2022 Winter School

Distributions, hypothesis tests, variance & covariance, correlation Kathryn Kemper

Data in statistics

- Statisticians will refer to a vector X (or Y, X₁ etc.) of "random variables"
 - e.g. a coin toss: H, T, H, T, T, T, H
 - e.g. a sample of heights 164.1, 173.2, 150.0
- We normally assume X to be from a distribution. This distribution defines the properties of the *random variable* (e.g the probability that x < 0 or x = 5)

For example, toss a coin

Toss a coin 20 times, count the number of heads

e.g. 7H, 11H, 10H, 19H, 12H, 9H, 6H, 10H, 9H....

What is a parameter?

- Number that describes a population
- Often unknown and unknowable
 - e.g. how many people suffer from diabetes in Australia
- In statistics, we usually make <u>estimates</u> of parameters
- Parameters (once estimated) define a range of possible outcomes, or the assumed relationship between two variables
 - Fundamental descriptor

Useful distributions

- Continuous:
 - Normal
 - T-distribution
 - Chi-squared
 - F-distribution

Parameters are often represented by Greek letters, e.g. μ , λ , σ

Discrete: •Binomial

Normal distribution:

 $N(\mu,\sigma^2)$: parameters = μ,σ^2

•
$$\mu$$
 ('mu'; the mean) $\left[\mu = \frac{1}{N} \sum x_i\right]$ centre
• σ^2 ('sigma squared': the variance) $\left[-2 - \frac{1}{N} \sum x_i - \frac{1}{N}\right]$

• σ^2 ('sigma-squared'; the variance)

$$\sigma^2 = \frac{1}{N} \sum (x_i - \mu)^2$$
 spread

$$SSQ = \sum (y - \mu)^2$$

Mean & Variance

- Mean = a number which describes the center of the data
 > 'central tendency' also measured by mode and median
- Variance = a number which describes the data spread around the mean

➤data spread can also measured by range, quartiles & IQR

- Variance (σ^2 , sigma squared) = average SSQ = SSQ/'n'
 - SD (standard deviation, σ)

T-distribution

- t_{df} : parameter = degrees of freedom
 - e.g. T-tests
 - A sampling distribution
 - 'thick tails'
 - µ = 0
 - $\sigma^2 = (df/df-2)$
 - As df $\rightarrow \infty$, P(x) \rightarrow N(0,1)

Z-scores & p-values

• Z-score

> number of standard deviations from the mean, i.e. $Z = \frac{(x-\mu)}{\sigma}$

The Normal Distribution 95% of values Values 99% o alues Probability of Cases ≈ 0.0214 ≈ 0.1359 ≈ 0.3413 ≈ 0.3413 ≈ 0.1359 ≈ 0.0214 portions of the curve Standard Deviations -3σ -2σ -1σ +1σ +2σ +3σ From The Mean Cumulative 9 0.1% 2.3% 15.9% 50% 84.1% 97.7% 99.9% -3.0 -2.0 -1.0 0 +1.0 +2.0 +3.0 Z Scores

P-value

> Area under the pdf = 1

➢ Probability of observing X (or a more extreme value than X), given a distribution is the area under the pdf

Z-value of observed value

Chi-squared distribution

- χ^2_{df} : parameters = degrees of freedom
 - If z = N(0,1), then z^2 is χ^2_1
 - 'goodness of fit' tests
 - µ = df
 - $\sigma^2 = 2df$
 - As df $\rightarrow \infty$,

 $P(x) \rightarrow N(\infty, 2df)$

F-distribution

F_{df1,df1} : parameters df1, df2

- Ratio of 2 chi-squared distributions
- e.g. used in ANOVA tests

Binomial / mulitnomial B(n,p) parameters: n (number of trials) p (probability of success)

- discrete
- µ = np
- σ² = np(1-p)
- Think of 2pq!

Hypothesis testing options for 2 variables

- Hypothesis testing:- statistical inference (ie reasoning) asking does the data collected support a defined scientific question
- The test to use^{*} & the approach depends on type of data, e.g.
 - 2 categorical variables, i.e. count data (blood type & disease status)
 > Chi-squared test
 - 1 categorical variable & 1 continuous variable, (drug treatment & bp)
 > Analysis of variance (ANOVA) & t-test
 - 2 continuous variables, (height & weight)
 > correlation, regression
- * Not an exhaustive list

Chi-squared test

• Count data: do we expect to observe the counts given the frequency of each category.

$$\chi^{2} = \sum \frac{(observed - expected)^{2}}{expected}$$

Example:

Genotype	Μ	MN	N	Total	
Observed	233	385	129	747	
Expected	242.4	366.3	138.4		
$\chi^2 = 1.96$ with 1 df => P(X>1.96) = 0.162					

H₀: Is the locus in Hardy-Weinberg Equilibrium?

$$p^2 + 2pq + q^2 = 1$$

Let freq(M) = p

$$p = (233^2+385)/(2^747) = 0.57$$

e.g. expected MN = 2*0.57*(1-0.57)*747 = 366.3

<u>T-test</u>

- Usually testing for mean difference between populations A and B
- Example: Is height of AFL players differ from non-football players?

