Summary-data-based Mendelian randomisation and prediction of gene targets

Zhihong Zhu, Ph.D

Senior Researcher, NCRR, Aarhus University Visitor, PCTG, University of Queensland <u>z.zhu@econ.au.dk | z.zhu1@uq.edu.au</u>

DEPARTMENT OF ECONOMIC HUS AND BUSINESS ECONOMICS BSS AARHUS UNIVERSITY

22 JUNE 2022 POSTDOC

Outlines

Summary-data-based Mendelian randomisation (SMR)

- Purposes of SMR •
- Concept of SMR method •
- A real example of SMR test
- SMR software •
- Practical •

ZHIHONG ZHU 22 JUNE 2022 POSTDOC

DEPARTMENT OF ECONOMICS AND BUSINESS ECONOMICS AARHUS UNIVERSITY

ZHIHONG ZHU 22 JUNE 2022 POSTDOC

Risk gene – *CACNA2D4*

The CACNA2D4 gene, one of voltage-dependent calcium-channel genes, is an important gene target of anti-hypertensive drugs. It is a risk gene for both bipolar disorder and schizophrenia.

CACNA2D4 | hypertensive disorder -> schizophrenia / bipolar disorder | hypertensive disorder

Given the independence of hypertensive disorder and schizophrenia / bipolar disorder CACNA2D4 -> schizophrenia / bipolar disorder

22 JUNE 2022

7HIHONG 7HU POSTDOC

Observational study

In observational study, regression model is used to test association,

 $y_j = x_j\beta + e_j$

The ordinary least square estimate,

$$\hat{\beta}_{OLS} = (x^T x)^{-1} x^T y = (x^T x)^{-1} x^T (x\beta + e) = \beta + (x^T x)^{-1} x^T e$$

If there is confounding factor, then $\hat{\beta}_{OLS}$ is biased.

Randomised controlled trail

Randomized clinical trial

rogram in Complex rait Genomics

SNP (DNA variant)

AARHUS BSS AARHU

DEPARTMENT OF ECONOMICS AND BUSINESS ECONOMICS AARHUS UNIVERSITY

22 JUNE 2022

ZHIHONG ZHU POSTDOC

eQTL study

allele -> lower gene expression

Predicting heritable traits

AND BUSINESS ECONOMICS AARHUS UNIVERSITY

ZHIHONG ZHU 22 JUNE 2022 POSTDOC

Mendelian randomisation

AARHUS

BSS

AND BUSINESS ECONOMICS

AARHUS UNIVERSITY

22 JUNE 2022

POSTDOC

Similar concept

Strength of MR

Two-stage least square estimate

$$E(\hat{\beta}_{2LSL}) = (\hat{x}^T \hat{x})^{-1} \hat{x}^T y = \frac{x^T P_Z y}{x^T P_Z x} = \beta + \frac{x^T P_Z e}{x^T P_Z x} \quad \text{where } P_Z = Z(Z^T Z)^{-1} Z^T$$

Note: Z should be associated with x, 1) $P_Z x \neq 0$, 2) attenuated effect

SNP instruments are independent of environmental factors, $Z^T e = 0$

 $\mathbf{E}(\hat{\beta}_{2LSL}) = \beta$

MR using summary statistics

Individual-level data

22 JUNE 2022 POSTDOC

Summary-level data

$$\mathbf{E}(\hat{\beta}_{2LSL}) = (\hat{x}^T \hat{x})^{-1} \hat{x}^T y = \frac{x^T P_Z y}{x^T P_Z x} = (\hat{x}^T \hat{x})^{-1} \hat{x}^T \hat{y} = \hat{\gamma}/\hat{\delta}$$

For a single SNP instrument

 $\hat{\delta}$ from mQTL, eQTL, sQTL, etc.

 $\hat{\gamma}$ from GWAS etc.

22 JUNE 2022 POSTDOC

Summary-data-based MR

	2LSL – single instrument	Summary-data-based MR
Data	Individual-level data	Summary-level data
Availability	May not be available	eQTL, GWAS, etc.

DEPARTMENT OF ECONOMICS AND BUSINESS ECONOMICS AARHUS UNIVERSITY

22 JUNE 2022 POSTDOC

ZHIHONG ZHU

Risk gene - CACNA2D4

Gene	SNP	A1 / A2	Data	b	SE	<i>P</i> -value
CACNA2D4	rs1044825	G / T	eQTL (blood)	0.447	0.0186	4.1E-128
			GWAS (schizophrenia)	-0.0377	0.0087	1.3E-5

$$\hat{\beta} = -\frac{0.0377}{0.447} = -0.084$$

$$P-value = 2.0E-5$$

$$SE(\hat{\beta}) \approx \sqrt{\left(\frac{\gamma}{\delta}\right)^2 \left[\frac{var(\delta)}{\delta^2} + \frac{var(\gamma)}{\gamma^2}\right]} = 0.020$$

HEIDI

rogram in Complex rait Genomics THE UNIVERSITY OF QUEENSLAND

AUSTRALIA

Risk gene - CACNA2D4

AARHUS

BSS

Risk gene – *CACNA2D4*

SNP	A1 / A2	Data	Ь	SE	<i>P</i> -value
rs1044825	G / T	eQTL (blood)	0.447	0.0186	4.1E-128
		GWAS (schizophrenia)	-0.0377	0.0087	1.3E-5
rs6489330	A / G	eQTL (blood)	0.211	0.02384	9.5E-19
LD <i>r</i> = 0.413		GWAS (schizophrenia)	-0.0378	0.0108	4.7E-4

rs1044825,
$$\hat{\beta}_1 = -0.084$$
, SE $(\hat{\beta}_1) \approx 0.020$

rs6489330, $\hat{\beta}_2 = -0.179$, SE $(\hat{\beta}_2) \approx 0.055$

Difference,
$$\hat{d} = \hat{\beta}_2 - \hat{\beta}_1 = -0.179 + 0.084 = -0.095$$

$$SE(\hat{d}) = \sqrt{Var(\hat{\beta}_2 - \hat{\beta}_1)} = \sqrt{Var(\hat{\beta}_2) + Var(\hat{\beta}_1) - 2 \times cov(\hat{\beta}_1, \hat{\beta}_2)} = 0.050$$

$$P-value = 0.06$$

SMR - Resources

...

