Part II

Bayesian Inference: Application to Whole Genome Analyses

Model

Model:

$$
y_{i}=\mu+\sum_{j} X_{i j} \alpha_{j}+e_{i}
$$

Priors:

- $\mu \propto$ constant (not proper, but posterior is proper)
- $e_{i} \sim($ iid $) \mathrm{N}\left(0, \sigma_{e}^{2}\right) ; \sigma_{e}^{2} \sim \nu_{e} S_{e}^{2} \chi_{\nu_{e}}^{-2}$
- Consider several different priors for α_{j}

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim$ (iid) $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:

$$
g_{i}=\mu+\boldsymbol{x}_{i}^{\prime} \alpha
$$

- Note that α is common to all i
- Thus, the variance of g_{i} comes from $\boldsymbol{x}_{i}^{\prime}$ being random
- So, σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable
- $\sigma_{\alpha}^{2}=\operatorname{Var}\left(\alpha_{j}\right)$

Relationship of σ_{α}^{2} to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then, the additive genetic variance is

$$
V_{A}=\sum_{j}^{k} 2 p_{j} q_{j} \alpha_{j}^{2}
$$

where $p_{j}=1-q_{j}$ is gene frequency at SNP locus j.
Letting $U_{j}=2 p_{j} q_{j}$ and $V_{j}=\alpha_{j}^{2}$,

$$
V_{A}=\sum_{j}^{k} U_{j} V_{j}
$$

For a randomly sampled locus, covariance between U_{j} and V_{j} is

$$
C_{U V}=\frac{\sum_{j} U_{j} V_{j}}{k}-\left(\frac{\sum_{j} U_{j}}{k}\right)\left(\frac{\sum_{j} V_{j}}{k}\right)
$$

Relationship of σ_{α}^{2} to genetic variance

Rearranging the previous expression for $C_{U V}$ gives

$$
\sum_{j} U_{j} V_{j}=k C_{U V}+\left(\sum_{j} U_{j}\right)\left(\frac{\sum_{j} V_{j}}{k}\right)
$$

So,

$$
V_{A}=k C_{U V}+\left(\sum_{j} 2 p_{j} q_{j}\right)\left(\frac{\sum_{j} \alpha_{j}^{2}}{k}\right)
$$

Letting $\sigma_{\alpha}^{2}=\frac{\sum_{j} \alpha_{j}^{2}}{k}$ gives

$$
V_{A}=k C_{U V}+\left(\sum_{j} 2 p_{j} q_{j}\right) \sigma_{\alpha}^{2}
$$

and,

$$
\sigma_{\alpha}^{2}=\frac{V_{A}-k C_{U V}}{\sum_{j} 2 p_{j} q_{j}}
$$

Blocked Gibbs sampler

- Let $\boldsymbol{\theta}^{\prime}=\left[\mu, \boldsymbol{\alpha}^{\prime}\right]$
- Can show that $\left(\boldsymbol{\theta} \mid \boldsymbol{y}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\boldsymbol{\theta}}, \boldsymbol{C}^{-1} \sigma_{e}^{2}\right)$

$$
\hat{\theta}=C^{-1} W^{\prime} y ; \quad W=[\mathbf{1}, \boldsymbol{X}]
$$

$$
C=\left[\begin{array}{cc}
1^{\prime} \mathbf{1} & 1^{\prime} X \\
X^{\prime} 1 & X^{\prime} X+I \frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}
\end{array}\right]
$$

- Blocked Gibbs sampler
- García-Cortés and Sorensen (1996, GSE 28:121-126)
- Likelihood, Bayesian and MCMC Methods ... (LBMMQG, Sorensen and Gianola, 2002)

Full conditionals for single-site Gibbs

- $\left(\mu \mid \boldsymbol{y}, \boldsymbol{\alpha}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\frac{\mathbf{1}^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\alpha})}{n}, \frac{\sigma_{e}^{2}}{n}\right)$
- $\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\alpha}_{j}, \frac{\sigma_{e}^{2}}{c_{j}}\right)$

$$
\hat{\alpha}_{j}=\frac{\boldsymbol{x}_{j}^{\prime} \boldsymbol{w}}{c_{j}}
$$

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j^{\prime} \neq j} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}
$$

$$
c_{j}=\left(\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}+\frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}\right)
$$

