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MENDELIAN RANDOMIZATION 

•  What’s all the fuss about Mendelian Randomization 


•  What is Mendelian Randomization (MR)


•  Standard MR methods


•  Recent Extensions to address key limitations


•  Additional useful concepts to understand in MR (if there’s time!)




WHATS ALL THE FUSS ABOUT MR? 



ANALOGY: GENETIC STUDIES  
                    VS EPIDEMIOLOGY 

•  GWAS:

•  500,000 SNP-trait associations

•  Small SNP effects, independent outside LD blocks

•  Identify only small numbers


•  Epidemiology hypothetical “T-WAS”

•  500,000 trait-trait associations

•  A huge number will come up as associated


•   human traits of health and disease are extremely highly intercorrelated 


•  Big problem for epidemiological association is (not discovery of new hits)

•  How to distinguish which of the thousands are causal relationships we 

can intervene on and which are non-causal correlations




THE PROBLEM WITH 
EPIDEMIOLOGICAL ASSOCIATIONS 



THE PROBLEM WITH  
EPIDEMIOLOGICAL ASSOCIATIONS 

No reliable methods for fully controlling for confounding in standard observational 
studies


•  Statistical covariate adjustment shown to be completely inadequate

•  Action frequently taken in public health based on extremely poor evidence




Serious & widespread effects

•  Ineffective (harmful) medical and health interventions & policies

•  Misleading public health information & advice

•  Failed drug development research (95% failure rate)


HOW CAN WE DO A BETTER JOB AT IDENTIFYING CAUSAL EFFECTS?




RCTS: THE ‘GOLD STANDARD’ FOR CAUSALITY 

RANDOMISATION METHOD 

RANDOMISED 
CONTROLLED TRIAL 

CONFOUNDERS 
EQUAL BETWEEN 

GROUPS 

EXPOSED:  
 
INTERVENTION 

CONTROL:  
NO 
INTERVENTION 

OUTCOMES COMPARED BETWEEN 
GROUPS 

Randomisation 
makes causal inference 

possible 



WHY NOT JUST RELY ON 
RANDOMISED CLINICAL TRIALS? 

Ethically: 



1.  RCTs cannot be undertaken for many traits of interest 

(anything adverse) Most human studies need to be observational 


2.  RCTs need to be undertaken AFTER there is already good evidence 
for causality in humans 




(before subjecting them to experiments & investing millions of dollars) 






MENDELIAN RANDOMISATION AND RCTS 

RANDOMISATION METHOD 

RANDOMISED 
CONTROLLED TRIAL 

CONFOUNDERS 
EQUAL BETWEEN 

GROUPS 

MENDELIAN 
RANDOMISATION 

RANDOM SEGREGATION OF 
ALLELES 

CONFOUNDERS 
EQUAL BETWEEN 

GROUPS 

EXPOSED: 
FUNCTIONAL  
ALLELLES 

EXPOSED:  
 
INTERVENTION 

CONTROL: 
NULL 
ALLELLES 

CONTROL:  
NO 
INTERVENTION 

OUTCOMES COMPARED BETWEEN 
GROUPS 

OUTCOMES COMPARED BETWEEN 
GROUPS 
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WHAT DOES MENDELIAN RANDOMIZATION 
ACTUALLY DO? 

Based on concept that alleles segregate randomly with respect to 
environmental factors and genetic variants for different traits assort 
independently:


1.  Tests for the presence of a causal relationship between two variables


2.  Estimates magnitude of a causal effect


Provided 3 core assumptions are met……




3 CORE REQUIREMENTS FOR 
MENDELIAN RANDOMIZATION TO BE VALID 

SNP Exposure Outcome 

Confounders 

(1) SNP is reliably associated with the exposure 

(2) SNP is not associated with confounding variables 

(3) SNP only associated with outcome through the exposure * 
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STANDARD MR – USING INDIVIDUAL LEVEL DATA 
 

SNP Exposure Outcome 

Confounders 

Wald Test* :  

