Part I

Bayesian Inference: Application to Whole
Genome Analyses
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Model

Model:
Yi=p+Y Xjoj+e;
j
Priors:
» 1 o constant (not proper, but posterior is proper)
> 6 ~ (iid)N(0,02); 02 ~ veS2x;2
» Consider several different priors for «;
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Normal

> Prior: (aj|02) ~ (id)N(0,02); o2 is known
» What is 02?

» Assume the QTL genotypes are a subset of those
available for the analysis

» Then, the genotypic value of i can be written as:

gi=p+ X

» Note that « is common to all J
» Thus, the variance of g; comes from x| being random

» So, ag is not the genetic variance at a locus

» If locus j is randomly sampled from all the loci available for
analysis:
» Then, o; will be a random variable
» 02 = Var(q))
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Relationship of 2 to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then,
the additive genetic variance is

K
Va=>_2pg0;,
j

where p; = 1 — q; is gene frequency at SNP locus ;.
Letting U; = 2p;q; and V; = o,

k
Va=> UV
J
For a randomly sampled locus, covariance between U; and V; is

UUERYTINIA

Cuv =
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Relationship of 2 to genetic variance

Rearranging the previous expression for Cyy gives

Vi
S UV =kCuv + (> uj)(Z;( )
J J

So,

Z.a2
Va=kCuv + (D 209)(=)
j

.a? .
Letting 02 = % gives

Va = kCuv + (O _ 2p;q))0%
j

and,
o Va—kCyy

Ua =
> 2p;q;
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Blocked Gibbs sampler

v

Let 0 = [u, o]
Can show that (8]y, 02) ~ N(8, C~'62)

v

6=Cc'Wy, w=[,X

" 1X
X1 XX +1%

v

Blocked Gibbs sampler

» Garcia-Cortés and Sorensen (1996, GSE 28:121-126)
» Likelihood, Bayesian and MCMC Methods - -- (LBMMQG,
Sorensen and Gianola, 2002)
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Full conditionals for single-site Gibbs
1y-Xa) o
> (uly, e 08) ~ N(-YZ22, %)

0'2

> (ojly. 0y 05) ~ N(G5, %)

>
/
X]-W

d': _
l .
Gj

I'#i

2
0 = (xjx; + %)
> (031y. 1) ~ [(y — WOY (y — W6) + veSEX 2. )
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Derive: full conditional for «;

From Bayes’ Theorem,

f(oy, ¥, 1, ,03)
f(y7 um, o, Ug)

f(aj’ya M, aj_: 02) =

(&8 f(y‘ajv 12X Ug)f(()//)f(ﬂ, aj Ug)

2

w— Xja)) (W — Xjo; _ o
(W= X0 = X5)) 02) 12 oxp(— 11, )

2
208

—n/2

exp{—

(o)
where

W:y—1,u—ij/aj,
J#A
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Derive: full conditional for o;

The exponential terms in the joint density can be written as:

1 2
—{W'w - 2xiwo; + [x/x; + —e]az}

209
Completing the square in this expression with respect to o;
gives
1 .
“ppztale- &)+ w'w - a?)

where

R X;w

Qj = ——

G

So,
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Full conditional for o2

From Bayes’ theorem,

f(o2,y, 1, )

f(o3ly, m a) =
W12 = Ty

o (Yo, u, a)f(a3)f(u, cx)
where
(W — onzj)/(W — onzj)
202

—n/2

f(ylog. 1, @) o (o) "2 exp{~ }

and
- (Sg’/e/z)ye/2 2

veS2
f(Ug) W Oe

2
208

)_(2+Ve)/2 exp(_

)
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Full conditional for o2

So,
_ » SSE + 1,52
f(O'g|y7 My O’,) 8 (Ug) (2+n+ e)/2 exp(_?ee)
Oe
where
SSE = (W — Xjaj)/(W — XjOéj)
So, y
f(o2ly. 1, @) ~ 7eSax;2
where

SSE + 1,52

g = N+ vg; ng p
Ve
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Alternative view of Normal prior

Consider fixed linear model:

y=1u+ Xa+e

This can be also written as
_ 2
y=[1 X| [ ] +e

Suppose we observe for each locus:

*

Vi = t¢
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Least Squares with Additional Data

Fixed linear model with the additional data:

y| (1 X||np e
=l T lal [
OLS Equations:
1 0 [z O] X][a]_[1 O
X I'f{o niLllo 1]lal” [x 71

11 1'X P _
&

/ / a2
X1 XX—i—I?
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Univariate-t

Prior:
(ejl0?) ~ N(0, %)

