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Linear Regression

Definition
For an individual i , we model a quantitative trait yi as

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ε i (i = 1, . . . ,n)

β0, . . . , βp are the regression coeffients and xi1, . . . , xip will be
called covariates.

Objective

I Estimate the regression coeffients
I Test assumptions about these coefficients
I Make predictions for new data
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(Part I)
Red pill or blue pill?
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What is a matrix?
A n-by-p matrix X is a two-dimensional table with n rows and p
columns that contains (real) numbers. n and p are called
matrix dimensions.

X =

 x11 . . . x1p
... xij

...
xn1 . . . xnp


The xij ’s are called matrix entries.

An example

X =

[
1 3
2 4

]
is a 2-by-2 matrix.

A vector is a special case of a matrix that has only one column.
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We assume that X is a n-by-p matrix.

0-Transposition
The transpose of matrix X (denoted tX , X T or X ′) is a p-by-n
matrix defined as

X ′ =

 x11 . . . x1n
... xji

...
xp1 . . . xpn


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1-Multiplying by a number a
aX is also n-by-p matrix which entries have all been multiplied
by a

aX =

 a× x11 . . . a× x1p
... a× xij

...
a× xn1 . . . a× xnp


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2-Matrix addition
We can only add matrices that have the same dimensions. If Z
is also a n-by-p matrix then

X + Z =

 x11 . . . x1p
... xij

...
xn1 . . . xnp

+

 z11 . . . z1p
... zij

...
zn1 . . . znp


=

 x11 + z11 . . . x1p + z1p
... xij + zij

...
xn1 + zn1 . . . xnp + znp


This rule can be generalized to calculate the sum of any
number of matrices.
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3-Matrix multiplication
We can only multiply a n× p-matrix with a p×m-matrix. If Z is
a p-by-m matrix then XZ is a n-by-m matrix defined as

(XZ )i,k = xi,1 × z1,k + xi,2 × z2,k + . . . + xi,p × zp,k
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Identity matrix and inverse
We call a square matrix, a matrix with as many rows as
columns. One special square matrix is the Identity matrix
defined in dimension n as

In = n rows




1

1 0
. . .

0 1
1


︸ ︷︷ ︸

n columns

A n× n matrix A is said invertible, if there exists a unique n× n
matrix B such as AB = BA = In. If such a matrix exist then B
is called inverse of A and is noted A−1.
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How can I tell if a matrix is invertible?
Tough question in general, but we can admit this somewhat
satisfactory answer...A is invertible if and only if its determinant
does equal 0. OK then, but what is the determinant?

Example

X =

[
1 3
2 4

]
then |X | = 1× 4− 2× 3 = −2.

X =

[
1 2
2 4

]
then |X | = 1× 4− 2× 2 = 0

The determinant measures how the columns or the rows of X
are linearly related.
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Matrix rank
The rank of a n× p matrix A is the number of linearly
independent rows or columns.
rank(A) ≤ min(n,p).

When the n = p (square matrices), then A is invertible if and
only if rank(A) = n (full rank matrix).
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(Part II)
Linear regression in matrix terms
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Reformulation
We first defined the linear regression model using the following
equation

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ε i (i = 1, . . . ,n)

this looks pretty much like a matrix product right?

yi =
[
1, xi1, xi2, . . . , xip

]︸ ︷︷ ︸
1×(p+1)

×


β0
β1
...

βp


︸ ︷︷ ︸
(p+1)×1

+ε i (i = 1, . . . ,n)
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Therefore, if we note

y =

 y1
...

yn

 , β =

 β0
...

βp

 , ε =

 ε1
...

