = \sqrt{\sum \frac{(x_i \bar{x})^2}{n-1}}$ > sd(var.x)
- Covariance $COV_{x,y} = \frac{\sum(x_i \bar{x})(y_i \bar{y})}{N-1}$ > cov(var.x,var.y)
- Correlation $cor_{x,y} = \frac{cov_{x,y}}{\sigma_x \sigma_y} = \frac{\sum (x_i \bar{x})(y_i \bar{y})}{(N-1)\sigma_x \sigma_y}$ > cor(var.x,var.y)

Outline Lecture

- Descriptive statistics
 - 'First stage' statistics, summarizing the sample data
 - Descriptive statistics include proportions, means, variances, covariances, correlations
 - Used to characterize a population
- Inferential statistics
 - Statistics to generalize the information obtained form the measured sample to the population
- Analysis methods
 - Numerous methods to analyse the data
 - Choice of method depends on question asked as well as on the data available
- Analyses tools

Hypothesis testing

- Dealing with sample, not population data
- Aim to generalize the information obtained from the sample to the population
- H_0 = null hypothesis, H_1 = alternative hypothesis
- Statistical tests used to keep or reject the H₀
- Dealing with sample, so possibility of errors must be considered
- α is the maximum allowable probability of incorrectly rejecting the H₀ (false positive result)

Hypothesis testing

		Conclusion drawn		
		Accept H ₀	Reject H ₀	
True	H ₀ True	CORRECT	Type I Error α	
state	H ₀ False	Type II Error β	CORRECT (1-β)	

Probability distributions

- Describe how the values of a random variable are distributed
 - Binomial distribution: E.g., collection of all possible outcomes of a sequence of coin tossing
 - Normal distribution: E.g., the means of sufficiently large samples of a population
- Characteristics of these theoretical distributions are well understood
- Can be used to make statistical inferences on the entire data population

Binomial distribution

- Discrete probability distribution that describes the outcome of *n* independent trials in an experiment.
- Each trial has 2 outcomes (e.g., heads or tails)

$$f(x) = {n \choose x} p^x (1-p)^{(n-x)}$$
, where $x = 0, 1, 2, ..., n$

- <u>Example:</u> exam with 12 multiple choice questions, each question 5 possible answers, only 1 is correct.
 - What is the probability of having exact four correct answers by chance?
 - > dbinom(4,size=12,prob=0.2) A: 0.1329
 - What is the probability of having four or less correct answers by chance?
 - > pbinom(4,size=12,prob=0.2) A. 0.93

Poisson distribution

• The probability distribution of independent event occurrences in an interval.

$$f(x) = \frac{\lambda^{x} e^{-x}}{x!}$$
, where $x = 0, 1, 2, 3, ...$

- <u>Example:</u> There are 12 cars crossing a bridge per minute on average.
 - What is the probability of having 17 or more cars crossing the bridge in a particular minute?
 - > ppois(16, lambda=12) # lower tail (default in R), A=0.90
 - > ppois(16,lambda=12, lower=FALSE), A=0.10

Normal distribution

• The probability density function of the normal distribution is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

- If a random variable follows a normal distribution: $X \sim N(\mu, \sigma^2)$
- <u>Example:</u> Test scores of an exam fit a normal distribution. Mean test score is 72 and standard deviation is 15.2.
 - What is the percentage of students scoring 84 or more?

> pnorm(84, mean=72, sd=15.2, lower.tail=FALSE). A=0.21

Sampling distributions

- Theoretical distribution of the expected values of a test statistic
- What we would observe if we repeatedly collected random samples form a population and computed the value of the statistic for each sample
- E.g., normal distribution, chi-squared distribution, binomial distribution

Sampling Distribution - step-by-step

- Consider normal distribution: $N(\mu, \sigma^2)$
- Repeatedly take samples and calculate \overline{x} for each sample
- Calculated means follow a normal distribution
- Standard deviation of the sampling distribution of the mean is called the *standard error*
- Standard error of the mean: $\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}}$

- Assume two populations with test scores
- $\mu_1 = 32$ and $\mu_2 = 22$
- $\sigma_1^2 = 60$ and $\sigma_2^2 = 70$
- $n_1 = 10$ and $n_2 = 14$
- What is the probability that the mean of the sample of population 1 exceeds the mean of the sample of population 2 by 5 *or more*?
- Sampling distribution of the difference between two means