- $\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \sim\left[(\boldsymbol{y}-\boldsymbol{W} \boldsymbol{\theta})^{\prime}(\boldsymbol{y}-\boldsymbol{W} \boldsymbol{\theta})+\nu_{e} \boldsymbol{S}_{e}^{2}\right] \chi_{\left(\nu_{e}+n\right)}^{-2}$

Derive: full conditional for α_{j}

From Bayes' Theorem,

$$
\begin{gathered}
f\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)=\frac{f\left(\alpha_{j}, \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)}{f\left(\boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)} \\
\propto f\left(\boldsymbol{y} \mid \alpha_{j}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) f\left(\alpha_{j}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \\
\propto\left(\sigma_{e}^{2}\right)^{-n / 2} \exp \left\{-\frac{\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)^{\prime}\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)}{2 \sigma_{e}^{2}}\right\}\left(\sigma_{\alpha}^{2}\right)^{-1 / 2} \exp \left\{-\frac{\alpha_{j}^{2}}{2 \sigma_{\alpha}^{2}}\right\}
\end{gathered}
$$

where

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j \neq j^{\prime}} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}
$$

Derive: full conditional for α_{j}

The exponential terms in the joint density can be written as:

$$
-\frac{1}{2 \sigma_{e}^{2}}\left\{\boldsymbol{w}^{\prime} \boldsymbol{w}-2 \boldsymbol{x}_{\boldsymbol{j}}^{\prime} \boldsymbol{w} \alpha_{j}+\left[\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}+\frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}\right] \alpha_{j}^{2}\right\}
$$

Completing the square in this expression with respect to α_{j} gives

$$
-\frac{1}{2 \sigma_{e}^{2}}\left\{c_{j}\left(\alpha_{j}-\hat{\alpha}_{j}\right)^{2}+\boldsymbol{w}^{\prime} \boldsymbol{w}-c_{j} \hat{\alpha}_{j}^{2}\right\}
$$

where

$$
\hat{\alpha}_{j}=\frac{\boldsymbol{x}_{j} \boldsymbol{w}}{c_{j}}
$$

So,

$$
f\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \propto \exp \left\{-\frac{\left(\alpha_{j}-\hat{\alpha}_{j}\right)^{2}}{2 \frac{\sigma_{e}^{2}}{c_{j}}}\right\}
$$

Full conditional for σ_{e}^{2}

From Bayes' theorem,

$$
\begin{aligned}
& f\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right)=\frac{f\left(\sigma_{e}^{2}, \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right)}{f(\boldsymbol{y}, \mu, \boldsymbol{\alpha})} \\
& \propto f\left(\boldsymbol{y} \mid \sigma_{e}^{2}, \mu, \boldsymbol{\alpha}\right) f\left(\sigma_{e}^{2}\right) f(\mu, \boldsymbol{\alpha})
\end{aligned}
$$

where

$$
f\left(\boldsymbol{y} \mid \sigma_{e}^{2}, \mu, \boldsymbol{\alpha}\right) \propto\left(\sigma_{e}^{2}\right)^{-n / 2} \exp \left\{-\frac{\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)^{\prime}\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)}{2 \sigma_{e}^{2}}\right\}
$$

and

$$
f\left(\sigma_{e}^{2}\right)=\frac{\left(S_{e}^{2} \nu_{e} / 2\right)^{\nu_{e} / 2}}{\Gamma(\nu / 2)}\left(\sigma_{e}^{2}\right)^{-\left(2+\nu_{e}\right) / 2} \exp \left(-\frac{\nu_{e} S_{e}^{2}}{2 \sigma_{e}^{2}}\right)
$$