εn


and

X =

 x11 . . . x1p
... xij

...
xn1 . . . xnp


The linear regression model can we reformulated as

y = X β + ε
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Estimation
I assume that the we know the distribution of the ε i ’s:
ε i ∼ N

(
0, σ2). Under this assumption we can estimate β using

maximum likelihood. The log likelihood is written as

log p(y |X ; β) = −n
2

log(2πσ2)− 1
2σ2 (y − X β)′ (y − X β)

= −n
2

log(2πσ2)− 1
2σ2

(
y ′y − 2β′X ′y + β′X ′X β

)
= C − 1

2σ2

[
β′X ′X β− 2β′X ′y

]
To find the maximum with respect to β we have to solve the
following equation:

∂ log p(y |X ; β)

∂β
= − 1

2σ2

[
2X ′X β− 2X ′y

]
= 0
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If the p× p-matrix X ′X is invertible, then the maximum
likelihood estimate (MLE) of β is given by

β̂ =
(
X ′X

)−1 X ′y

Otherwise the MLE does not exist. Why would this happen?
1. Colinearity: some variables are too correlated with one

another.
2. High dimensionality: the number of covariates (p) exceeds

the sample size (n).
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(Part III)
Matrix decomposition and inverse
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The case of square matrices
Once upon a time, a famous mathematician named Karl
Weierstrass proposed the Spectral Decomposition Theorem
which says in substance that a symmetric matrix X filled with
real numbers can be discomposed as A = PDP−1.
where P verifies that P ′P = I (i.e. P−1 = P ′) and D is a
diagonal matrix.

Few more definition/operations
A symmetric matrix A is a square matrix such as A′ = A.
E.g:

X =

[
1 −3
−3 4

]
then X ′ = X

One trick we did not mention earlier is that (AB)−1 = B−1A−1

and another a bit similar is (AB)′ = B′A′.
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The case of square matrices
Once upon a time, a famous mathematician named Karl
Weierstrass proposed the Spectral Decomposition Theorem
which says in substance that a symmetric matrix X filled with
real numbers can be factorized as A = PDP−1.
where P verifies that P ′P = I (i.e. P−1 = P ′) and D is a
diagonal matrix.

We can remark that X ′X is symmetric because(
X ′X

)′
= X ′

(
X ′
)′
= X ′X and therefore can decomposed as

X ′X = PDP−1.

The columns of P are called eigenvectors of X and the values
of the diagonal of D are called eigenvalues of X .
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Cholesky decomposition
We now assume that matrix A is symmetric and has a
determinant strictly positive. Therefore, we can find a triangular
matrix L such as A = LL′. This is also known as the LU
decomposition for Lower-Upper.

L =


l11
l21 l22
...

...
. . .

ln1 ln2 · · · lnn



This decomposition is also interesting because calculating the
inverse of a relatively easy.
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Singular Vector Decomposition
More generally, any n× p-matrix X can be decomposed as
X = USV ′ where S is n× p diagonal matrix and U and V are
respectively n× n and p× p such as U ′U = In and V ′V = In

S =



s11
0 s22
...

...
. . .

0 0 · · · snp
0 0 · · · 0
...

...
... 0

0 0 · · · 0


︸ ︷︷ ︸

a rectangular diagonal matrix (n<p)
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QR decomposition
Another usefull decomposition of a n× p matrix is A = QR
where Q is an orthonormal matrix, i.e. Q′Q = In and R is an
upper triangular matrix.

This is decomposition has a lower complexity than the SVD or
the Cholesky decomposition.
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How can these matrices decompositions be obtained?
There are known and efficient algorithms implemented in most
statistical suites.

1. in R: svd(), chol() or solve()
2. in C++ (Eigen library): SelfAdjointEigenSolver(), llt() or

inverse()

...but you should know these involve intensive calculations. For
a n× p

1. SVD complexity : O(np2 − p3/3) operations
2. Cholesky Decomposition complexity: O(np2 + p3)

operations.
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Why do we care if this is already implemented
somewhere?
Well...

1. Existing packages can be bugged, so if you know how it
works you can fix it!

2. Improve existing packages or implement faster algorithm
for your specific problem

3. Understand when an approximation is needed
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Some ongoing research in this area
The main driving force in this area is the improvement of
computational algorithms to meet the challenges of using large
dataset. There are researches on

1. Improving performances for sparse matrices (filled with a
lot of zeros) decomposition.

2. Low rank approximations for SVD
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