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Introduction to linear models: Outline

• Definition, terminology
• LS estimation of regression parameters
• Diagnostics



Simple linear regression
In most cases,

linear model ≈ linear regression

• describes the relationship between two 
variables

• We want to find ’the best’ line to describe 
the relationship, i.e.

𝑦 = 𝑎 + 𝑏𝑥

Today we will: 
• show how to obtain ‘best fitting’ line using 

OLS (ordinary least squares)
• review the metrics that describe ‘model fit’
• generalize the the basic model to matrix form
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How to find the ‘best’ line to describe the 
data?



Simple linear regression

𝑦! = 𝛽" + 𝛽#𝑥! + 𝜀!
𝑖 = 1 … 𝑛

𝑦# = 𝛽" + 𝛽#𝑥# + 𝜀#
𝑦$ = 𝛽" + 𝛽#𝑥$ + 𝜀$

....
𝑦% = 𝛽" + 𝛽#𝑥% + 𝜀%

𝛽" 𝑎𝑛𝑑 𝛽# are unknown population parameters
-𝛽" 𝑎𝑛𝑑 -𝛽# (ie ‘beta-hat’) are the population estimates

The ‘predicted’ value of y (ie y-hat) is:
.𝑦! = -𝛽" +-𝛽#𝑥!

The residual is:
̂𝜀! = 𝑦 − .𝑦!
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How good is the regression?

SSQ in y:

1(𝑦 − 3𝑦)$

SSQ explained by the regression:

1(.𝑦 − 3𝑦)$

SSQ residuals:

1(𝑦 − .𝑦)$

Thus, 
Total SSQ = regression SSQ + residual SSQ

∑(𝑦 − 3𝑦)$=   ∑(.𝑦 − 3𝑦)$+   ∑(𝑦 − .𝑦)$

3𝑦

.𝑦

Residual SSQ 
∑(𝑦 − .𝑦)$

regression SSQ
∑(.𝑦 − 3𝑦)$

R2 = variance explained by the regression

=
𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑆𝑄

𝑡𝑜𝑡𝑎𝑙 𝑆𝑆𝑄
=
∑(5𝑦 − 7𝑦)!

∑(𝑦 − 7𝑦)!

= 1 −
∑(𝑦 − 5𝑦)!

∑(𝑦 − 7𝑦)!



How good is the regression?

• R2 = variance explained by the regression

• A value that ranges from 
• 0 (regression explains no variation)
• 1 (perfect fit)

Ø“93.5% of the variation in tree volume can be 
explained by tree girth”

Ø“7.5% of the variation in a height of children 
can be explained by their father’s height”

𝑅$ =
𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑆𝑄

𝑡𝑜𝑡𝑎𝑙 𝑆𝑆𝑄 =
∑(.𝑦 − 3𝑦)$

∑(𝑦 − 3𝑦)$

R2 = 0.075

R2 = 0.935



How do we determine 𝛽! and 𝛽"?
We can use a grid-search,

1. take our data

2. guess values 𝛽" and 𝛽#
3. calculate 5𝑦
4. calculate SSQ
5. chose model with ‘best fit’

x y
76.0 61.2
72.6 57.9
74.6 59.2
75.8 60.6
74.5 62.0
74.9 58.7
74.4 59.1
75.7 59.5
73.4 60.1
75.5 62.3

𝛽"

𝛽#
1

(𝑦
−
.𝑦)
$

Not an ideal approach! -> do not do this
‘best fit’ minimizes SSQ residuals

(or maximizes R2)



How do we determine 𝛽! and 𝛽"?

• Briefly, take partial derivatives of ∑(𝑦 − %𝑦); (w.r.t. 𝛽< and then 𝛽=), 
set to zero and solve.

• Result,
• slope:

(𝛽= =
∑(𝑦 − *𝑦)(𝑥 − 𝑥̅)

∑(𝑥 − 𝑥̅);
=
𝑆𝑆𝑄>?
𝑆𝑆𝑄>

• intercept:
(𝛽< = *𝑦 − (𝛽=𝑥̅



Simple linear regression

𝑦 𝑥 𝑥𝑦 𝑥$

6.0 1.5 9.0 2.3
1.4 4.8 6.7 23.0
1.5 5.8 8.7 33.6
5.5 3.4 18.7 11.6
3.2 5.4 17.3 29.2

17.6 20.9 60.4 99.6

𝑦! = 𝛽" + 𝛽#𝑥! + 𝜀!
𝑖 = 1 …𝑛

Recall: ∑(𝑦 − 3𝑦)(𝑥 − 𝑥̅) = 𝑛∑𝑥𝑦 − ∑𝑥 ∑𝑦
∑ 𝑥 − 𝑥̅ $ = 𝑛∑𝑥$ − (∑𝑥)2

!

