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Overview

• Take a recap of last week and look at the excercises

• See how we can use the Taylor series trick to look at variances of complex variables

• Expectations and variances of products and ratios

• Derive the sampling variance for the regression coefficient
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1 Exercises from last week

Exercises

1. Show (3) from properties of expectation and variances

WTS

Var(aX + b) = a2Var(X)

We know from the definition of variance that

Var(X) = E{[X − E(X)]2} = E(X2)− E(X)2

Just plug in the aX + b as X so

Var(aX + b) = E[(aX + b)2]− [E(aX + b)]2

= E[a2X2 + 2aXb+ b2]− [aE(X) + b)]2

= E[a2X2 + 2abX + b2]− a2E(X)2 − 2abE(X)− b2

= a2E(X2) + 2abE(X) + b2 − a2E(X)2 − 2abE(X)− b2

= a2[E(X2)− E(X)2]

= a2Var(X)

2. Show (8) from properties of variances and covariances

Want to show

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )
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We will use the same trick of taking the definition and plugging in the wanted

expression

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )

= E[(X + Y )2]− [E(X + Y )]2

= E[X2 + 2XY + Y 2]− [E(X) + E(Y )]2

= E[X2] + 2E[XY ] + E[Y 2]− E(X)2 − 2E(X)E(Y )− E(Y )2

Group terms and remember Cov(X, Y ) = E(XY )− E(X)E(Y )

= E[X2]− E(X)2 + E[Y 2]− E(Y )2 + 2[E(XY )− 2E(X)E(Y )]

= Var(X) + Var(Y ) + 2Cov(X, Y )

3. Provide a third order approximation to the expectation of any random variable

E[f(X)] = E
[
f(µX) + (X − µX)f ′(µX) + (X − µX)2

f ′′(µX)

2
+ (X − µX)3

f ′′′(µX)

6
+ . . .

]
= E[f(µX)] + E[(X − µX)]f ′(µX) + E[(X − µX)2]

f ′′(µX)

2
+ E[(X − µX)3]

f ′′′(µX)

6
+ . . .

= E[f(µX)] + σ2
X

f ′′(µX)

2
+ E[(X − µX)3]

f ′′′(µX)

6
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4. Given your approximation in question (3) write down the expectation of log(X)

E[log(X)] = log(µX) + σ2
X

f ′′(µX)

2
+ E[(X − µX)3]

f ′′′(µX)

6
+ . . .

= log(µX)− σ2
X

2µ2
X

+
E[(X − µX)3]

3µ3
X

5. If X is normally distributed what is the E(log(X))? If X is gamma distributed what

is the E(log(X))? If X is normally distributed (doesn’t really make sense) then

µX = µ, σ2
X = σ2, and E[(X − µX)3] = µ3 + 3µσ2. Plugging these in

E[log(X)] = log(µ)− σ2

2µ2
+
µ3 + 3µσ2

3µ3

= log(µ)− 3σ2

6µ2
+

2µ2 + 6σ2

6µ2

= log(µ) +
2µ2 + 6σ2 − 3σ2

6µ2

= log(µ) +
2µ2 + 3σ2

6µ2

If X is gamma distributed then µX = α
β
, σ2

X = α
β2 . Plugging these in

E[log(X)] = log

(
α

β

)
− α

β2

1

2α2/β2

= log

(
α

β

)
− 1

2α

You can try digamma(100) - log(4) and contrast it with the above approximation

for α = 100, β = 4.

6. Review the final derivation and contrast it with
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https://www.youtube.com/watch?v=D1hgiAla3KI

2 Variances of complex variables

Last week we focused on expectations of complex variables and used this notion to look at

classical unbiasedness of estimators. This week we will take a look at the same concept of

using the Taylor series of a function to investigate variances of functions of random

variables.

Var[f(X)] = E{[f(X)− E[f(X)]]2}

We again just substitute for f(X) the Taylor series approximation around µX

Var[f(X)] = E
{[(

f(µX) + (X − µX)f ′(µX) + (X − µX)2
f ′′(µX)

2
+ . . .