Full conditional for σ_{e}^{2}

So,

$$
f\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \propto\left(\sigma_{e}^{2}\right)^{-\left(2+n+\nu_{e}\right) / 2} \exp \left(-\frac{S S E+\nu_{e} S_{e}^{2}}{2 \sigma_{e}^{2}}\right)
$$

where

$$
S S E=\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)^{\prime}\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)
$$

So,

$$
f\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \sim \tilde{\nu}_{e} \tilde{S}_{e}^{2} \chi_{\tilde{\nu}_{e}}^{-2}
$$

where

$$
\tilde{\nu}_{e}=n+\nu_{e} ; \quad \tilde{S}_{e}^{2}=\frac{S S E+\nu_{e} S_{e}^{2}}{\tilde{\nu}_{e}}
$$

Alternative view of Normal prior

Consider fixed linear model:

$$
\boldsymbol{y}=\mathbf{1} \mu+\boldsymbol{X} \alpha+\boldsymbol{e}
$$

This can be also written as

$$
\boldsymbol{y}=\left[\begin{array}{ll}
\mathbf{1} & \boldsymbol{X}
\end{array}\right]\left[\begin{array}{l}
\mu \\
\alpha
\end{array}\right]+\boldsymbol{e}
$$

Suppose we observe for each locus:

$$
y_{j}^{*}=\alpha_{j}+\epsilon_{j}
$$

Least Squares with Additional Data

Fixed linear model with the additional data:

$$
\left[\begin{array}{c}
\boldsymbol{y} \\
\boldsymbol{y}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1} & \boldsymbol{X} \\
\mathbf{0} & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{c}
\mu \\
\boldsymbol{\alpha}
\end{array}\right]+\left[\begin{array}{c}
\boldsymbol{e} \\
\epsilon
\end{array}\right]
$$

OLS Equations:

$$
\left[\begin{array}{ll}
\mathbf{1}^{\prime} & \mathbf{0}^{\prime} \\
\boldsymbol{X}^{\prime} & \boldsymbol{I}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{I}_{n} \frac{1}{\sigma_{e}^{2}} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{I}_{k} \frac{1}{\sigma_{\epsilon}^{2}}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{1} & \boldsymbol{X} \\
\mathbf{0} & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{l}
\hat{\mu} \\
\hat{\boldsymbol{\alpha}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1}^{\prime} & \mathbf{0}^{\prime} \\
\boldsymbol{X}^{\prime} & \boldsymbol{I}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{I}_{n} \frac{1}{\sigma_{e}^{2}} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{I}_{k} \frac{1}{\sigma_{\varepsilon}^{2}}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{y} \\
\boldsymbol{y}^{*}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
\mathbf{1}^{\prime} \mathbf{1} & \mathbf{1}^{\prime} \boldsymbol{X} \\
\boldsymbol{X}^{\prime} \mathbf{1} & \boldsymbol{X}^{\prime} \boldsymbol{X}+\boldsymbol{l}+\frac{\sigma_{e}^{2}}{\sigma_{\epsilon}^{2}}
\end{array}\right]\left[\begin{array}{c}
\hat{\mu} \\
\hat{\boldsymbol{\alpha}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{1}^{\prime} \boldsymbol{y} \\
\boldsymbol{X}^{\prime} \boldsymbol{y}+\boldsymbol{y}^{*} \frac{\sigma_{e}^{2}}{\sigma_{\epsilon}^{2}}
\end{array}\right]
$$

Univariate-t

Prior:

$$
\begin{gathered}
\left(\alpha_{j} \mid \sigma_{j}^{2}\right) \sim \mathrm{N}\left(0, \sigma_{j}^{2}\right) \\
\sigma_{j}^{2} \sim \nu_{\alpha} S_{\nu_{\alpha}}^{2} \chi_{\nu_{\alpha}}^{-2}
\end{gathered}
$$

Can show that the unconditional distribution for α_{j} is

$$
\alpha_{j} \sim(\mathrm{iid}) t\left(0, S_{\nu_{\alpha}}^{2}, \nu_{\alpha}\right)
$$

