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Overview

• Review some key definitions and operations for expectations, variances, and

covariances of random variables

• Look at Taylor series and why they are useful

• Initial look at the Taylor series and expectations of functions of random variables

• Derive an unbiased estimator of the sample (independent) variance
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1 Random variables, definitions and operations of ex-

pectations, variances, and covariances

The work that we will cover rests heavily on the notion of random variables. A more

rigorous definition of a random variable requires the notions of the sample space, collection

of events, and a probability measure. The sample space, let’s denote it Ω, is the set of

possible outcomes of an experiment.

Example. If we toss a coin twice then Ω = {HH,HT, TH, TT}

Random variables (RVs) link the concept of sample spaces to data.

Definition. A random variable is a mapping X : Ω→ R that assigns a real number X(ω)

to each of the realisations in Ω denoted by ω.

Example.

Flip a coin twice and let X be the number of heads. Then,

P(X = 0) = P(TT ) = 1/4

P(X = 1) = P(HT, TH) = 1/2

P(X = 2) = P(HH) = 1/4

This is an example of a discrete random variable i.e., X takes countably many values.

Assigned to each random variable is a cumulative distribution function (CDF) and a
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probability density function (PDF). We will not explore these concepts but they are lurking

in the background. Notation – we tend to use upper case letters like X, Y, Z to denote

random variables and their realisations with x, y, z.

Depending on the processes being modelled/generated by a random variable there appears

to be best mappings from sample space to the real line. For example, above is an instance

of a Binomial random variable, which is one of the set of discrete random variables. There

exists other random variables that are continuous, which possess different properties to

discrete RVs. These notions have implications for how we define the expectation for a

random variable.

Definition. The expectation (or expected value, mean, or first moment) of a random

variable X is defined to be

E(X) =
∑
x

xf(x)

in the discrete case and

E(X) =

∫ ∞
−∞

xf(x)dx

in the continuous case. Sometimes denoted µX .

Once we have this definition we can leave the concept of the random variable behind and

work with the abstraction that requires us to adhere to a set of rules derived from the

constraints of summation and integration set out in the original definitions.

Definition. The variance of a random variable X, denoted by Var(X) is defined to be

Var(X) = E[X − E(X)]2.

The square root of the variance is called the standard deviation. Variance is sometimes

denoted σ2
X .
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The following key properties of expectation and variance hold for both discrete and

continuous random variables.

E(aX + b) = aE(X) + b(1)

Var(X) = E(X2)− [E(X)]2(2)

Var(aX + b) = a2Var(X)(3)

Definition. The covariance of two random variables X and Y , denoted by Cov(X, Y ) is

defined to be

Cov(X, Y ) = E{[X − E(X)][Y − E(Y )]},

which is a measure of the amount of linear dependence between two variables. Scaling the

covariance by the product of the standard deviations of X and Y gives you the

correlation coefficient.

The following key properties of variance and covariance hold for both discrete and

continuous random variables.
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Cov(X, Y ) = E(XY )− E(X)E(Y )(4)

Cov(X, Y ) = Cov(Y,X)(5)

Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z)(6)

Cov(X,X) = Var(X)(7)

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )(8)

If X and Y are independent→ Cov(X, Y ) = 0(9)

If sequence Xn of RVs are independent→ Var(a+
n∑

i=1

biXi) =
n∑

i=1

b2i Var(Xi)(10)

2 Taylor series and expectation

Taylor series (Brook Taylor 1685-1731) come out of the study of power series, which are

functions of the form

f(x) = a0 + a1x+ a2x
2 + . . . .

These functions are infinite in nature but their properties make them easy to work with in

circumstances that involve differentiation and integration. Often these operations are

difficult with functions such as f(x) = arctan(x) so if we can find a power series

representation then we may be able to do some more work with this function. So we ask,

given arctan(x) can we find coefficients such that

arctan(x) = a0 + a1x+ a2x
2 + . . .

for at least some nonzero values of x.

We require an infinitely differentiable function f(x) defined on some interval and suppose

that it has a power series expansion, what would be the coefficients? So
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f(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .

Now Brook Taylor noticed

f(0) = a0

f ′(0) = a1

f ′′(0) = 2a2

f ′′′(0) = 3× 2× a3

and so on and so forth. The notation ′ denotes the derivative of f(x) with respect to x.

Rearranging these expressions in terms of the coefficients then we get the following

representation

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′(0)

3!
x3 + . . . ,

which is Taylor’s formula.

Why is that interesting? Well we now have a way of represent a function in a different

manner. We may be able to exploit this for approximations if we ignore higher order terms.

3 Expectations of functions of random variables

Let’s move back to statistics and have a look at expectations of complex variables.

We have a random variable X and its expectation E(X). Now what happens when we have

a function of X for example f(X) = X2 or log(X). Function of random variables are

interestingly random variables themselves. Let’s try and approximate the expectation by

expanding the function around its ‘true’ expectation denoted µX .
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E[f(X)] = E
[
f(µX) + (X − µX)f ′(µX) + (X − µX)2

f ′′(µX)

2
+ . . .

