
Part II

Bayesian Inference: Application to Whole
Genome Analyses
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Model

Model:
y

i

= µ +
X

j

X

ij

↵
j

+ e

i

Priors:
I µ / constant (not proper, but posterior is proper)
I

e

i

⇠ (iid)N(0,�2
e

); �2
e

⇠ ⌫
e

S

2
e

��2
⌫

e

I Consider several different priors for ↵
j
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Normal

I Prior: (↵
j

|�2
↵) ⇠ (iid)N(0,�2

↵); �2
↵ is known

I What is �2
↵?

I Assume the QTL genotypes are a subset of those
available for the analysis

I Then, the genotypic value of i can be written as:

g

i

= µ + x

0
i

↵

I Note that ↵ is common to all i

I Thus, the variance of g

i

comes from x

0
i

being random

I So, �2
↵ is not the genetic variance at a locus

I If locus j is randomly sampled from all the loci available for
analysis:

I Then, ↵
j

will be a random variable
I �2

↵ = Var(↵
j

)
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Relationship of �2
↵ to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then,
the additive genetic variance is

V

A

=
kX

j

2p

j

q

j

↵2
j

,

where p

j

= 1� q

j

is gene frequency at SNP locus j .
Letting U

j

= 2p

j

q

j

and V

j

= ↵2
j

,

V

A

=
kX

j

U

j

V

j

For a randomly sampled locus, covariance between U

j

and V

j

is

C

UV

=

P
j

U

j

V

j

k

� (

P
j

U

j

k

)(

P
j

V

j

k

)
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Relationship of �2
↵ to genetic variance

Rearranging the previous expression for C

UV

gives

X

j

U

j

V

j

= kC

UV

+ (
X

j

U

j

)(

P
j

V

j

k

)

So,

V

A

= kC

UV

+ (
X

j

2p

j

q

j

)(

P
j

↵2
j

k

)

Letting �2
↵ =

P
j

↵2
j

k

gives

V

A

= kC

UV

+ (
X

j

2p

j

q

j

)�2
↵

and,

�2
↵ =

V

A

� kC

UVP
j

2p

j

q

j
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Blocked Gibbs sampler

I Let ✓0 = [µ,↵0]

I Can show that (✓|y ,�2
e

) ⇠ N(✓̂, C

�1�2
e

)

I
✓̂ = C

�1
W

0
y ; W = [1, X ]

I

C =

"
101 10X
X

01 X

0
X + I

�2
e

�2
↵

#

I Blocked Gibbs sampler
I García-Cortés and Sorensen (1996, GSE 28:121-126)
I

Likelihood, Bayesian and MCMC Methods · · · (LBMMQG,
Sorensen and Gianola, 2002)

17/51



Full conditionals for single-site Gibbs

I (µ|y ,↵,�2
e

) ⇠ N(10
(y�X↵)

n

, �2
e

n

)

I (↵
j

|y , µ,↵
j_,�

2
e

) ⇠ N(↵̂
j

, �2
e

c

j

)
I

↵̂
j

=
x

0
j

w

c

j

I

w = y � 1µ�
X

j

0 6=j

x

j

0↵
j

0

I

c

j

= (x 0
j

x

j

+
�2

e

�2
↵

)

I (�2
e

|y , µ,↵) ⇠ [(y �W✓)0(y �W✓) + ⌫
e

S

2
e

]��2
(⌫

e

+n)

18/51



Derive: full conditional for ↵
j

From Bayes’ Theorem,

f (↵
j

|y , µ,↵
j_,�

2
e

) =
f (↵

j

, y , µ,↵
j_,�

2
e

)

f (y , µ,↵
j_,�2

e

)

/ f (y |↵
j

, µ,↵
j_,�

2
e

)f (↵
j

)f (µ,↵
j_,�

2
e

)

/ (�2
e

)�n/2 exp{�
(w � x

j

↵
j

)0(w � x

j

↵
j

)

2�2
e

}(�2
↵)�1/2 exp{�

↵2
j

2�2
↵
}

where
w = y � 1µ�

X

j 6=j

0

x

j

0↵
j

0
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Derive: full conditional for ↵
j

The exponential terms in the joint density can be written as:

� 1
2�2

e

{w

0
w � 2x

0
j

w↵
j

+ [x 0
j

x

j

+
�2

e

�2
↵
]↵2

j

}

Completing the square in this expression with respect to ↵
j

gives

� 1
2�2

e

{c

j

(↵
j

� ↵̂
j

)2 + w

0
w � c

j

↵̂
j

2}

where
↵̂

j

=
x

j

w

c

j

So,

f (↵
j

|y , µ,↵
j_,�

2
e

) / exp{�
(↵

j

� ↵̂
j

)2

2�2
e

c

j

}
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Full conditional for �2
e

From Bayes’ theorem,

f (�2
e

|y , µ,↵) =
f (�2

e

, y , µ,↵)

f (y , µ,↵)

