Summary-data-based Mendelian randomisation and prediction of gene targets

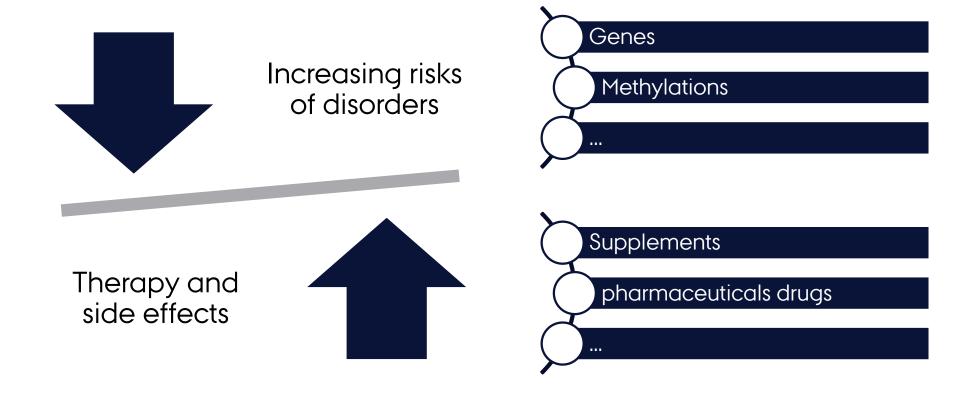
Zhihong Zhu, Ph.D

Senior Researcher, NCRR, Aarhus University
Visitor, PCTG, University of Queensland
z.zhu@ncrr.au.dk | z.zhu1@uq.edu.au

Outlines

Summary-data-based Mendelian randomisation (SMR)

- Purposes of SMR
- Concept of SMR method
- A real example of SMR test
- SMR software
- Practical



Causal inference

ZHIHONG ZHU

Risk gene – *CACNA2D4*

The CACNA2D4 gene, one of voltage-dependent calcium-channel genes, is an important gene target of anti-hypertensive drugs. It is a risk gene for both bipolar disorder and schizophrenia.

CACNA2D4 | hypertensive disorder -> schizophrenia / bipolar disorder | hypertensive disorder

Given the independence of hypertensive disorder and schizophrenia / bipolar disorder CACNA2D4 -> schizophrenia / bipolar disorder

Observational study

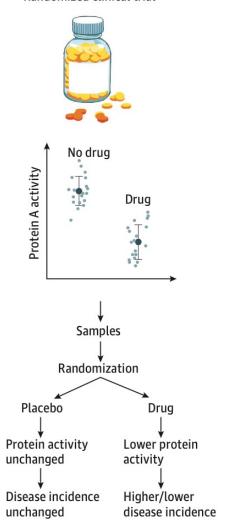
In observational study, regression model is used to test association,

$$y_j = x_j \beta + e_j$$

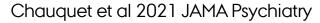
The ordinary least square estimate,

$$\hat{\beta}_{OLS} = (x^T x)^{-1} x^T y = (x^T x)^{-1} x^T (x\beta + e) = \beta + (x^T x)^{-1} x^T e$$

If there is confounding factor, then $\hat{\beta}_{OLS}$ is biased.