SMR Summary-data-based Mendelian R	GCTA SMR GSMR OSCA CTG forum Yang Lab
Overview SMR & HEIDI analysis	Data Resource
Data Management SMR locus plot	sQTL summary data
Query eQTL Results	# BrainMeta v2 sQTL summary data (n = 2,865)
MeCS	We developed a method, THISTLE, which uses individual-level genotype and RNA-seq data or summary-level
Options Reference	isoform-eQTL data for splicing QTL (sQTL) mapping (Qi et al. 2022). We applied THISTLE, in combination with a
Download	complementary sQTL mapping strategy, for sQTL mapping using RNA-seq data of 2,865 brain cortex samples from
Data Resource	2,443 unrelated individuals of European ancestry with genome-wide SNP data. See below for the link to download
sQTL summary data	the full summary statistics of the sQTLs in SMR binary (BESD) format. You can also query or visualize the sQTL summary statistics using the BrainMeta portal
eQTL summary data	
mQTL summary data	BrainMeta v2 cis-sQTL summary data (Qi et al. 2022) in SMR binary (BESD) format:
caQTL summary data	BrainMeta_cis_sqtl_summary.tar.gz (hg19) (9.0 GB) These are pooled cis-sQTLs identified by THISTLE and LeafCutter & QTLtools. Only SNPs within 2 Mb distance from

sQTL-Summary statistics of splicing QTLs

eQTL-Summary statistics from associations of gene expression

smQTL – Summary statistics from associations of methylation

22 JUNE 2022 ZHIHONG ZHU POSTDOC

Misuse of MR

- Assuming that study is performed in a population •
 - Time-frame (youths vs adults) Ο
 - Sex (males vs females) Ο
 - Environment (e.g. low altitude vs high altitude) 0
- Tissue •
 - Blood the largest sample size, shared effects with other tissues ٠
 - Mental disorders brain •
 - BMI adipose ٠
 - ٠ ...

Summary

- Regression bias due to environmental confounding factor
- Mendelian randomisation similar concept to randomised controlled trial
 - o RCT is the gold-standard approach
 - o using genetic variant (e.g. SNP) as instrument
 - o instrument should be strongly associated with exposure
 - o 2SLS individual-level data
 - Summary-data-based method summary-level data
- Genetic architecture
 - Large genetic variation at a single SNP, large LD blocks
 CACNA2D4 -> schizophrenia
- SMR method
 - o SMR using a single SNP instrument
 - HEIDI distinguishing linkage model from pleiotropy model
 - Misuse of SMR

DEPARTMENT OF ECONOMICS AND BUSINESS ECONOMICS AARHUS UNIVERSITY

22 JUNE 2022 POSTDOC

Data agreement

Access to this data requires agreement to the following in to comply with human genetic data ethics regulations.

Please send an email to <u>pctgadmin@imb.uq.edu.au</u> with your name and the below statement to confirm that you agree with the following:

"I agree that access to data is provided for educational purposes only and that I

will not make any copy of the data outside the provided computing account. "

Practical

- Software •
 - o SMR V1.3.1
- Data •
 - eQTL dataset the Westra eQTL data, Westra et al. 2013 Nature Genetics
 - GWAS dataset GWAS of schizophrenia, Trubetskoy et al. 2022 Nature Ο
 - LD reference cohort

eQTL dataset

- SMR format
 - o .besd summary statistics of eQTL dataset
 - o .epi probes

1	ILMN_1653466	0	934380 HES4 -	
1	ILMN_2349633	0	1140818 TNFRSF18	-
1	ILMN_2112256	0	1146750 TNFRSF4 -	

o .esi - SNPs

1	rs3131968	0	754192 A	G	
1	rs2905035	0	775659 A	G	
1	rs2980319	0	777122 A	т	

DEPARTMENT OF ECONOMICS AND BUSINESS ECONOMICS AARHUS UNIVERSITY

GWAS dataset

COJO format

SNP	A 1	A2	FREQ	BETA	SE	Ρ	Ν
rs62513865	С	т	0.927	0.0119977384336167	0.0171	0.4847	58749.13
rs79643588	G	Α	0.906	-0.00859684722551828	0.0148	0.5605	58749.13
rs17396518	т	G	0.566	-0.0021022080918702	0.0087	0.8145	58749.13

Command

- LD reference cohort (PLINK format) •
- Command •
 - CACNA2D4 -> schizophrenia

smr \

- --bfile ld_reference \
- --gwas-summary sz_2022.ma \
- --beqtl-summary westra \setminus
- --out smr_westra_sz

Thank you!

Zhihong Zhu, Ph.D z.zhu@econ.au.dk | z.zhu1@uq.edu.au

DEPARTMENT OF ECONOMICS AND BUSINESS ECONOMICS AARHUS UNIVERSITY

DEPARTMENT OF ECONOMICS AND BUSINESS ECONOMICS AARHUS UNIVERSITY