(Sorensen and Gianola, 2002, LBMMQG pages 28,60)

This is Bayes-A (Meuwissen et al., 2001; Genetics 157:1819-1829)

Univariate- t

Plots of PDF for typical parameters:

Generated by Wolfram|Alpha (www.wolframalpha.com)

Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for μ, α_{j}, and σ_{e}^{2}. Let

$$
\boldsymbol{\xi}=\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{k}^{2}\right]
$$

Full conditional conditional for σ_{j}^{2} :

$$
\begin{gathered}
f\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}_{j_{-}}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) \\
\propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) f\left(\alpha_{j} \mid \sigma_{j}^{2}\right) f\left(\sigma_{j}^{2}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{j_{-}} \sigma_{e}^{2}\right) \\
\propto\left(\sigma_{j}^{2}\right)^{-1 / 2} \exp \left\{-\frac{\alpha_{j}^{2}}{2 \sigma_{j}^{2}}\right\}\left(\sigma_{j}^{2}\right)^{-\left(2+\nu_{\alpha}\right) / 2} \exp \left\{\frac{\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{j}^{2}}\right\} \\
\propto\left(\sigma_{j}^{2}\right)^{-\left(2+\nu_{\alpha}+1\right) / 2} \exp \left\{\frac{\alpha_{j}^{2}+\nu_{\alpha} \boldsymbol{S}_{\alpha}^{2}}{2 \sigma_{j}^{2}}\right\}
\end{gathered}
$$

Full conditional for σ_{α}^{2}

So,

$$
\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}_{-}, \sigma_{e}^{2}\right) \sim \tilde{\nu}_{\alpha} \tilde{S}_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

where

$$
\tilde{\nu}_{\alpha}=\nu_{\alpha}+1
$$

and

$$
\tilde{S}_{\alpha}^{2}=\frac{\alpha_{j}^{2}+\nu_{\alpha} S_{\alpha}^{2}}{\tilde{\nu}_{\alpha}}
$$

Multivariate- t

Prior:

$$
\begin{gathered}
\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim(\mathrm{iid}) \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) \\
\sigma_{\alpha}^{2} \sim \nu_{\alpha} S_{\nu_{\alpha}}^{2} \chi_{\nu_{\alpha}}^{-2}
\end{gathered}
$$

Can show that the unconditional distribution for α is

$$
\boldsymbol{\alpha} \sim \text { multivariate- } t\left(\mathbf{0}, I S_{\nu_{\alpha}}^{2}, \nu_{\alpha}\right)
$$

(Sorensen and Gianola, 2002, LBMMQG page 60)

We will see later that this is Bayes-C with $\pi=0$.

Full conditional for σ_{α}^{2}

We will see later that

$$
\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \sigma_{e}^{2}\right) \sim \tilde{\nu}_{\alpha} \tilde{S}_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

where

$$
\tilde{\nu}_{\alpha}=\nu_{\alpha}+k
$$

and

$$
\tilde{S}_{\alpha}^{2}=\frac{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}+\nu_{\alpha} S_{\alpha}^{2}}{\tilde{\nu}_{\alpha}}
$$

Spike and univariate- t

Prior:

$$
\left(\alpha_{j} \mid \pi, \sigma_{j}^{2}\right) \begin{cases}\sim \mathrm{N}\left(0, \sigma_{j}^{2}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$

and

$$
\left(\sigma_{j}^{2} \mid \nu_{\alpha}, S_{\alpha}^{2}\right) \sim \nu_{\alpha} S_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

Thus,

$$
\left(\alpha_{j} \mid \pi\right)(\text { iid }) \begin{cases}\sim \text { univariate- } t\left(0, S_{\alpha}^{2}, \nu_{\alpha}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$

This is Bayes-B (Meuwissen et al., 2001; Genetics 157:1819-1829)