]
= f(µX) + E[(X − µX)]f ′(µX) +

E[(X − µX)2]

2
f ′′(µX) + . . .

The last step follows because the derivative terms, evaluated at µX , are really just

constants. Let’s make a few observations

E[(X − µX)] = E(X)− E(µX) = µX − µX = 0

and

E[(X − µX)2]

is the definition of the variance. Therefore, ignoring third and higher-order terms,

E[f(X)] ≈ f(µX) + σ2
X

f ′′(µX)

2
.

This is very powerful because we now have an approximation to the expectation of any

function of any random variable provided the function meets a few criteria.

Example. If f(X) = X2 then a second order Taylor series approximation to the

expectation is

E[f(X)] ≈ µ2
x + σ2

X .

Let’s use these concepts to investigate the estimator for the variance. Similar to the

example in the Appendix of Lynch et al. [1998] but with different notation.

By definition the variance σ2
X is characterised by the expected value of (X − µx)2. Now

suppose we have a sequence of random variables X1, . . . , Xn and we will say that they are
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independent and identically distributed (i.i.d) with mean µ and variance σ2 i.e., that each

random variable has the same distribution and is independent → Cov(Xi, Xj) = 0.

An intuitive estimator for the variance of this sequence of random variables is

S2(X1, . . . , Xn) =
1

n

n∑
i=1

(Xi − X̄)2,

where X̄ = 1
n

∑n
i=1Xi. We are estimating the mean and variance from the data. One

property of this estimator that we may like it to have is that on average it gives us back

the truth i.e., E[S2(X)] = σ2. This the classical notion of unbiasedness in statistics.

So S(X1, . . . , Xn) looks an awful lot like a function of random variables. We may think to

ourself that the Taylor series trick may give us an avenue to find the expected value and

see whether our estimator is unbiased. Now we have only seen Taylor series for one variable

and here we have a function of multiple random variables. There is an analogous version

for a function of multiple random variables

E[f(X1, . . . , Xn)] ≈ f(µ1, . . . , µn)+
1

2

n∑
i=1

σ2
i

∂2f(µ1, . . . , µn)

∂X2
i

+
n∑

i=1

n∑
j>i

σ2(Xi, Xj)
∂2f(µ1, . . . , µn)

∂Xi∂Xj

.

Our sequence has some nice properties that include µ1 = µ2 = . . . = µn = µ,

σ2
1 = σ2

2 = . . . = σ2
n, and thankfully σ2(Xi, Xj) = 0 for all i and j. We can therefore ignore

the final sum in the above expression. So

E[f(X1, . . . , Xn)] ≈ f(µ) +
1

2

n∑
i=1

σ2∂
2f(µ1, . . . , µn)

∂X2
i

.

We are interested to see if E[S2(X)] = 1
n
E[
∑n

i=1(Xi − X̄)2] = σ2 Let’s just work with the

part D(X1, . . . , Xn) =
∑n

i=1(Xi − X̄)2 as the 1/n does not contribute much to operations

as it is a scalar for fixed n. To fill out the above expression we will need the following
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componentry

∂D(X1, . . . , Xn)

∂Xi

=
∂

∂Xi

n∑
i=1

(Xi − X̄)2 =
∂

∂Xi

n∑
i=1

[X2
i − 2XiX̄ + X̄2]

=
∂

∂Xi

[
n∑

i=1

X2
i − 2X̄

n∑
i=1

Xi + nX̄2]

=
∂

∂Xi

[
n∑

i=1

X2
i − 2X̄nX̄ + nX̄2]

=
∂

∂Xi

[
n∑

i=1

X2
i − nX̄2]

= 2Xi − 2X̄

∂2D(X1, . . . , Xn)

∂X2
i

=
∂

∂Xi

2Xi − 2X̄ = 2− 2

n
= 2

n− 1

n

Plug these into above

E[D(X1, . . . , Xn)] ≈ D(µ) +
1

2

n∑
i=1

σ22
n− 1

n

which is not approximate anymore as the higher order partial derivatives are 0. Another

plus of the Taylor series sometimes. There is no i in this expression now so

E[D(X1, . . . , Xn)] = D(µ) + σ2n

n
(n− 1)

simplifying

E[D(X1, . . . , Xn)] = D(µ) + σ2 (n− 1)

and D(µ) = 0 because

D(µ) = [
n∑

i=1

X2
i − nX̄2] = [nµ2 − n[

1

n

n∑
i=1

Xi]
2] = [nµ2 − n[

n

n
µ2]] = 0
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Finally,

E[S2(X1, . . . , Xn)] =
(n− 1)

n
σ2,

which is not what we want. For the final line to equal σ2 the original expression for S2

should have been divided by n− 1.
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Exercises

1. Show (3) from properties of expectation and variances

2. Show (8) from properties of variances and covariances

3. Provide a third order approximation to the expectation of any random variable

4. Given your approximation in question (3) write down the expectation of log(X)

5. If X is normally distributed what is the E(log(X))? If X is gamma distributed what

is the E(log(X))?

6. Review the final derivation and contrast it with

https://www.youtube.com/watch?v=D1hgiAla3KI
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