2
i

Can show that the unconditional distribution for ; is

2 -2
~ Vg Sz/a Xua

aj ~ (id)H(0, 82, )

(Sorensen and Gianola, 2002, LBMMQG pages 28,60)

This is Bayes-A (Meuwissen et al., 2001; Genetics
157:1819-1829)
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Univariate-t

Plots of PDF for typical parameters:
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Generated by Wolfram|Alpha (www.wolframalpha.com)
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Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for
p, oj, and o2. Let

£ = [012,03,...,0,2(]
Full conditional conditional for sz:
f(O'/2’y, u, o, Sj_? O-g) X f(y’ u, o, 57 O-g)

oc F(y|, v, €, 02) F(oyl0?) (07 F(n, o , &; 02)

2 2

— V, S()/
< (of ) expl =g ) el G2
/

% +Va82
( 2) (2+Va+1)/2exp{j27.2
/

}
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Full conditional for o2

So, N
(a§’y7 M? a7 5_7 Ug) ~ DO( (%X;az
where
Vo = Vg + 1
and

a/2 + uasg

SZ
Vo

«
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Multivariate-t

Prior:
(ajo?) ~ (iid)N(0, 02)

0’ ~ VoéS2 X;f

Can show that the unconditional distribution for « is
a ~ multivariate-#(0, IS2_, v.,)

(Sorensen and Gianola, 2002, LBMMQG page 60)

We will see later that this is Bayes-C with 7 = 0.
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Full conditional for o2

We will see later that

2 2 ~ Q2 -2
(aa\y,,u,a,ae) ~ VOéSasza
where
Uy =Vo + K
and
g2 _ a’a—l—l/asg

« Da
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Spike and univariate-t

Prior:
(ajlr,02) 4~ N(0,2) probability (1 — ),
T =0 probability 7
and
(U/'2|Va, Sg) ~ Uasgx;az
Thus,
(oylm)(iid) { ™ univariate-(0, S2,v,) probability (1 — 7),
|7
: =0 probability 7

This is Bayes-B (Meuwissen et al., 2001; Genetics
157:1819-1829)
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Notation for sampling from mixture

The indicator variable §; is defined as

5j=1= (a,-|a,2) ~ N(o,a/?)

and
5 =0 = (qjl0?) =0
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Sampling strategy in MHG (2001)

» Sampling o2 and y are as under the Normal prior.

» MHG proposed to use a Metropolis-Hastings sampler to
draw samples for aj? and q; jointly from their full-conditional
distribution.

» First, o2 is sampled from

f(0/2|y7 m, o, 5_7 Ug)

» Then, «; is sampled from its full-conditional, which is
identical to that under the Normal prior

23/51



Sampling ¢

The prior for o2 is used as the proposal. In this case, the MH
acceptance probability becomes

1 f(y‘aganv ej_))

o =min( 2.0, )

where oZ,, is used to denote the candidate value for o7, and 6;_
all the other parameters. It can be shown that, o; depends on y
only through r; = x}w (look here). Thus

f(ylo?,0; ) o f(rj]0?,0; )
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"Likelihood" for sz

Recall that
J#i
Then,
E(w|o?,0; )=0
When 6 = 1:
Var(w|s; =1,07,6; ) = X;Xjo? + los
and § = 0:

Var(w|d; = 0,0%,6; ) = loj
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"Likelihood" for af

So,
E(rjl0?,0,) =0
and
Var(rj|d; = 1,02,6; ) = (X}x})?07 + X}Xj05 = v
Var(rj|6; = 0,07,0; ) = X}Xjo5 = Vg
So,
2

I
1(11.07.8;)  (v)) 2 exp( 5. )
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MH acceptance probability when prior is used as
proposal

Suppose we want to sample ¢ from f(6|y) using the MH with its
prior as proposal. Then, the MH acceptance probability

becomes:
F(Bcanly)f(6"T)
(0 y)f(Ocan)
where f(0) is the prior for 6. Using Bayes’ theorem, the target
density can be written as:

f(6ly) = f(y16)f(6)
Then, the acceptance probability becomes

f(y|0can)f(Ocan) F(0" 1)
f(ylot=")f(0'=)f(Ocan)

a = min(1

a = min(1,
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Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling aj?, we
» sample ¢; = 1 with probability 0.5
» when ¢ = 1, sample sz from a scaled inverse chi-squared
distribution with
» scale parameter = ajz(H
when o2~ > 0, and

» scale parameter = S2 and 4 degrees of freedom when
2(t—1)
o; =0
]

)/2 and 4 degrees of freedom
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Multivariate-t mixture

Prior:
(afr.0?) ]~ N(0,02) probability (1 — =),
Qj|Tt, O -
! =0 probability
and
(02|Va, S2) ~ 13 S2X;, 2
Further,

7 ~ Uniform(0, 1)

» The a; variables with their corresponding J; = 1 will follow
a multivariate-t distribution.