-𝛽# =
5𝑥60.4 − 17.6𝑥20.9
5𝑥99.6 − (20.9)$ = −1.07

-𝛽" =
17.6
5 +

1.07𝑥20.9
5 = 7.99

y = -1.07x + 7.99
R² = 0.75
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Hypothesis testing for ‘overall fit’

• H0: All regression coefficients = 0
• Use an F-test to determine the support for H0

𝐹 =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑛𝑜𝑡 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝐹 =
𝑆𝑆𝑄@AB/(𝑝@AB − 1)
𝑆𝑆𝑄C/(𝑛 − 𝑝@AB)

𝑅$ =
𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑆𝑄

𝑡𝑜𝑡𝑎𝑙 𝑆𝑆𝑄

Variance = SSQ / ‘n’

Number of parameters in our model 
(i.e. = 2; 𝛽" and 𝛽#) 

Always  = 1 as we compared 
regression to a model with only 

intercept (or mean 𝛽") 

Sample size



Scaler	form:
𝑦$ = 𝛽" + 𝛽#𝑥$ + 𝜀$

𝑖 = 1 …𝑛

𝑦# = 𝛽" + 𝛽#𝑥# + 𝜀#
𝑦! = 𝛽" + 𝛽#𝑥! + 𝜀!

....
𝑦% = 𝛽" + 𝛽#𝑥% + 𝜀%

Matrix	form:
𝑦#
𝑦$
⋮
𝑦%

=

1 𝑥#
1 𝑥$
⋮ ⋮
1 𝑥%

𝛽"
𝛽#

+

𝜀#
𝜀!
⋮
𝜀%

𝒀 = 𝑿𝜷 + 𝜺

Why? Convenient & generalizable 

Matrix	form:
𝒀 = 𝑿𝜷 + 𝜺

𝒀 is a n x 1 column vector of observations
𝑿 is a n x 2 ‘design’ matrix
𝜷 is a 2 x 1 column vector of parameters
𝜺 is a n x 1 column vector of residuals
where n is the number of observations

Quick check:
𝑿𝜷, (n x 2) X (2 x 1) = (n x 1) matrix

𝒀 =

1 𝑥#
1 𝑥!
⋮ ⋮
1 𝑥%

𝛽J
𝛽K

+

𝜀#
𝜀!
⋮
𝜀%

=

𝛽" + 𝛽#𝑥#
𝛽" + 𝛽#𝑥!

⋮
𝛽" + 𝛽#𝑥%

+

𝜀#
𝜀!
⋮
𝜀%

=

𝛽" + 𝛽#𝑥# +𝜀#
𝛽" + 𝛽#𝑥! + 𝜀!

⋮
𝛽" + 𝛽#𝑥% + 𝜀%



Estimating parameters in matrix form
𝒀 = 𝑿𝜷 + 𝜺

We want to minimize SSQ residuals, 
residuals: 𝜺 = 𝒀 − 𝑿𝜷

F𝜺𝟐 = 𝜺,𝜺 = (𝒀 − 𝑿𝜷),(𝒀 − 𝑿𝜷)

Like previously, take derivatives w.r.t. 𝜷, set to zero and solve.
Final result:

𝜷 = [𝑿,𝑿]-𝟏𝑿,𝒀



Hat matrix for prediction

𝒀 = 𝑿𝜷 + 𝜺

• Parameter estimates: 𝜷 = [𝑿!𝑿]"𝟏𝑿!𝒀
• Predicted values: 

!𝒀 = 𝑿𝜷
(𝒀 = 𝑿[𝑿!𝑿]"𝟏𝑿!𝒀

(𝒀 = 𝑯𝒀,
where 𝐇 = 𝑿[𝑿!𝑿]"𝟏𝑿!

𝐇 is called the ‘hat matrix’ because it turns 𝒀 into (𝒀



Other scalar forms for estimating 𝛽"
(𝛽/ =

001!"
001!

= ∑(4- 54)(7-7̅)∑(7-7̅)#

(𝛽/ =
𝑐𝑜𝑣(𝑥, 𝑦)
𝑣𝑎𝑟(𝑥)

(𝛽/ = 𝑟
𝑠4
𝑠7

= 001!"
001!001"

001"
9-/

9-/
001!

= 001!"
001!