TSLS:  

βSNP-OUTCOME 

βSNP-EXPOSURE 

1)  Regress exposure on SNP & obtain predicted values  
2)  Regress outcome on predicted exposure (from 1st stage regression) 
 
 

βSNP-OUTCOME 

βSNP-EXPOSURE βEXP-OUTCOME 

* Can also use summary data 

βSNP-EXPOSURE X  βEXP-OUTCOME 

βSNP-EXPOSURE 



EXAMPLE OF TSLS IN R 
#R package needed for two stage least squares analysis 

 library(AER)  
 
#Ordinary least squares regression (contains CONFOUNDING) 

 summary(lm(Y~X)) 
 
#Mendelian randomization analysis 

 summary(ivreg(Y ~ X |  Z)) 
 
     #Single-SNP TSLS MR 

 summary( ivreg(bmi ~ crp | rs12037, data=mrtest) 
 
     #Multi-SNP TSLS MR 

 summary( ivreg(bmi ~ hscrp | rs12037 + rs4206 + rs4129 + rs2794, data=mrtest) 
 
     #Allelic-score TSLS MR 

 # First generate (weighted or unweighted) allele scores in PLINK/R 
 summary( ivreg(bmi ~ crp | CRPscore, data=mrtest) 

 
 
 



TSLS IN R: EXAMPLE OUTPUT 

Assessing the causal effect of CRP on BMI, using CRP allele score



  ORDINARY LEAST SQUARES phenotypic association

Call:

lm(formula = mr$bmi ~ mr$crp)

Coefficients:

                     Estimate 
SE 
 Pr(>|t|)    

crp 
        0.348 
 0.0137    <2e-16 ***



  TSLS Mendelian randomization 

Call:

lm(formula = mr$bmi ~ mr$crp | mr$allelescore)

Coefficients:

                 Estimate 
SE  
Pr(>|t|)  

crp 
   0.0512  
0.0941 
 0.833 


BOTH RETURN  
CHANGE IN : 
BMI (OUTCOME) 
 
PREDICTED BY : 
UNIT CHANGE IN  
CRP (EXPOSURE) 
 
BUT TSLS  = CAUSAL 



MENDELIAN RANDOMIZATION METHODS 

•  Standard MR methods :


•  Two-stage least squares (TSLS) on individual level data

•  Single SNP MR

•  Multi-SNP MR

•  Allelic score MR


•  Recent Extensions:


•  Summary statistic & two sample MR

•  Inverse-variance weighted (IVW) MR – maximise power

•  Egger MR – address pleiotropy







MR FOR SUMMARY STATISTIC &  
TWO-SAMPLE DATA 

1.  Inverse-variance weighted (IVW) MR

•  Summary-level SNP estimates from multiple genetic variants


•  Can be from two different GWAS MAs

       (one for exposure one for outcome


•  Fixed effects IVW meta-analysis across different SNPs

- For their the causal IV estimate 


 (ratio of SNP effect on outcome divided by SNP effect on exposure)




•  Equivalent to doing an IVW regression analysis of SNP outcome on 
SNP exposure


2. MR Egger

•  Similar to IVW but in the regression allows intercept to vary from zero




IVW MR AND EGGER 

SNP Exposure Association 
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Regression beta = weighted average of SNP_outcome/SNP_exposure) 
*Causal estimate of change in outcome per unit change in exposure* 



IVW AND EGGER MR IN R 

# IVW MR


ivw.r  <- lm(b_out ~ - 1 + b_exp, weights = (1 / (se_out)^2)




# MR Egger



egg.r  <- lm(b_out ~ b_exp, weights = (1 / (se_out)^2)) 








IVW AND EGGER R OUTPUT 
 # IVW

lm(mr$b_schz ~ -1 + mr$b_crp, weights = 1 / (mr$se_schz)^2)



Coefficients:

            
 