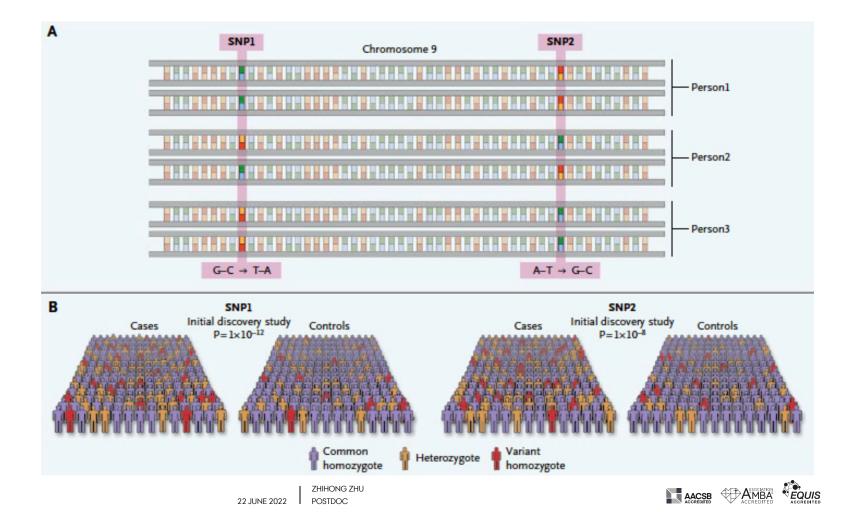
Randomised controlled trail



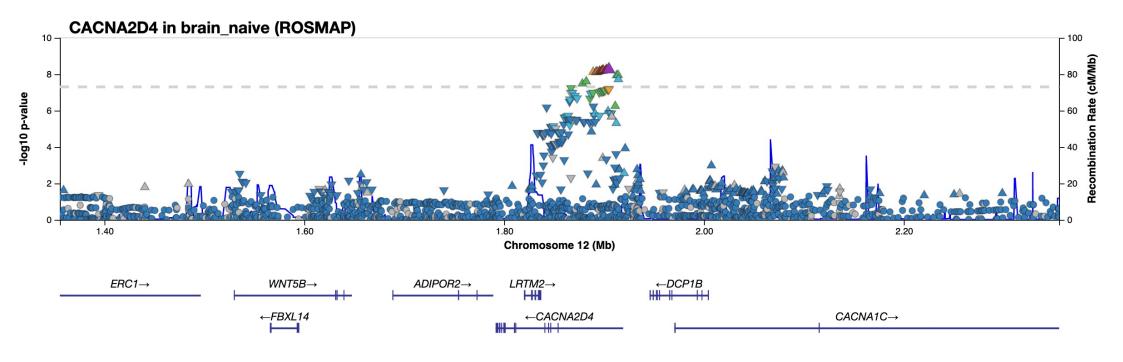
Randomized clinical trial

Assumptions	RCT
Two designed Groups	a) Treatment group b) Control group
Assignment	Randomly assigning subjects to treatment conditions
Confounder	Prior exposure and instrumentation do not threaten the internal validity.
Test	The difference must be driven by intervention.

ZHIHONG ZHU 22 JUNE 2022 POSTDOC

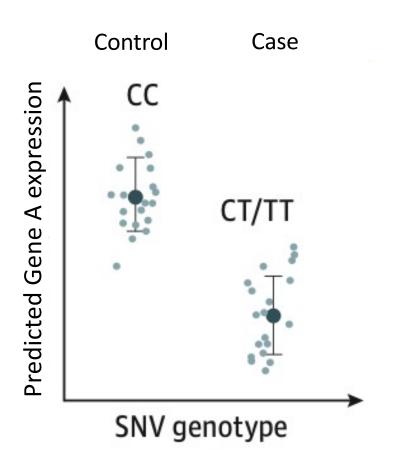


SNP (DNA variant)

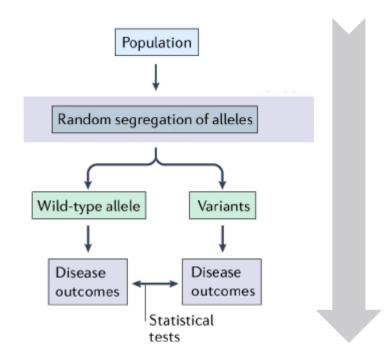


eQTL study

allele -> lower gene expression



Predicting heritable traits


ZHIHONG ZHU

Mendelian randomisation

Mendelian randomization

DNA variant

Risk factor

Outcome

ZHIHONG ZHU

Non-risk allele

Risk allele

Normal

Deficiency

Low risk

High risk

Similar concept

Mendelian randomization Randomized controlled trial Population Sample Randomization step Random allocation to groups Random segregation of alleles Wild-type allele Variants Control Treatment Disease Disease Disease Disease outcomes outcomes outcomes outcomes Statistical | Statistical tests tests