)
−E

(
f(µX) + (X − µX)f ′(µX) + (X − µX)2

f ′′(µX)

2
+ . . .

)]2}

= E
{[(

f(µX) + (X − µX)f ′(µX) + (X − µX)2
f ′′(µX)

2
+ . . .

)
−
(
f(µX) + σ2

X

f ′′(µX)

2
+ . . .

)]2}

Just keeping the first few terms

≈ E

{[
(X − µX)f ′(µX) + [(X − µX)2 − σ2

X ]
f ′′(µX)

2

]2}
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Expand and take the expectation through the linear components

≈ E
{

(X − µX)2[f ′(µX)]2 + 2(X − µX)[f ′(µX)][(X − µX)2 − σ2
X ]
f ′′(µX)

2

+[(X − µX)2 − σ2
X ]2

f ′′(µX)2

4

}
≈ σ2

X [f ′(µX)]2 + 2E[(X − µX)3]
f ′(µX)f ′′(µX)

2
− 2E[(X − µX)]σ2

X

f ′(µX)f ′′(µX)

2

+ {E[(X − µX)4]− 2E[(X − µX)2]σ2
X + σ4

X}
f ′′(µX)2

4

≈ σ2
X [f ′(µX)]2 + 2E[(X − µX)3]

f ′(µX)f ′′(µX)

2
+ {E[(X − µX)4]− σ4

X}
f ′′(µX)2

4

Call E[(X − µX)3] and E[(X − µX)4] the third and fourth moments sometimes represented

as µ3X and µ4X . There is an analogous representation for multiple random variables.

3 Expectations and variances of products and ratios

Let’s consider the function f(X) = h(X)g(X), where f is a function, which is a composite

of two functions that may be random variables i.e., h(X) = X or functions of random

variables and not necessarily just one random variable.

Taking the first partial derivative of f with respect to h and g we have ∂f(h,g)
∂h

= g,

∂f(h,g)
∂g

= h, and ∂2f(h,g)
∂h∂g

= 1, and all other partial derivatives are 0. Now we take these and

plug it into our Taylor series approximation to the Expectation of two random variables

equation (A1.4a) in ? and we get

E[f(h, g)] = f(µh, µg) + σ2
h

∂2f

2∂h2
+ σ2

g

∂2f

2∂g2
+ σ(h, g)

∂2f

∂h∂g
(1)
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and we arrive at

E[f(h, g)] = µhµg + σ(h, g)(2)

If h and g were just random variables say X and Y then this expression would follow from

the definition of covariance, where

σ(X, Y ) = E(XY )− µXµY

We can now use the multivariable form of the variance equation, which is

= E
{[

(X − µX)f ′(µX) + (Y − µY )f ′(µY ) + [(X − µX)2 − σ2
X ]
f ′′(µX)

2
(3)

+[(X − µX)(Y − µY )− σ(X, Y )]
∂f 2(µY )

∂X∂Y
+ [(Y − µY )2 − σ2

Y ]
f ′′(µY )

2

]2}
(4)

Substituting in our partial derivatives

Var(XY ) = E
{

[(X − µX)µY + (Y − µY )µX + (X − µX)(Y − µY )− σ(X, Y )]2
}

(5)

Expand and reduce (Exexcise 1)
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The process is very similar for expectations and variances of ratios. Again if we treat

f(X, Y ) = X/Y then the first and second order partial derivatives are

∂f

∂X
=

1

Y
(6)

∂f

∂Y
=
−X
Y 2

(7)

∂2f

∂X2
= 0(8)

∂2f

∂Y 2
=

2X

Y 3
(9)

∂2f

∂Y ∂X
=
−1

Y 2
(10)

So again with the expectation we have

E[f(X, Y )] ≈ f(µX , µY ) + σ2
X

∂2f

2∂X2
+ σ2

Y

∂2f

2∂Y 2
+ σ(X, Y )