Notation for sampling from mixture

The indicator variable δ_{j} is defined as

$$
\delta_{j}=1 \Rightarrow\left(\alpha_{j} \mid \sigma_{j}^{2}\right) \sim \mathrm{N}\left(0, \sigma_{j}^{2}\right)
$$

and

$$
\delta_{j}=0 \Rightarrow\left(\alpha_{j} \mid \sigma_{j}^{2}\right)=0
$$

Sampling strategy in MHG (2001)

- Sampling σ_{e}^{2} and μ are as under the Normal prior.
- MHG proposed to use a Metropolis-Hastings sampler to draw samples for σ_{j}^{2} and α_{j} jointly from their full-conditional distribution.
- First, σ_{j}^{2} is sampled from

$$
f\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{-}, \sigma_{e}^{2}\right)
$$

- Then, α_{j} is sampled from its full-conditional, which is identical to that under the Normal prior

Sampling σ_{j}^{2}

The prior for σ_{j}^{2} is used as the proposal. In this case, the MH acceptance probability becomes

$$
\alpha=\min \left(1, \frac{f\left(\boldsymbol{y} \mid \sigma_{\text {can }}^{2}, \boldsymbol{\theta}_{j_{-}}\right)}{f\left(\boldsymbol{y} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)}\right)
$$

where $\sigma_{c a n}^{2}$ is used to denote the candidate value for σ_{j}^{2}, and $\boldsymbol{\theta}_{j_{-}}$ all the other parameters. It can be shown that, α_{j} depends on \boldsymbol{y} only through $r_{j}=\boldsymbol{x}_{j}^{\prime} \boldsymbol{w}$ (look here). Thus

$$
f\left(\boldsymbol{y} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right) \propto f\left(r_{j} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)
$$

"Likelihood" for σ_{j}^{2}

Recall that

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j^{\prime} \neq j} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}=\boldsymbol{x}_{j} \alpha_{j}+\boldsymbol{e}
$$

Then,

$$
\mathrm{E}\left(\boldsymbol{w} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\mathbf{0}
$$

When $\delta=1$:

$$
\operatorname{Var}\left(\boldsymbol{w} \mid \delta_{j}=1, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{x}_{j} \boldsymbol{X}_{j}^{\prime} \sigma_{j}^{2}+\boldsymbol{I} \sigma_{e}^{2}
$$

and $\delta=0$:

$$
\operatorname{Var}\left(\boldsymbol{w} \mid \delta_{j}=0, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{I} \sigma_{e}^{2}
$$

"Likelihood" for σ_{j}^{2}

So,

$$
\mathrm{E}\left(r_{j} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j-}\right)=0
$$

and

$$
\begin{gathered}
\operatorname{Var}\left(r_{j} \mid \delta_{j}=1, \sigma_{j}^{2}, \boldsymbol{\theta}_{j-}\right)=\left(\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}\right)^{2} \sigma_{j}^{2}+\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j} \sigma_{e}^{2}=v_{1} \\
\operatorname{Var}\left(r_{j} \mid \delta_{j}=0, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j} \sigma_{e}^{2}=v_{0}
\end{gathered}
$$

So,

$$
f\left(r_{j} \mid \delta_{j}, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right) \propto\left(v_{\delta}\right)^{-1 / 2} \exp \left\{-\frac{r_{j}^{2}}{2 v_{\delta}}\right\}
$$

MH acceptance probability when prior is used as proposal

Suppose we want to sample θ from $f(\theta \mid \boldsymbol{y})$ using the MH with its prior as proposal. Then, the MH acceptance probability becomes:

$$
\alpha=\min \left(1, \frac{f\left(\theta_{\operatorname{can}} \mid \boldsymbol{y}\right) f\left(\theta^{t-1}\right)}{f\left(\theta^{t-1} \mid \boldsymbol{y}\right) f\left(\theta_{\text {can }}\right)}\right.
$$

where $f(\theta)$ is the prior for θ. Using Bayes' theorem, the target density can be written as:

$$
f(\theta \mid \boldsymbol{y})=f(\boldsymbol{y} \mid \theta) f(\theta)
$$

Then, the acceptance probability becomes

$$
\alpha=\min \left(1, \frac{f\left(\boldsymbol{y} \mid \theta_{\text {can }}\right) f\left(\theta_{\text {can }}\right) f\left(\theta^{t-1}\right)}{f\left(\boldsymbol{y} \mid \theta^{t-1}\right) f\left(\theta^{t-1}\right) f\left(\theta_{\text {can }}\right)}\right.
$$

Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling σ_{j}^{2}, we

- sample $\delta_{j}=1$ with probability 0.5
- when $\delta=1$, sample σ_{j}^{2} from a scaled inverse chi-squared distribution with
- scale parameter $=\sigma_{j}^{2(t-1)} / 2$ and 4 degrees of freedom when $\sigma_{j}^{2(t-1)}>0$, and
- scale parameter $=S_{\alpha}^{2}$ and 4 degrees of freedom when $\sigma_{j}^{2(t-1)}=0$

Multivariate- t mixture

Prior:

$$
\left(\alpha_{j} \mid \pi, \sigma_{\alpha}^{2}\right) \begin{cases}\sim \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$

and

$$
\left(\sigma_{\alpha}^{2} \mid \nu_{\alpha}, S_{\alpha}^{2}\right) \sim \nu_{\alpha} S_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

Further,

$$
\pi \sim \operatorname{Uniform}(0,1)
$$

- The α_{j} variables with their corresponding $\delta_{j}=1$ will follow a multivariate- t distribution.
- This is what we have called Bayes- $\mathrm{C} \pi$

Full conditionals for single-site Gibbs

Full-conditional distributions for $\mu, \boldsymbol{\alpha}$, and σ_{e}^{2} are as with the Normal prior.
Full-conditional for δ_{j} :

$$
\begin{gathered}
\operatorname{Pr}\left(\delta_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{-j}, \boldsymbol{\delta}_{-j}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \pi\right)= \\
\operatorname{Pr}\left(\delta_{j} \mid r_{j}, \boldsymbol{\theta}_{j_{-}}\right) \\
\operatorname{Pr}\left(\delta_{j} \mid r_{j}, \boldsymbol{\theta}_{j_{-}}\right)=\frac{f\left(\delta_{j}, r_{j} \mid \boldsymbol{\theta}_{j_{-}}\right)}{f\left(r_{j} \mid \boldsymbol{\theta}_{j_{-}}\right)} \\
=\frac{f\left(r_{j} \mid \delta_{j}, \boldsymbol{\theta}_{j_{-}}\right) \operatorname{Pr}\left(\delta_{j} \mid \pi\right)}{f\left(r_{j} \mid \delta_{j}=0, \boldsymbol{\theta}_{j_{-}}\right) \pi+f\left(r_{j} \mid \delta_{j}=1, \boldsymbol{\theta}_{j_{-}}\right)(1-\pi)}
\end{gathered}
$$

Full conditional for σ_{α}^{2}

This can be written as

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

But, can see that

$$
f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

So,

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

Note that σ_{α}^{2} appears only in $f\left(\boldsymbol{\alpha} \mid \sigma_{\alpha}^{2}\right)$ and $f\left(\sigma_{\alpha}^{2}\right)$:

$$
f\left(\boldsymbol{\alpha} \mid \sigma_{\alpha}^{2}\right) \propto\left(\sigma_{\alpha}^{2}\right)^{-k / 2} \exp \left\{-\frac{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}}{2 \sigma_{\alpha}^{2}}\right\}
$$

and

$$
f\left(\sigma_{\alpha}^{2}\right) \propto\left(\sigma_{\alpha}^{2}\right)^{-\left(\nu_{\alpha}+2\right) / 2} \exp \left\{\frac{\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{\alpha}^{2}}\right\}
$$

Full conditional for σ_{α}^{2}

Combining these two densities gives:

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto\left(\sigma_{\alpha}^{2}\right)^{-\left(k+\nu_{\alpha}+2\right) / 2} \exp \left\{\frac{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}+\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{\alpha}^{2}}\right\}
$$