NB:
1. Variance = SSQ / ‘n’
2. R2 (variance explained by model) 

= r2 (sq. correlation) in SLR

SD of x and y

correlation



Estimation of effects for discrete variables 

• So far:
𝒀 = 𝑿𝜷 + 𝜺

• The framework can also be used to estimate the effect of discrete 
factors (or levels)

𝒀 is a n x 1 column vector of observations
𝑿 is a n x p ‘design’ matrix
𝜷 is a p x 1 column vector of parameters
𝜺 is a n x 1 column vector of residuals
where n is the number of observations, &

p is the number of parameters



Estimation of effects for discrete variables 
𝒀 = 𝑿𝜷 + 𝜺

𝜷 = [𝑿P𝑿]Q𝟏𝑿P𝒀
Example: We have measured weight and SNP genotypes (AA, AB, BB) for 7 people, 
2 with AA genotype, 2 with AB and 3 BB. What is the mean effect for each 
genotype?

Need to a new ‘design matrix’ 𝑿:

𝑿 =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

, i.e. 𝑿 is now a 7 x 3 matrix, then 𝜷 becomes a 3x1 matrix, 𝜷 =
𝛽!
𝛽"
𝛽#

mean AA
mean AB 
mean BB

AA genotype
AB genotype
BB genotype



Estimation of effects for discrete variables 
𝒀 = 𝑿𝜷 + 𝜺

𝜷 = [𝑿,𝑿]-𝟏𝑿,𝒀
Example:

𝑿 =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

𝒀 =

45
52
63
46
54
65
70

𝑿&𝑿 =
2 0 0
0 2 0
0 0 3

(7x1) (7x3) (3x3)

𝑿&𝒀 =
97
109
189

∑(𝐴𝐴 𝑔𝑒𝑛𝑜)
∑(𝐴𝐵𝑔𝑒𝑛𝑜)
∑(𝐵𝐵𝑔𝑒𝑛𝑜)

N (AA geno)
N (AB geno)
N (BB geno)

(3x1)

then 𝑿&𝒀 ‘divided by’ 𝑿&𝑿 will be equal to the average per group....
[𝑿&𝑿]'𝟏𝑿&𝒀 = 𝜷 =

𝟒𝟖. 𝟓
𝟓𝟒. 𝟓
𝟔𝟑. 𝟎

mean AA
mean AB
mean BB



Setting up the design matrix
Rank = number of independent rows of a matrix
• If 𝑿 is a p x n matrix, then 𝑿!𝑿 is p x p
• 𝑿 must be ‘full rank’ for [𝑿!𝑿]"𝟏 to exist
• If [𝑿!𝑿]"𝟏 exists, then there is a unique (𝜷

• Previously we estimated a mean for each genotype using 𝑿𝟏
(above), equally we could use 𝑿𝟐 to estimate a mean for AA 
genotypes and deviations for AB and BB genotype classes.

• However, we cannot estimate an overall mean, and 3 genotypes 
deviations as we only have 3 groups. Therefore the 4th number is a 
linear combination of the 3 others

𝑿𝟏 =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

𝑿𝟐 =

1 0 0
1 0 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1



Estimation of effects for discrete variables 
𝒀 = 𝑿𝜷 + 𝜺

𝜷 = [𝑿,𝑿]-𝟏𝑿,𝒀

𝑿𝟏 =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

3𝜷 =
𝟒𝟖. 𝟓
𝟓𝟒. 𝟓
𝟔𝟑. 𝟎

𝒀 =

45
52
63
46
54
65
70

𝑿𝟐 =

1 0 0
1 0 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

3𝜷 =
𝟒𝟖. 𝟓
𝟔. 𝟎
𝟏𝟒. 𝟓

OPTION 1: OPTION 2:



Model diagnostics
Hypothesis testing in OLS (ordinary least squares) 
assumes heteroscedastic, uncorrelated residuals, i.e.
𝜺 ~ 𝑀𝑉𝑁(0, 𝑰𝜎]^)

It’s all about the residuals!
e.g. plot residuals on y or K𝒚

ØShould look ‘stary night’
ØScreen for outliers
Øtest for normality, Q-Q plot or Wilk-Shapiro test

If 𝜺 ~ 𝑀𝑉𝑁(0, 𝑰𝜎]^), then 3𝜷 ~𝑀𝑉𝑁(𝜷, [𝑿P𝑿]QK𝜎]^)



• Work through “basicsPrac3.pdf” 
• Q1: variance, correlation & covariance
• Q2: SLR using matrix notation
• Q3: model fit
• Q4: variance of predictor (as example of variance properties)
• Q5: QQ-plot

• Software: R, you need to change the directory for the data!

basics – practical 3