/ f (y |�2
e

, µ,↵)f (�2
e

)f (µ,↵)

where

f (y |�2
e

, µ,↵) / (�2
e

)�n/2 exp{�
(w � x

j

↵
j

)0(w � x

j

↵
j

)

2�2
e

}

and

f (�2
e

) =
(S2

e

⌫
e

/2)⌫
e

/2

�(⌫/2)
(�2

e

)�(2+⌫
e

)/2 exp(�⌫
e

S

2
e

2�2
e

)
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Full conditional for �2
e

So,

f (�2
e

|y , µ,↵) / (�2
e

)�(2+n+⌫
e

)/2 exp(�SSE + ⌫
e

S

2
e

2�2
e

)

where
SSE = (w � x

j

↵
j

)0(w � x

j

↵
j

)

So,
f (�2

e

|y , µ,↵) ⇠ ⌫̃
e

S̃

2
e

��2
⌫̃

e

where

⌫̃
e

= n + ⌫
e

; S̃

2
e

=
SSE + ⌫

e

S

2
e

⌫̃
e
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Alternative view of Normal prior

Consider fixed linear model:

y = 1µ + X↵ + e

This can be also written as

y =
⇥
1 X

⇤ 
µ
↵

�
+ e

Suppose we observe for each locus:

y

⇤
j

= ↵
j

+ ✏
j
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Least Squares with Additional Data

Fixed linear model with the additional data:


y

y

⇤

�
=


1 X

0 I

� 
µ
↵

�
+


e

✏

�

OLS Equations:


10 00

X

0
I

0

�"
I

n

1
�2

e

0
0 I

k

1
�2

✏

# 
1 X

0 I

� 
µ̂
↵̂

�
=


10 00

X

0
I

0

�"
I

n

1
�2

e

0
0 I

k

1
�2

✏

# 
y

y

⇤

�

"
101 10X
X

01 X

0
X + I

�2
e

�2
✏

# 
µ̂
↵̂

�
=

"
10y

X

0
y + y

⇤ �2
e

�2
✏

#
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Univariate-t

Prior:
(↵

j

|�2
j

) ⇠ N(0,�2
j

)

�2
j

⇠ ⌫↵S

2
⌫↵

��2
⌫↵

Can show that the unconditional distribution for ↵
j

is

↵
j

⇠ (iid)t(0, S

2
⌫↵

, ⌫↵)

(Sorensen and Gianola, 2002, LBMMQG pages 28,60)

This is Bayes-A (Meuwissen et al., 2001; Genetics
157:1819-1829)
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Univariate-t

Generated by Wolfram|Alpha (www.wolframalpha.com)
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Full conditional for single-site Gibbs
Full conditionals are the same as in the "Normal" model for
µ,↵

j

, and �2
e

. Let
⇠ = [�2

1,�2
2, . . . ,�2

k

]

Full conditional conditional for �2
j

:

f (�2
j

|y , µ,↵, ⇠
j_,�

2
e

) / f (y , µ,↵, ⇠,�2
e

)

/ f (y |µ,↵, ⇠,�2
e

)f (↵
j

|�2
j

)f (�2
j

)f (µ,↵
j_, ⇠

j_�
2
e

)

/ (�2
j

)�1/2 exp{�
↵2

j

2�2
j

}(�2
j

)�(2+⌫↵)/2 exp{⌫↵S

2
↵

2�2
j

}

/ (�2
j

)�(2+⌫↵+1)/2 exp{
↵2

j

+ ⌫↵S

2
↵

2�2
j

}
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Full conditional for �2
↵

So,
(�2

↵|y , µ,↵, ⇠_,�
2
e

) ⇠ ⌫̃↵S̃

2
↵��2

⌫↵

where
⌫̃↵ = ⌫↵ + 1

and

S̃

2
↵ =

↵2
j

+ ⌫↵S

2
↵

⌫̃↵
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Multivariate-t

Prior:
(↵

j

|�2
↵) ⇠ (iid)N(0,�2

↵)

�2
↵ ⇠ ⌫↵S

2
⌫↵

��2
⌫↵

Can show that the unconditional distribution for ↵ is

↵ ⇠ multivariate-t(0, IS

2
⌫↵

, ⌫↵)

(Sorensen and Gianola, 2002, LBMMQG page 60)

We will see later that this is Bayes-C with ⇡ = 0.
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Full conditional for �2
↵

We will see later that

(�2
↵|y , µ,↵,�2

e

) ⇠ ⌫̃↵S̃

2
↵��2

⌫↵

where
⌫̃↵ = ⌫↵ + k

and

S̃

2
↵ =

↵0↵ + ⌫↵S

2
↵

⌫̃↵
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Spike and univariate-t

Prior:

(↵
j

|⇡,�2
j

)

(
⇠ N(0,�2

j

) probability (1� ⇡),

= 0 probability ⇡

and
(�2

j

|⌫↵, S

2
↵) ⇠ ⌫↵S

2
↵��2

⌫↵

Thus,

(↵
j

|⇡)(iid)

(
⇠ univariate-t(0, S

2
↵, ⌫↵) probability (1� ⇡),

= 0 probability ⇡

This is Bayes-B (Meuwissen et al., 2001; Genetics
157:1819-1829)
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Notation for sampling from mixture

The indicator variable �
j

is defined as

�
j

= 1) (↵
j

|�2
j

) ⇠ N(0,�2
j

)

and
�

j

= 0 ) (↵
j

|�2
j

) = 0
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Sampling strategy in MHG (2001)

I Sampling �2
e

and µ are as under the Normal prior.
I MHG proposed to use a Metropolis-Hastings sampler to

draw samples for �2
j

and ↵
j

jointly from their full-conditional
distribution.

I First, �2
j

is sampled from

f (�2
j

|y , µ,↵
j_, ⇠_,�

2
e

)

I Then, ↵
j

is sampled from its full-conditional, which is
identical to that under the Normal prior
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Sampling �2
j

The prior for �2
j

is used as the proposal. In this case, the MH
acceptance probability becomes

↵ = min(1,
f (y |�2

can

,✓
j_)

f (y |�2
j

,✓
j_)

)

where �2
can

is used to denote the candidate value for �2
j

, and ✓
j_

all the other parameters. It can be shown that, ↵
j

depends on y

only through r

j

= x

0
j

w (look here). Thus

f (y |�2
j

,✓
j_) / f (r

j

|�2
j

,✓
j_)
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"Likelihood" for �2
j

Recall that

w = y � 1µ�
X

j

0 6=j

x

j

0↵
j

0 = x

j

↵
j

+ e

Then,
E(w |�2

j

,✓
j_) = 0

When � = 1:

Var(w |�
j

= 1,�2
j

,✓
j_) = x

j

x

0
j

�2
j

+ I�2
e

and � = 0:
Var(w |�

j

= 0,�2
j

,✓
j_) = I�2

e
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"Likelihood" for �2
j

So,
E(r

j

|�2
j

,✓
j_) = 0

and

Var(r
j

|�
j

= 1,�2
j

,✓
j_) = (x 0

j

x

j

)2�2
j

+ x

0
j

x

j

�2
e

= v1

Var(r
j

|�
j

= 0,�2
j

,✓
j_) = x

0
j

x

j

�2
e

= v0

So,

f (r
j

|�
j

,�2
j

,✓
j_) / (v�)

�1/2 exp{�
r

2
j

2v�
}
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MH acceptance probability when prior is used as
proposal

Suppose we want to sample ✓ from f (✓|y) using the MH with its
prior as proposal. Then, the MH acceptance probability
becomes:

↵ = min(1,
f (✓

can

|y)f (✓t�1)

f (✓t�1|y)f (✓
can

)

where f (✓) is the prior for ✓. Using Bayes’ theorem, the target
density can be written as:

f (✓|y) = f (y |✓)f (✓)

Then, the acceptance probability becomes

↵ = min(1,
f (y |✓

can

)f (✓
can

)f (✓t�1)

f (y |✓t�1)f (✓t�1)f (✓
can

)
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Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling �2
j

, we
I sample �

j

= 1 with probability 0.5
I when � = 1, sample �2

j

from a scaled inverse chi-squared
distribution with

I scale parameter = �2(t�1)
j

/2 and 4 degrees of freedom
when �2(t�1)

j

> 0 , and
I scale parameter = S

2
↵ and 4 degrees of freedom when

�2(t�1)
j

= 0
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Multivariate-t mixture

Prior:

(↵
j

|⇡,�2
↵)

(
⇠ N(0,�2

↵) probability (1� ⇡),

= 0 probability ⇡

and
(�2

↵|⌫↵, S

2
↵) ⇠ ⌫↵S

2
↵��2

⌫↵

Further,
⇡ ⇠ Uniform(0, 1)

I The ↵
j

variables with their corresponding �
j

= 1 will follow
a multivariate-t distribution.