Wald ratio estimator

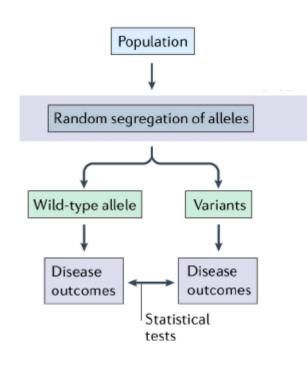
$$\beta = \frac{E(\text{Disorder}|A=1) - E(\text{Disorder}|A=0)}{E(\text{Risk factor}|A=1) - E(\text{Risk factor}|A=0)}$$

Strength of MR

	RCT	MR
Ethics	Ethical issues, e.g . confidentiality, informed consent, etc.	Using SNPs (DNA variants) as instruments
Expense	Time-consuming and expensive	Many available genotyped populations and GWAS datasets
Confounder	Prior exposure and instrumentation do not threaten the internal validity	Free of environmental factors
		\overline{z} —

ZHIHONG ZHU

Two-stage least square estimate Program in Complex Trait Genomics



Disorder = Risk factor + e

Mendelian randomization

Instruments (Z)

Risk factor (X)

 Regression of risk factor on instrument

$$X = Z\delta + \text{error}$$

Disorder (Y)

 Regression of disorder on predicted risk factor

$$Y = \hat{X}\beta + \text{error}$$

Two-stage least square estimate Program in Complex Trait Genomics

$$E(\hat{\beta}_{2LSL}) = (\hat{x}^T \hat{x})^{-1} \hat{x}^T y = \frac{x^T P_Z y}{x^T P_Z x} = \beta + \frac{x^T P_Z e}{x^T P_Z x} \quad \text{where } P_Z = Z(Z^T Z)^{-1} Z^T$$

Note: Z should be associated with x, 1) $P_Z x \neq 0$, 2) attenuated effect

SNP instruments are independent of environmental factors, $Z^Te=0$

$$E(\hat{\beta}_{2LSL}) = \beta$$

MR using summary statistics

Summary-level data

Individual-level data

Risk factor (X)

 Regression of risk factor on instrument

$$X = Z\delta + \text{error}$$

Disorder (Y)

 Regression of disorder on predicted exposure

$$Y = \hat{X}\beta + \text{error}$$

Risk factor
(X)

Regression of risk factor on instrument

$$X = Z\delta + \text{error}$$

Disorder (Y)

 Regression of disorder on instrument

$$Y = Z\gamma + error$$

Ratio

Wald ratio estimate

$$\hat{\beta} = \hat{\gamma}/\hat{\delta}$$

Summary-data based method

$$E(\hat{\beta}_{2LSL}) = (\hat{x}^T \hat{x})^{-1} \hat{x}^T y = \frac{x^T P_Z y}{x^T P_Z x} = (\hat{x}^T \hat{x})^{-1} \hat{x}^T \hat{y} = \hat{\gamma} / \hat{\delta}$$

For a single SNP instrument

 $\hat{\delta}$ from mQTL, eQTL, sQTL, etc.

 $\hat{\gamma}$ from GWAS etc.