- Compute means of two samples $(M_1 \text{ and } M_2)$
- Compute difference between means $(M_1 M_2)$
- Mean of sampling distribution of difference between means is:

$$\mu_{M_1 - M_2} = \mu_1 - \mu_2$$

• Compute variance of the sampling distribution

$$\sigma^2_{M_1 - M_2} = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

• Remember: variance of the sampling distribution of the mean is

$$\sigma^2{}_M = \frac{\sigma^2}{N}$$

• Thus, standard error of the difference between means is

$$\sigma_{M_1 - M_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

- $\mu_1 = 32$ and $\mu_2 = 22$
- $\sigma_1^2 = 60$ and $\sigma_2^2 = 70$
- $n_1 = 10$ and $n_2 = 14$

$$\mu_{M_1 - M_2} = \mu_1 - \mu_2 = 32 - 22 = 10$$

$$\sigma_{M_1 - M_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{\frac{60}{10} + \frac{70}{14}} = 3.317$$

• Thus, the sampling distribution is normally distributed with a mean of 10 and a standard deviation of 3.317

- What is the probability that the mean of the sample of population 1 exceeds the mean of the sample of population 2 by 5 *or more*?
- Using Z-scores and the Z-table, we can look up the probability:

$$Z = \frac{x - (\mu_{M_1 - M_2})}{\sigma_{M_1 - M_2}} = \frac{5 - 10}{3.317} = -1.507$$

- Shaded area is the probability that the mean of the sample of population 1 will exceed the mean of sample of population 2 *by 5 or more*
- Probability is 0.934

Figure 1. The sampling distribution of the difference between means.

0.0

3.4 6.7 10.0 13.3 16.6 20.0 23.3

> pnorm(5, mean=10, sd=3.317, lower.tail=FALSE). A=0.934
>1-pnorm(-1.507)

Outline Lecture

- Descriptive statistics
 - 'First stage' statistics, summarizing the sample data
 - Descriptive statistics include proportions, means, variances, covariances, correlations
 - Used to characterize a population
- Inferential statistics
 - Statistics to generalize the information obtained form the measured sample to the population
- Analysis methods
 - Numerous methods to analyse the data
 - Choice of method depends on question asked as well as on the data available
- Analyses tools
 - R

Difference in means

• t-test

$$-H_{0}: \mu_{1} = \mu_{2}$$

$$-H_{1}: \mu_{1} \neq \mu_{2} \text{ or } H_{1}: \mu_{1} > \mu_{2}$$

$$t = \frac{\bar{y}_{1} - \bar{y}_{2}}{s\sqrt{1/n_{1} + 1/n_{2}}}$$

$$s = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}}$$

> t.test (var.x, var.y)

Difference in means

> head(d)

	ID	aut.traits	IQ	height	weight	gender
1 P	.1	14	129	148.96	64.03	male
2 P	.2	11	109	150.61	69.29	male
3 P	.3	10	135	172.98	75.91	male
4 P	.4	10	88	183.02	83.11	female
5 P	.5	8	104	174.68	80.05	male
6 P	.6	12	79	164.64	65.25	male

> mean(d\$aut.traits[which(d\$gender=="male")],)

[1] 10.5688

> mean(d\$aut.traits[which(d\$gender=="female")],)

[1] 8.94086

```
> hist(d$aut.traits[which(d$gender=="male")],breaks=50)
```

```
> hist(d$aut.traits[which(d$gender=="female")],breaks=50)
```

```
> sd(d$aut.traits[which(d$gender=="male")],)
```

```
[1] 3.814204
```

```
> sd(d$aut.traits[which(d$gender=="female")],)
```

```
[1] 3.817704
```

Difference in means

> t.test (d\$aut.traits[which(d\$gender=="female")],d\$aut.traits[which(d\$gender=="male")])

Welch Two Sample t-test

data: d\$aut.traits[which(d\$gender == "female")] and d\$aut.traits[which(d\$gender == "male")] t = -5.2478, df = 275.75, p-value = 3.075e-07 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -2.238622 -1.017250 sample estimates: mean of x mean of y 8.94086 10.56880

> t.test (d\$aut.traits[which(d\$gender=="female")], d\$aut.traits[which(d\$gender=="male")], alternative="less")

Welch Two Sample t-test

Simple regression

• Linear model in which we predict outcome variable y from explanatory variable x

 $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

• Using least squares estimation:

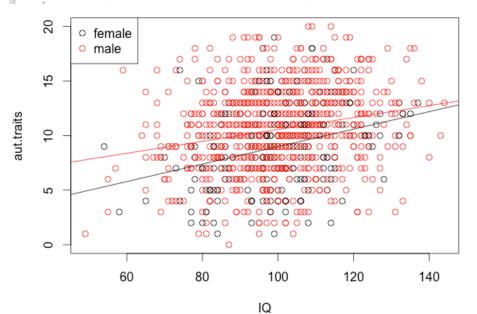
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2} \text{ and } \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

> head(d)ID aut.traits IQ height weight gender 1 P.1 14 129 148.96 64.03 male 2 P.2 11 109 150.61 69.29 male 3 P.3 10 135 172.98 male 75.91 4 P.4 10 88 183.02 83.11 female 5 P.5 8 104 174.68 80.05 male 6 P.6 12 79 164.64 65.25 male > m.1 <- lm(aut.traits~IQ, data=d) ## test whether IQ can predict aut.traits</p> > plot(aut.traits~IQ, data=d) > abline(m.1) ## regression slope > summary(m.1) 20 œ 0 ന നാനാന οœ 0 0 താ 0000 0 Ø 0 0 0 0 0 0 0 ഠഠരത തത 0 Call: 0 Ø 15 lm(formula = aut.traits ~ IQ, data = d) 0 0 (0)0 0000 00000000000000 00000-000 aut.traits 00 0 9 0 0 0 Residuals: 0 000 00 000 000000000 0 000 000 000 0 0000 10 Median 0 Min 3Q Мах 0 ത 2 0 ഠത്താതായ **താ**ര താറം ഠ 0 -9.5070 -2.4912 0.0124 2.6131 9.4540 000 00 00 0000 0 ത്ത യാ 0 00 0 οœ 0000000000 **0**0 0 0 00 0 000 0 0 Coefficients: Estimate Std. Error t value Pr(>|t|) 60 80 100 120 140 5.318 1.30e-07 *** (Intercept) 4.260242 0.801140 IQ 0.007924 7.580 7.85e-14 *** IQ 0.060065 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.76 on 998 degrees of freedom Multiple R-squared: 0.05444, Adjusted R-squared: 0.0535 F-statistic: 57.46 on 1 and 998 DF, p-value: 7.852e-14

Multiple regression

• Linear model in which we predict outcome variable y from q explanatory variables $x_1 \dots x_q$ $y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_q x_{iq} + \varepsilon_i$


To test H₀:
$$\beta_1 = \cdots = \beta_q = 0$$
, we use the Mean Square Ratio:

$$F = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 / q}{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 / n - q - 1}$$

• Individual regression coefficients can be *assessed* using the t-statistics (est/std.error)

> head(d)

ID	aut.traits	IQ	height	weight	gender		
1 P.1	14	129	148.96	64.03	male		
2 P.2	11	109	150.61	69.29	male		
3 P.3	10	135	172.98	75.91	male		
4 P.4	10	88	183.02	83.11	female		
5 P.5	8	104	174.68	80.05	male		
6 P.6	12	79	164.64	65.25	male		
<pre>> library(car) > plot(aut.traits~ IQ, pch=1, col=gender, data=d) > abline(lm(aut.traits~IQ, data=d,</pre>							