 Estimate Std. Error t value Pr(>|t|)   

b_crp 
 
 -0.1388     0.0438  -3.168  0.00562 **





# EGGER 

lm(mr$b_schz ~ mr$b_crp, weights = 1 / (mr$se_schz)^2)



Coefficients:

              
 
Estimate Std. Error t value Pr(>|t|)  

(Intercept)   
0.002090   0.004326   0.483   0.6355  

b_crp 
 
-0.131447   0.047305  -2.779   0.0134 *






MR FOR SUMMARY STATISTIC &  
TWO-SAMPLE DATA 

2. MR Egger



Advantages:



1.  Two key elements to Egger:


•  Provides causal effect estimate that is less biased in the presence 
of pleiotropy


•  Tests statistically for the presence of pleiotropy





2.  Egger enables an MR assumption to be relaxed








Standard MR assumption 
‘Exclusion Restriction’ 

(i.e. NO directional pleiotropy 
No αj) 

Egger MR assumption 
‘INSIDE assumption’ 

(i.e. No correlation between αj and γj 
across instruments) 

EXCLUSION RESTRICTION VS  
INSIDE ASSUMPTION 



MR EGGER 
 FUNNEL PLOT 

ggplot(data, aes(y = b_exp_maf, x = b_iv)) 

“MAF-corrected”  
exposure SNP beta 
 
(1/se(Beta_IV) 



MR EGGER 
 FUNNEL PLOT 

ggplot(data, aes(y = b_exp_maf, x = b_iv)) 

“MAF-corrected”  
exposure SNP beta 
 
(1/se(Beta_IV) 



SUMMARY STATISTIC IVW AND MR EGGER 

Overall aims to maximise statistical power for MR by using summary-
level SNP effects from very large GWAS studies



IVW MR - better statistical power 



 - more biased in the presence of pleiotropy


 - equivalent results to individual-level multi-SNP TSLS MR




Egger MR - lower statistical power



    - less biased in the presence of pleiotropy





Best to implement BOTH IVW and Egger interpret the estimates together 
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ADDITIONAL USEFUL CONCEPTS  
TO UNDERSTAND IN MR  



“BI-DIRECTIONAL MENDELIAN RANDOMIZATION” 

FTO 
Genotype BMI  CRP CRP 

Genotype 

?Causal effect of BMI on CRP 

?Causal effect of CRP on BMI 



INSTRUMENT STRENGTH 

•  Weak genetic instruments biases causal estimates

•  Single sample MR: towards confounded observational estimate

•  Two-sample MR: towards the null


•  Check by looking at F-statistic from the first stage regression in TSLS

R2 / k


(1-R2 )/ (n-k-1)

•  F-stat >10


•  Bias <10%


•  Provided by ‘diagnostics’ in AER




Calculating Statistical Power for MR 

Why is it important?  

•  Very large sample sizes are usually required to ensure adequate 
statistical power for MR studies   

•  Inadequately powered MR studies can lead to false negatives and 
incorrectly concluding a non-causal effect 

 

What determines statistical power for MR?  

Three main parameters: 

i)  amount of variance in the exposure trait explained by the 
genetic instrument 

ii)  study sample size,  

iii)   magnitude of the causal effect of the exposure on the outcome 



Online Power Calculator for MR 
Webpage: cnsgenomics.com/shiny/mRnd/ 

 
For details see: Brion MJ, Shakbahzov K & Visscher P. Int J Epid (2013) 



Parameters Required to Perform Calculation 

1 - Desired level of power (eg 80%) OR available sample size (N) 

2 – Alpha level   eg 0.05 

3 – Magnitude of causal XY association 

   ie a hypothetical value estimated from literature 

4 – Magnitude of observational XY association  

   ie from literature, implicitly contains confounding 

5 – Variance of X  ie from the reported observational association 

6 – Variance of Y  ie from the reported observational association 



Sample Size Requirements for MR: 
   
“Real World” Example of BMI and BP in children using FTO 

Required sample size 
=53,218 



www.mrbase.org/alpha 
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