Summary-data-based MR

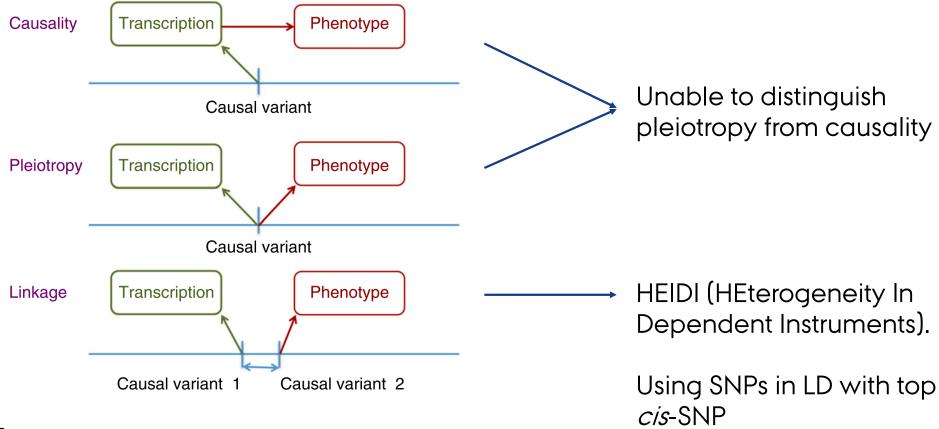
	2LSL – single instrument	Summary-data-based MR
Data	Individual-level data	Summary-level data
Availability	May not be available	eQTL, GWAS, etc.

Risk gene - CACNA2D4

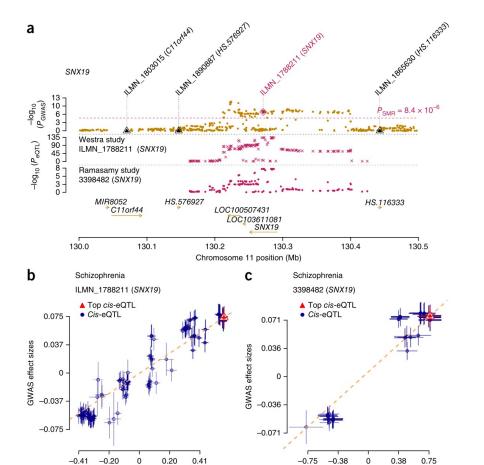
Gene	SNP	A1 / A2	Data	Ь	SE	<i>P</i> -value
CACNA 2D4	rs1044825	G/T	eQTL (blood)	0.447	0.0186	4.1E-128
			GWAS (schizophrenia)	-0.0377	0.0087	1.3E-5

$$\hat{\beta} = -\frac{0.0377}{0.447} = -0.084$$

$$\text{SE}(\hat{\beta}) \approx \sqrt{\left(\frac{\gamma}{\delta}\right)^2 \left[\frac{var(\delta)}{\delta^2} + \frac{var(\gamma)}{\gamma^2}\right]} = 0.020$$



Linkage model



HEIDI

The top SNP

• $\hat{\beta}_{top} = \hat{\gamma}_{top} / \hat{\delta}_{top}$

SNPs in LD

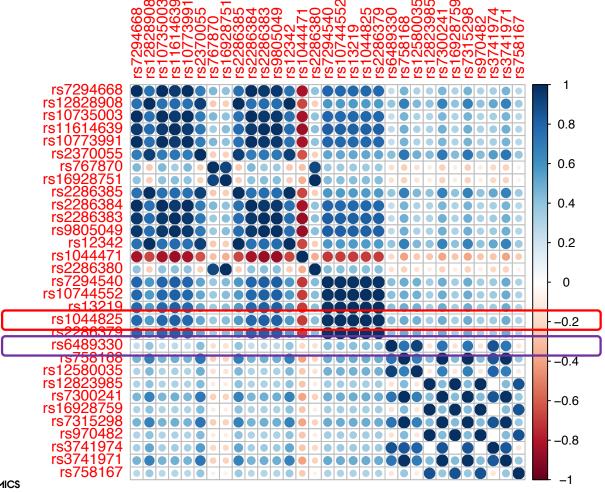
• $\hat{\beta}_{SNP} = \hat{\gamma}_{SNP} / \hat{\delta}_{SNP}$