So,

$$
\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \sim \tilde{\nu}_{\alpha} \tilde{S}_{\alpha}^{2} \chi_{\tilde{\nu}_{\alpha}}^{-2}
$$

where

$$
\tilde{\nu}_{\alpha}=k+\nu_{\alpha}
$$

and

$$
\tilde{S}_{\alpha}^{2}=\frac{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}+\nu_{\alpha} \boldsymbol{S}_{\alpha}^{2}}{\tilde{\nu}_{\alpha}}
$$

Hyper parameter: S_{α}^{2}

If σ^{2} is distributed as a scaled, inverse chi-square random variable with scale parameter S^{2} and degrees of freedom ν

$$
\mathrm{E}\left(\sigma^{2}\right)=\frac{\nu S^{2}}{\nu-2}
$$

Recall that under some assumptions

$$
\sigma_{\alpha}^{2}=\frac{V_{a}}{\sum_{j} 2 p_{j} q_{j}}
$$

So, we take

$$
S_{\alpha}^{2}=\frac{\left(\nu_{\alpha}-2\right) V_{a}}{\nu_{\alpha} k(1-\pi) 2 \overline{p q}}
$$

Full conditional for π

Using Bayes' theorem,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto f\left(\boldsymbol{y} \mid \pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right) f\left(\pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right)
$$

But,

- Conditional on δ the likelihood is free of π
- Further, π only appears in probability of the vector of bernoulli variables: $\boldsymbol{\delta}$
Thus,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right)=\pi^{(k-m)}(1-\pi)^{m}
$$

where $m=\boldsymbol{\delta}^{\prime} \boldsymbol{\delta}$, and k is the number of markers. Thus, π is sampled from a beta distribution with $a=k-m+1$ and $b=m+1$.

Simulation I

- 2000 unlinked loci in LE
- 10 of these are QTL: $\pi=0.995$
- $h^{2}=0.5$
- Locus effects estimated from 250 individuals

Results for Bayes-B

Correlations between true and predicted additive genotypic values estimated from 32 replications

π	S^{2}	Correlation
0.995	0.2	$0.91(0.009)$
0.8	0.2	$0.86(0.009)$
0.0	0.2	$0.80(0.013)$
0.995	2.0	$0.90(0.007)$
0.8	2.0	$0.77(0.009)$
0.0	2.0	$0.35(0.022)$

Simulation II

- 2000 unlinked loci with Q loci having effect on trait
- N is the size of training data set
- Heritability $=0.5$
- Validation in an independent data set with 1000 individuals
- Bayes-B and Bayes-C π with $\pi=0.5$

Results

Results from 15 replications

				$\operatorname{Corr}(g, \hat{g})$	
N	Q	π	$\hat{\pi}$	Bayes-C π	Bayes-B
2000	10	0.995	0.994	0.995	0.937
2000	200	0.90	0.899	0.866	0.834
2000	1900	0.05	0.202	0.613	0.571
4000	1900	0.05	0.096	0.763	0.722

Simulation II

- Genotypes: 50k SNPs from 1086 Purebred Angus animals, ISU
- Phenotypes:
- QTL simulated from 50 randomly sampled SNPs
- substitution effect sampled from $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right)$
- $\sigma_{\alpha}^{2}=\frac{\sigma_{g}^{2}}{502 \overline{p a}}$
- $h^{2}=0.25$
- QTL were included in the marker panel
- Marker effects were estimated for 50k SNPs

Validation

- Genotypes: 50k SNPs from 984 crossbred animals, CMP
- Additive genetic merit (g_{i}) computed from the 50 QTL
- Additive genetic merit predicted $\left(\hat{g}_{i}\right)$ using estimated effects for 50k SNP panel

Results

Correlations between g_{i} and \hat{g}_{i} estimated from 3 replications

	Correlation	
π	Bayes-B	Bayes-C
0.999	0.86	0.86
0.25	0.70	0.26

BayesC π :

- $\hat{\pi}=0.999$
- Correlation $=0.86$

