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What is Bayesian statistics?

Definition
Bayesian statistics, named for Thomas Bayes (1701–1761), is a
theory in the field of statistics in which the evidence about the
true state of the world is expressed in terms of ’degrees of belief’
called Bayesian probabilities. – Wikipedia

I Fallacy: Bayesian methods depend on totally subjective
interpretations of probability

I Truth: Bayesians share the same viewpoint of the world with
Frequentists

I The true state of nature is embodied in a fixed but unknown
parameter value that governs the distribution of observable
quantities

I If we know everything about all physical relations in the world,
we would know the values that would be assumed by
observable quantities with certainty



Meaning of probability

Frequentist
I The probability of an event is the limiting value of its

frequency in a large number of trials
Bayesian

I Probabilities are used to quantify our beliefs or knowledge
about possible values of unknowns (parameters)

This is the fundamental difference between Bayesian and
Frequentist statistics



What is fixed? What is random?

Frequentist
I Data are repeatable random samples – random variables
I Underlying parameters remain constant during the repeatable

process
I Parameters are fixed

Bayesian
I Data are observed from the realized sample
I Data are fixed
I Parameters are unknown and described probabilistically
I Not necessary to define random variable



Bayesian probability

I It is legitimate to write

Pr (t1 < θ < t2) = c

with θ, t1, t2 and c all being constants
I Not a statement a random quantity or random variable
I It is a statement about our knowledge that θ lies in the

interval (t1, t2)

Example
I What is the probability that h2 > 0.5?

I What is the probability that height is controlled by more than
1000 loci?



How to make inference?

Frequentist
I Maximum likelihood

y|θ

Bayesian
I Posterior probability

θ|y



Bayes Theorem

The conditional probability of X given Y is

Pr (X |Y ) =
Pr (X ,Y )

Pr (Y )
=

Pr (Y |X )Pr (X)

Pr (Y )

where Pr (X ,Y ) is the joint probability of X and Y , Pr (X) is the
probability of X , and Pr (Y )is the probability of Y .



Essential of Bayesian inference

I Prior probabilities quantify beliefs about parameters before
the data are analyzed

I Parameters are related to the data through the model or
“likelihood” which is the conditional probability density for
the data given the parameters

I The prior and the likelihood are combined using Bayes
theorem to obtain posterior probabilities, which are
conditional probabilities for the parameters given the data

I Inferences about parameters are based on the posterior



Bayesian theorem in Bayesian inference

I Let f (θ) denote the prior probability density for θ
I Let f (y |θ ) denote the likelihood
I Then, the posterior probability of θ is

f (θ |y) =
f (y |θ ) f (θ)

f (y)
∝ f (y |θ ) f (θ)



Example: the conjugate prior for the normal distribution

Suppose

yi |µ ∼ N
(
µ, σ2

)
i .i .d . and µ ∼ N(µ0, σ

2
0)

where σ2, µ0 and σ2
0 are known. Then:

µ |y ∼ N
(

σ2
0

σ2

n + σ2
0

ȳ +
σ2

σ2

n + σ2
0

µ0,

(
1

σ2
0

+
n
σ2

)−1
)

I With no observations, the posterior mean is the prior mean
I As the number of observations becomes large, the posterior

mean ≈ ȳ



Equivalence to BLUP

The i .i .d . observations can be represented by the model:

y = 1µ+ e

with a prior knowledge that µ = µ0 with uncertainty σ2
0. Thus, the

linear model with the additional (prior) data:[
y
µ0

]
=

[
1
1

]
µ+

[
e
ε

]
with Var

[
y
µ0

]
=

[
Iσ2 0
0 σ2

0

]
OLS equations:

[
1′ 1

] [Iσ2 0
0 σ2

0

] [
1
1

]
µ̂ =

[
1′ 1

] [Iσ2 0
0 σ2

0

] [
y
µ0

]
(

1′1
σ2

+
1
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0

)
µ̂ =

1′y
σ2

+
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σ2
0



Computing posteriors

I Often no closed form for f (θ |y)

