
Methylome-wide 
Association Studies
Part 1: Data preparation



• Also known (incorrectly) as Epigenome-wide association studies

• Identifies changes in methylation levels at single CpG sites that are associated with human phenotype/disease

• Similar to GWAS

 Association analysis between each CpG and phenotype of interest (~450,000 association analyses)
 Unlike SNPs, DNA methylation measurements considered as quantitative measure.
 Linear or logistic regression (for binary dependent variables)
 Interpretation of effect depends on whether methylation is your dependent or independent variable

Methylome-wide Association Studies
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• Methylation changes can be driven by disease 

• e.g. alterations in white blood cell proportions in
autoimmune disorders or altered metabolic regulation
in type 2 diabetes

• This is different to SNPs which are fixed from conception

Methylation Can be Cause or Consequence
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• Very similar to GWAS...

• Test each DNA methylation site across the genome
for association with your trait of interest

• “Manhattan” plot and QQ plots to assess confounding

MWAS

4



Inflation in MWAS
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• Methylation probes have more extensive correlations than SNPs

• Associations at one probe cause inflated test statistics beyond local genomic region

• Confounders are much more of an issue

 e.g. case-control study on blood DNA methylation could be confounded by inflamation
 Differences in age, sex ratios, smoking, ….

Why is Inflation More of an Issue in MWAS
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• 1) Correct for known covariates

• 2) Predict unknown covariates

• 3) Explicitly model unknown covariates

Controlling inflation in MWAS
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• Experimental design is particularly important in ‘omics studies

• Randomisation is important when generating DNA methylation data

• Record potential batch effects to correct for in analysis

 Array ID
 Position on array
 Extraction date
 Lab technician
 ….

Correcting for Known Covariates
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• The “confounding” in ‘omics data can be used to estimate
covariates to include in your analysis

• e.g. Smoking has strong associations with DNA methylation

• The most associated CpG in the AHRR gene can imputed smoking status
with an accuracy of >90% on its own.

• The imputed value may be more epidemiologically relevant than the reported
smoking measure

Prediction of Unknown Covariates 
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• Age can be accurately imputed
from DNA methylation
 

• Several “clocks” available for
human age imputation

Prediction of Unknown Covariates

10



• DNA methylation varies by cell type

• Cell composition of blood/tissues can vary with disease state

• Cell composition can be estimated provided a good reference panel is available

• We estimated blood cell proportions in the last practical

Prediction of Unknown Covariates
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• Many, many methods are available to model unknown confounders

• PCA – removes axis explaining most variation in the data – could include your trait

• SVA – think of it like a PCA that does not remove variation associated with the trait

• ReFACTor – specifically for cell type composition (?)

• RUV – run EWAS, pick unassociated probes to do PCA on, rerun EWAS with covariates

• ... 

• …

• ...

Modelling Unknown Confounders

12



• Model the covariance of all ‘omics measures at the same time in a mixed linear model as a random effect

• Create an ‘Omics Relationship Matrix (ORM), which measures the similarity between individuals

• Can estimate the proportion of variation in a trait captured by ‘omics measures 

OSCA – OREML
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Phenotype Covariates ORM matrix



• Test for association at a probe while modelling the covariance across all probes

•  

OSCA – MOA Method
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Phenotype
Covariates ORM matrix
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     Site



• Model multiple ORMs

• One ORM made from probes associated in a linear regression analysis, and one ORM with the rest of the probes

•  

OSCA – MOMENT Method
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