» This is what we have called Bayes-Cn
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Full conditionals for single-site Gibbs

Full-conditional distributions for y, o, and ag are as with the
Normal prior.
Full-conditional for dj:

Pr(o;ly, 1, a_j, (5_1-,05,03,77) =
Pr(5j\rj, 0]'7)

F(5j, 1716} )
f(r;16;)
_ f(rjloj, 8, ) Pr(dj|m)
f(rjl0; = 0,6; )m + f(rjlo; = 1,0; )(1 — )

Pr(ojlr, 6, ) =
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Full conditional foro2

This can be written as
H(o21Y, 1, 8,08) o< (ylod, . e, 8,08)f(08, 1, @, 8,05)
But, can see that
H(ylo%, 1, e, 8,0%5) o< H(y|n, @, 6,03)

So,
f(Ui’y,M,a,é,O—g) X f(o-§¢7/'1/7a7670—§)

Note that o2 appears only in f(a|c2) and f(o2):
2 2\—k/2 a'o
f(alod) o< (a3) 7 exp{—ﬁ}

and

a

2
F(02) o (02) 1212 exp( oSy
202
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Full conditional for o2

Combining these two densities gives:

—(Kk+v da+v,S o
f(021Y, 11, v, 8,08) o (05) "k H+et2)/2 x {i}

So,
(Ua]y,,u,a ) ae) ~ VQSQX;E
where
Vo =K+ v,
and

g2 _ o'a+ 1,52
[0 - ~
V()f
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Hyper parameter: S2

If o2 is distributed as a scaled, inverse chi-square random
variable with scale parameter S2 and degrees of freedom v

v &?
v—2

E(O’z) =

Recall that under some assumptions

02 = 7\/3
“ 2P
So, we take
(va —2)Va

2 __
Sa = Jok(1 = 7)2pg
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Full conditional for 7

Using Bayes’ theorem,
(7T|5 M, 0, 0 aaamy) (&8 f(y|7T 5 y by O, O omo-e)f(ﬂ- 5 y Hy O, O a?ae)

But,

» Conditional on § the likelihood is free of 7

» Further, © only appears in probability of the vector of

bernoulli variables: §
Thus,
(7-‘-|(s u, o, o ou 067 y) = ﬂ-(k_m)“ - ﬂ-)m

where m = §’8, and k is the number of markers. Thus, 7 is
sampled from a beta distribution witha=k — m+ 1 and
b=m+1.
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Simulation |

» 2000 unlinked loci in LE

» 10 of these are QTL: 7 = 0.995

» » =05

» Locus effects estimated from 250 individuals
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Results for Bayes-B

Correlations between true and predicted additive genotypic

values estimated from 32 replications

™ S2  Correlation
0.995 0.2 0.91(0.009)
0.8 0.2 0.86(0.009)
00 02 0.80(0.013)
0.995 2.0 0.90(0.007)
08 2.0 0.77(0.009)
00 20 0.35(0.022)
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Simulation Il

2000 unlinked loci with Q loci having effect on trait

N is the size of training data set

Heritability = 0.5

Validation in an independent data set with 1000 individuals
Bayes-B and Bayes-Cr with # = 0.5

vV v.v v VY
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Results

Results from 15 replications

Corr(g, 9)
N Q T 7t Bayes-Cr Bayes-B

2000 10 0.995 0.994 0.995 0.937
2000 200 0.90 0.899 0.866 0.834
2000 1900 0.05 0.202 0.613 0.571
4000 1900 0.05 0.096 0.763 0.722
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Simulation Il

» Genotypes: 50k SNPs from 1086 Purebred Angus
animals, ISU
» Phenotypes:

» QTL simulated from 50 randomly sampled SNPs
» substitution effect sampled from N(0,02)
0_2
> 0% = 50264
» h? =0.25

» QTL were included in the marker panel
» Marker effects were estimated for 50k SNPs
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Validation

» Genotypes: 50k SNPs from 984 crossbred animals, CMP
» Additive genetic merit (g;) computed from the 50 QTL

» Additive genetic merit predicted (g;) using estimated
effects for 50k SNP panel
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Results

Correlations between g; and g; estimated from 3 replications

Correlation

T Bayes-B Bayes-C

0.999 0.86 0.86
0.25 0.70 0.26

BayesCr:
» 7 =0.999
» Correlation = 0.86
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