I Non-conjugate prior: e.g. mixture prior for SNP effects

I Further, even if computing f (θ |y) is feasible, obtaining
f (θj |y) would require integrating over many dimensions, e.g.

f (θ1 |y) =

ˆ
f (θ1 |θ2,y) f (θ2 |y)dθ2

I Thus, in many situations, inferences are mad using the
empirical posterior constructed by drawing samples from
f (θ |y)

I MCMC (Markov chain Monte Carlo) techniques are widely
used for drawing samples from posteriors and for making
inferences



Monte Carlo integration

Consider evaluating the integral

Ef [h (X)] =

ˆ
h (x) f (x)dx

Using the Monte Carlo estimate

ĥ =
1

T

T∑
t=1

h
(

x (t)
)

where x (t) ∼ i .i .d .f (x).
I Now, integration problem solved! But how to draw sample

from f (x), namely f (θ |y)?



Markov chain

I Stochastic process is a sequence of random variable
{X (t) , t ∈ T}

I X(t) is the state of the process at time t
I T is the set of time points at which we observe X(t)
I The state space is the set of possible values of X(t)

I A stochastic process has the Markov property if, given the
present, the future does not depend on the past

I A stochastic process satisfies the Markov property is called
Markov chain



Markov chain

I A simple example of a Markov chain is the random walk. At
each time point, move right one step with probability p or
move left one step with probability 1− p

I Starting at X(0) = 0 move left or right by 1 with probability
p = 0.5 over T = 200 steps



Inference from Markov chain

Can show that samples obtained from a Markov chain can be used
to draw inferences from the joint posterior distribution provided
the chain is:

I Irreducible (Ergodic): can move from any state i to any
other state j

I Positive recurrent (aperiodic): return time to any state has
finite expectation

I Markov Chains, J. R. Norris (1997)



MCMC sampling techniques

I Gibbs sampler
I Metropolis-Hastings sampler



Gibbs sampler



Why Gibbs sampling works
Gibbs sampling can be thought of as a practical

implementation of the fact that knowledge of the
conditional distributions is sufficient to determine a joint
distribution.

– Casella and George



Metropolis-Hastings sampler



Proposal distributions



Applications in whole-genome analyses

I Prediction
I predicting phenotypes, polygenic sores of individual risk

I Estimation of quantities of interest
I SNP effects, genetic variance
I SNP-based heritability

I Hypothesis test
I Bayesian GWAS



Popular Bayesian methods for whole-genome analyses

yi = µ+
∑

j
Xijαj + ei

Priors:
I µ ∝constant (not proper, but posterior is proper)
I ei ∼ i .i .d .N

(
0, σ2

e
)
;σ2

e ∼ νeS2
eχ

−2
νe

I Different priors for αj



Priors for SNP effects

I BayesA; BayesB (Meuwissen et al. 2001)
I univariate-t prior; a mixture of zero with a given prob. π and

t-distribution with prob. 1− π

I BayesC; BayesCπ (Habier et al. 2011)
I a mixture of zero and normal distribution with unknown π

I BayesR (Erbe et al. 2012); BayesRC (Macleod et al. 2016)
I a mixture of normals; can incorporate functional information

I BayesLasso (Park and Casella, 2008)
I double exponential distribution

I BSLMM (Zhou et al. 2013); BOLT-LMM (Loh et al. 2015)
I BayesCπ+ polygenic component; efficient variational Bayes



Advantages and disadvantages of Bayesian methods

Advantages:
I Simultaneously fit all SNPs in the model
I Incorporate prior knowledge, e.g. mixture prior for SNP effects
I Appealing interpretation of results
I Simultaneous discovery, estimation and prediction analysis

Disadvantages:
I Computational cost
I Does not guarantee converge