∂2f

∂X∂Y
(11)

E[f(X, Y )] ≈ µX
µY

[
1 +

2σ2
Y

µ2
Y

− σ(X, Y )

µXµY

]
(12)

And again for variances

Var[f(X, Y )] ≈ µ2
X

µ2
Y

[
σ2
X

µ2
X

− 2σ(X, Y )

µXµY
+
σ2
Y

µ2
Y

]
(13)

These are both approximations
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4 Derivation of sampling variances for regression and

correlation coefficients

The least-squares regression coefficient is given by β̂ = Cov(U, V )/Var(U), where U is the

independent variable. We want to know

Var(β̂) = Var

(
Cov(U, V )

Var(U)

)(14)

We would like to use the approximation

Var[f(X, Y )] ≈ µ2
X

µ2
Y

[
σ2
X

µ2
X

− 2σ(X, Y )

µXµY
+
σ2
Y

µ2
Y

]
(15)

and we will require µX , µY , σ(X, Y ), σ2
X , and σ2

Y

µX = σ(U, V )(16)

µY = Var(U)(17)

because the variance and covariance are unbiased estimators. We are going to make the

further assumption that U and V are bivariate normal. Need

σ(X, Y ) = Cov[Cov(U, V ),Var(U)](18)

σ2
X = Var[Cov(U, V )](19)

σ2
Y = Var[Var(U)](20)
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Assuming that U and V are bivariate normal we can use (A1.10b), (A1.14), and (A1.15)

from ?

Var[Var(X)] =
2σ2

X

n
(21)

Var[Cov(X, Y )] =
σ2
Xσ

2
Y + [σ(X, Y )]2

n
(22)

Cov[Cov(X, Y ),Var(X)] =
2σ2

Xσ(X, Y )

n

(23)

and so

σ(X, Y ) = Cov[Cov(U, V ),Var(U)] =
2σ2

Uσ(U, V )

n
(24)

σ2
X = Var[Cov(U, V )] =

σ2
Uσ

2
V + [σ(U, V )]2

n
(25)

σ2
Y = Var[Var(U)] =

2σ4
U

n
(26)
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Plugging these in

Var[Cov(U, V )/Var(U)] ≈ [σ(U, V )]2

σ4
U

[
Var[Cov(U, V )]

[σ(U, V )]2
−

2
2σ2

Uσ(U,V )

n

σ(U, V )Var(U)
+

2σ4
U

n

[Var(U)]2

](27)

≈ [σ(U, V )]2

σ4
U

[
σ2
Uσ

2
V +[σ(U,V )]2

n

[σ(U, V )]2
−

2
2σ2

Uσ(U,V )

n

σ(U, V )σ2
U

+

2σ4
U

n

[σ2
U ]2

]
(28)

≈ [σ(U, V )]2

nσ4
U

[
σ2
Uσ

2
V + [σ(U, V )]2

[σ(U, V )]2
− 4 + 2

]
(29)

≈ 1

nσ4
U

[
σ2
Uσ

2
V + [σ(U, V )]2 − 2[σ(U, V )]2

]
(30)

≈ σ2
V

nσ2
U

− [σ(U, V )]2

nσ4
U

(31)

≈ σ2
V

nσ2
U

[
1− [σ(U, V )]2

σ2
V σ

2
U

]
(32)

≈ σ2
V

nσ2
U

[
1− %2

]
(33)

Where % is the correlation coefficient. This is what’s in Lynch and Walsh. Compare this

with the estimator for the standard error from first principles

Var(β̂) =
σ̂2

nsX

Where sX is the sample variance of X and σ̂2 an estimate of the residual variance.
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Exercises

1. Finish off expanding and reducing equation (??) and compare to equation (A1.18a)

2. Derive equation (??) using equation (A1.7c) in Lynch and Walsh

3. Review the final derivation and contrast it with that from first principles

4. Try and follow the same process of the final derivation to find (A1.20b) in Lynch and

Walsh
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