Exploring the data

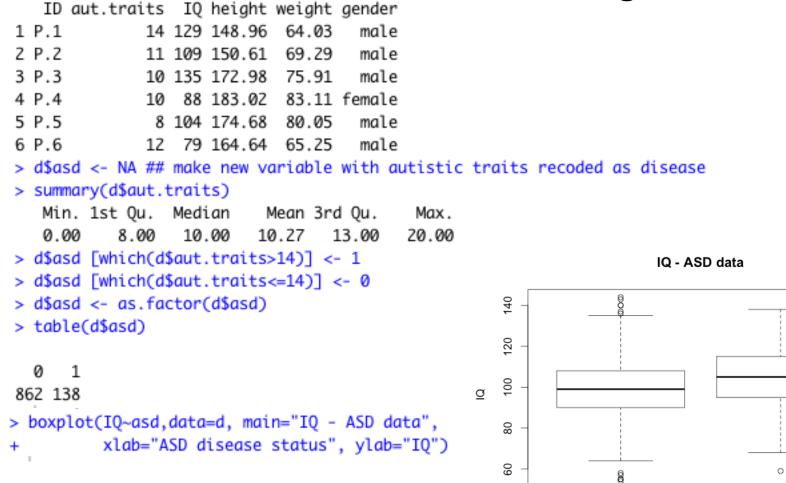
> head(d)ID aut.traits IQ height weight gender Fitting the model 1 P.1 14 129 148.96 64.03 male 2 P.2 11 109 150.61 69.29 male 3 P.3 10 135 172.98 75.91 male 4 P.4 10 88 183.02 83.11 female 8 104 174.68 80.05 5 P.5 male 6 P.6 12 79 164.64 65.25 male > m.1 <- lm(aut.traits~IQ+gender+IQ:gender, data=d) ## test whether IQ can predict aut.traits</p> > summary(m.1) ## F-statistic can be calculated from the ANOVA table, Call: lm(formula = aut.traits ~ IQ + gender + IQ:gender, data = d)Residuals: Min 10 Median 30 Max -9.8525 -2.4253 0.0112 2.5115 10.0863 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.98492 1.83455 0.537 0.5915 0.08009 0.01826 4.385 1.28e-05 *** 10 gendermale 4.12312 2.03306 2.028 0.0428 * IO:gendermale -0.02556 0.02021 -1.264 0.2063 _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3.71 on 996 degrees of freedom Multiple R-squared: 0.08126, Adjusted R-squared: 0.07849

F-statistic: 29.36 on 3 and 996 DF, p-value: < 2.2e-16

> anova(m.1) ## here, the ((812.59 +378.17+ 22.01)/13.77)/3
Analysis of Variance Table

Response: aut.traits Df Sum Sq Mean Sq F value Pr(>F) IQ 1 812.6 812.59 59.022 3.721e-14 *** gender 1 378.2 378.17 27.468 1.949e-07 *** IQ:gender 1 22.0 22.01 1.599 0.2063 Residuals 996 13712.5 13.77 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Logistic regression


- Generalized Linear Model (GLM) in which we predict outcome variable y (binary) from q explanatory variables x₁....x_q
- Using *logit* link function: $logit(p) = log(\frac{p}{1-p}) = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q$
- The logit of a probability is the log of the odds of the response taking the value one

$$p(x_1, x_2, \dots, x_q) = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_q x_q)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_q x_q)}$$

> #### general linear model (logistic regression)

> head(d)

Creating disease variable

1

ASD disease status

0

0

```
> m.f <- glm(asd~ IQ+gender, data=d,</pre>
+ family=binomial())
> summary(m.f) ## increase of 1 IQ unit increases the log-odds of asd by an estimated 0.02
Call:
glm(formula = asd ~ IQ + gender, family = binomial(), data = d)
Deviance Residuals:
    Min
             10
                  Median
                               30
                                       Max
-0.8381 -0.5873 -0.5203 -0.4051
                                    2.4908
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                                                         Increase of 1 IQ point increases
(Intercept) -4.544280 0.701248 -6.480 9.16e-11 ***
                                                         the log-odds of ASD by an
            0.020113 0:006242 3.222 0.00127 **
10
                                                         estimated 0.02
gendermale 0.782504 0.295573 2.647 0.00811 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                 easier interpretation:
                                                                 convert to odds-ratio
(Dispersion parameter for binomial family taken to be 1)
                                                           > exp(coef(m.f)["IQ"])
                                                                 IQ
    Null deviance: 802.63 on 999 degrees of freedom
                                                           1.020316
Residual deviance: 783.51 on 997 degrees of freedom
                                                           > exp(confint(m.f,parm="I0"))
AIC: 789.51
                                                           Waiting for profiling to be done...
                                                              2.5 % 97.5 %
Number of Fisher Scoring iterations: 5
                                                           1.007983 1.032977
```

Comparing full and reduced model using ANOVA

```
> m.f <- glm(asd~ IQ+gender, data=d,
+ family=binomial())
```

```
> ## fitting a reduced model to test for significance of IQ
> m.r <- glm(asd~ gender, data=d,
+ family=binomial())
> anova(m.r, m.f, test="Chisq")
Analysis of Deviance Table
Model 1: asd ~ gender
Model 2: asd ~ IQ + gender
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 998 794.07
2 997 783.51 1 10.565 0.001152 **
---
Signif. codes: 0 `***` 0.001 `**` 0.01 `*` 0.05 `.` 0.1 ` ` 1
```