I This is what we have called Bayes-C⇡
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Full conditionals for single-site Gibbs

Full-conditional distributions for µ, ↵, and �2
e

are as with the
Normal prior.
Full-conditional for �

j

:

Pr(�
j

|y , µ,↵�j

, ��j

,�2
↵,�2

e

,⇡) =

Pr(�
j

|r
j

,✓
j_)

Pr(�
j

|r
j

,✓
j_) =

f (�
j

, r

j

|✓
j_)

f (r
j

|✓
j_)

=
f (r

j

|�
j

,✓
j_) Pr(�

j

|⇡)

f (r
j

|�
j

= 0,✓
j_)⇡ + f (r

j

|�
j

= 1,✓
j_)(1� ⇡)
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Full conditional for�2
↵

This can be written as

f (�2
↵|y , µ,↵, �,�2

e

) / f (y |�2
↵, µ,↵, �,�2

e

)f (�2
↵, µ,↵, �,�2

e

)

But, can see that

f (y |�2
↵, µ,↵, �,�2

e

) / f (y |µ,↵, �,�2
e

)

So,
f (�2

↵|y , µ,↵, �,�2
e

) / f (�2
↵, µ,↵, �,�2

e

)

Note that �2
↵ appears only in f (↵|�2

↵) and f (�2
↵):

f (↵|�2
↵) / (�2

↵)�k/2 exp{�↵0↵

2�2
↵
}

and

f (�2
↵) / (�2

↵)�(⌫↵+2)/2 exp{⌫↵S

2
↵

2�2
↵

}
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Full conditional for �2
↵

Combining these two densities gives:

f (�2
↵|y , µ,↵, �,�2

e

) / (�2
↵)�(k+⌫↵+2)/2 exp{↵0↵ + ⌫↵S

2
↵

2�2
↵

}

So,
(�2

↵|y , µ,↵, �,�2
e

) ⇠ ⌫̃↵S̃

2
↵��2

⌫̃↵

where
⌫̃↵ = k + ⌫↵

and

S̃

2
↵ =

↵0↵ + ⌫↵S

2
↵

⌫̃↵
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Hyper parameter: S

2
↵

If �2 is distributed as a scaled, inverse chi-square random
variable with scale parameter S

2 and degrees of freedom ⌫

E(�2) =
⌫S

2

⌫ � 2

Recall that under some assumptions

�2
↵ =

V

aP
j

2p

j

q

j

So, we take

S

2
↵ =

(⌫↵ � 2)V
a

⌫↵k(1� ⇡)2pq
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Full conditional for ⇡

Using Bayes’ theorem,

f (⇡|�, µ,↵,�2
↵,�2

e

, y) / f (y |⇡, �, µ,↵,�2
↵,�2

e

)f (⇡, �, µ,↵,�2
↵,�2

e

)

But,
I Conditional on � the likelihood is free of ⇡

I Further, ⇡ only appears in probability of the vector of
bernoulli variables: �

Thus,
f (⇡|�, µ,↵,�2

↵,�2
e

, y) = ⇡(k�m)(1� ⇡)m

where m = �0�, and k is the number of markers. Thus, ⇡ is
sampled from a beta distribution with a = k �m + 1 and
b = m + 1.

44/51



Simulation I

I 2000 unlinked loci in LE
I 10 of these are QTL: ⇡ = 0.995
I

h

2 = 0.5
I Locus effects estimated from 250 individuals
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Results for Bayes-B

Correlations between true and predicted additive genotypic
values estimated from 32 replications

⇡ S

2 Correlation

0.995 0.2 0.91 (0.009)
0.8 0.2 0.86 (0.009)
0.0 0.2 0.80 (0.013)

0.995 2.0 0.90 (0.007)
0.8 2.0 0.77 (0.009)
0.0 2.0 0.35 (0.022)
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Simulation II

I 2000 unlinked loci with Q loci having effect on trait
I

N is the size of training data set
I Heritability = 0.5
I Validation in an independent data set with 1000 individuals
I Bayes-B and Bayes-C⇡ with ⇡ = 0.5
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Results

Results from 15 replications

Corr(g, ĝ)

N Q ⇡ ⇡̂ Bayes-C⇡ Bayes-B

2000 10 0.995 0.994 0.995 0.937
2000 200 0.90 0.899 0.866 0.834
2000 1900 0.05 0.202 0.613 0.571
4000 1900 0.05 0.096 0.763 0.722

48/51



Simulation II

I Genotypes: 50k SNPs from 1086 Purebred Angus
animals, ISU

I Phenotypes:
I QTL simulated from 50 randomly sampled SNPs
I substitution effect sampled from N(0,�2

↵)
I �2

↵ =
�2

g

502p̄q

I
h

2 = 0.25
I QTL were included in the marker panel
I Marker effects were estimated for 50k SNPs
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Validation

I Genotypes: 50k SNPs from 984 crossbred animals, CMP
I Additive genetic merit (g

i

) computed from the 50 QTL
I Additive genetic merit predicted (ĝ

i

) using estimated
effects for 50k SNP panel
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Results

Correlations between g

i

and ĝ

i

estimated from 3 replications

Correlation

⇡ Bayes-B Bayes-C

0.999 0.86 0.86
0.25 0.70 0.26

BayesC⇡:
I ⇡̂ = 0.999
I Correlation = 0.86
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