	AFL	non-AFL		t – <u>estimate</u>
	190	180		c = S.e.
	195	172		estimate estimate
	182	185	$SSQ = \sum (x_i - \mu_r)^2$	$= -\frac{1}{\left[s_{1}^{2} + s_{2}^{2}\right]} = -\frac{1}{\left[s_{2}^{2} + s_{2}^{2}\right]}$
	200	190		$\sqrt{\frac{n_1}{n_1} + \frac{n_2}{n_2}} \sqrt{n(n-1)}$
	201	183	$s^2 = \frac{SSQ}{SSQ}$	
	189	195	n-1	$=\frac{(192.8-184.2)}{}$
mean	192.8	184.2		52.6 + 63.8
SSQ	262.8	318.8		√ 6
variance	52.6	63.8		= 1.97; Pr(x>1.97) = 0.07
n	6	6		

ANOVA – Analysis of Variance

- Generalization of t-test for >2 groups
- Does the variation between groups explain more variation than within groups?

Covariance & correlation

$$\sigma_x^2 = \frac{1}{N} \sum (x - \mu_x)(x - \mu_x) \qquad \sigma_{xy}^2 = \frac{1}{N} \sum (x - \mu_x)(y - \mu_y)$$

- Variance = SSQ/'n'
- Covariance describes relationship between two different variables
- Covariance = average 'sums of products'
 - Scale dependent, covariance are in squared trait units (e.g. cm²)
 - Describes the relationship between 2 variables: positive, negative or no relationship

Covariance & correlation

- Covariance does not quantify the *strength* of a relationship, only if the relationship is positive, negative or null
- Correlation is a 'standardized covariance'

$$\triangleright r_{xy} = \frac{\sigma_{xy}^2}{\sigma_x \sigma_y},$$

>values from -1 (perfect negative), 0 (no relationship) to 1 (perfect positive)

Matrix notation: mean & variance

Let X' = [190 195 182 200 201 189]
 ➤ X'1/n = 1157/6 = 192.8

Let's correct the data for the mean
$> X_c = X - \frac{1X'1}{6} = [-2.8\ 2.1\ -10.8\ 7.1\ 8.1\ -3.8]'$

SSQ	−2.8 [−]	
	2.1	
$> \mathbf{V}' \mathbf{V} = [-2 \circ 2 1 - 10 \circ 7 1 \circ 1 - 2 \circ]$	-10.8	- [262 9]
$A_{c}A_{c} = [-2.02.1 - 10.07.10.1 - 5.0]$	7.1	- [202.0]
	8.1	
	L -3.8 -	
Variance		

 $X'_c X_c / 5 = 262.3 / 5 = 52.6$

AFL 190 195 182 200 201 189 mean (μ_{grp}) 192.8 SSQ 262.8 variance 52.6 6 n

Matrix notation: variance/covariance matrix

- Let's assume X is the 5 x 2 mean corrected data matrix
- Then,

Х

76.0 72.6

74.6 75.8

74.5

74.7

у 61.2

57.9 59.2

60.6

62.0

60.1

$X'X = \begin{bmatrix} S \\ S \end{bmatrix}$	$SSQ_x SSQ_x$ $SQ_{xy} SSQ_x$	$\left[\begin{array}{c} Q_{xy} \\ Q_{y} \end{array} \right]$		r 1.3	1.1 ı
$=\begin{bmatrix}1.3\\1.1\end{bmatrix}$	-2.1 -0.1 -2.2 -0.9	1 1.1 9 0.5	-0.2 1.9]	-2.1 -0.1 1.1	-2.2 -0.9 0.5
$=\begin{bmatrix} 7.4 & 6\\ 6.3 & 1 \end{bmatrix}$	5.3 0.8			L-0.2	1.9 J

Matrix notation: variance/covariance matrix $\mathbf{X'X} = \begin{bmatrix} SSQ_x & SSQ_{xy} \\ SSQ_{xy} & SSQ_y \end{bmatrix}$

$$\frac{1}{n-1}X'X = \begin{bmatrix} \sigma_x^2 & \sigma_{xy}^2 \\ \sigma_{xy}^2 & \sigma_x^2 \end{bmatrix}$$

- $=\frac{1}{4}\begin{bmatrix}7.4 & 6.3\\6.3 & 10.8\end{bmatrix} = \begin{bmatrix}1.8 & 1.6\\1.6 & 2.7\end{bmatrix}$
- If you encounter $\frac{1}{n-1}X'X$ of a mean-corrected matrix then it's a variance-covariance matrix

Matrix notation: variance/covariance matrix

Let X_s be a 5 x 2 matrix of data where each column is ~ N(0,1).
≻i.e. data in column *j* are standardized to a z-score, x_{s(ij)} = (x_{ij} - μ_j)/σ_j
What is ¹/_{n-1} X'_sX_s ?

$$\frac{1}{n-1}X'_{s}X_{s} = \frac{1}{4}\begin{bmatrix} 0.96 & -1.55 & -0.07 & 0.81 & -0.15\\ 0.62 & -1.39 & -0.60 & 0.26 & 1.11 \end{bmatrix} \begin{bmatrix} 0.96 & 0.62 \\ -1.55 & -1.39 \\ -0.07 & -0.60 \\ 0.81 & 0.26 \\ -0.15 & 1.11 \end{bmatrix}$$

 $= \lfloor 0.71 \quad 1.0 \rfloor$

basics – practical 2

- Work through "basicsPrac2.pdf"
 - Q1: z-scores and normal distribution
 - Q2: chi-square test
 - Q3: t-test
 - Q4: ANOVA
 - Q5: normal probability density function
- Software: R