Test

ZHIHONG ZHU

POSTDOC

- $\hat{d}_{SNP} = \hat{\beta}_{SNP} \hat{\beta}_{top}$
- H_0 : $\hat{d}_{SNP(1)} = \hat{d}_{SNP(2)} = \cdots = 0$ H_1 : Any $\hat{d}_{SNP(i)} \neq 0$
- Wald test for hypothesis testing


eQTL effect sizes

eQTL effect sizes

Risk gene - CACNA2D4

The top-associated SNP The SNP to test difference

Risk gene – *CACNA2D4*

SNP	A1 / A2	Data	Ь	SE	<i>P</i> -value
rs1044825	G/T	eQTL (blood)	0.447	0.0186	4.1E-128
		GWAS (schizophrenia)	-0.0377	0.0087	1.3E-5
rs6489330	A/G	eQTL (blood)	0.211	0.02384	9.5E-19
LD <i>r</i> = 0.413		GWAS (schizophrenia)	-0.0378	0.0108	4.7E-4

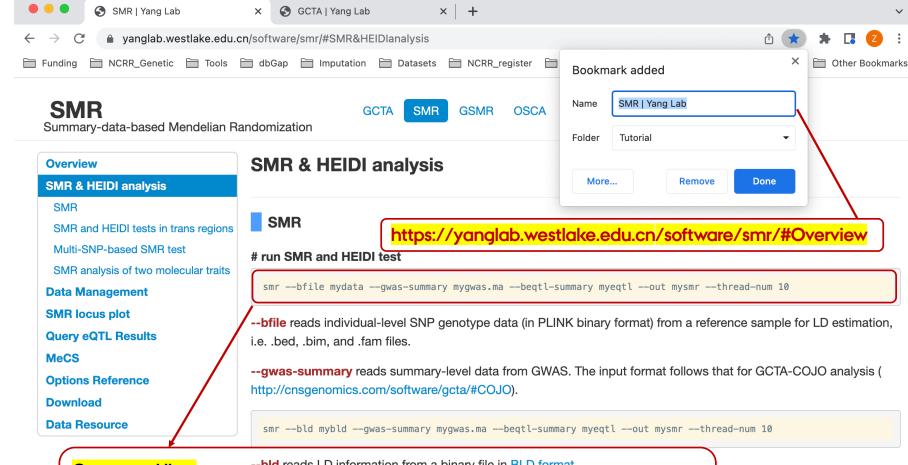
rs1044825,
$$\hat{\beta}_1 = -0.084$$
, SE $(\hat{\beta}_1) \approx 0.020$ rs6489330, $\hat{\beta}_2 = -0.179$, SE $(\hat{\beta}_2) \approx 0.055$

rs6489330,
$$\hat{\beta}_2 = -0.179$$
, SE $(\hat{\beta}_2) \approx 0.055$

Difference,
$$\hat{d} = \hat{\beta}_2 - \hat{\beta}_1 = -0.179 + 0.084 = -0.095$$

$$SE(\hat{d}) = \sqrt{var(\hat{\beta}_2 - \hat{\beta}_1)} = \sqrt{var(\hat{\beta}_2) + var(\hat{\beta}_1) - 2 \times cov(\hat{\beta}_1, \hat{\beta}_2)} = 0.050$$

$$P$$
-value = 0.06
_{22 JUNE 2022} | ZHIHONG ZHU
POSTDOC



Software

- SMR

Command line:

--bld reads LD information from a binary file in BLD format

smr --bfile mydata --gwas-summary mygwas.ma --beqtl-summary myeqtl \

--out mysmr

22 JUNE 2022 POSTDOC

SMR - Resources

sQTL - Summary statistics of splicing QTLs eQTL - Summary statistics from associations of gene expression mQTL - Summary statistics from associations of methylation

Misuse of MR

- Assuming that study is performed in a population
 - Time-frame (youths vs adults)
 - Sex (males vs females)
 - Environment (e.g. low altitude vs high altitude)
- **Tissue**
 - Blood the largest sample size, shared effects with other tissues
 - Mental disorders brain
 - BMI adipose

Summary

- Regression bias due to environmental confounding factor
- Mendelian randomisation similar concept to randomised controlled trial
 - RCT is the gold-standard approach
 - using genetic variant (e.g. SNP) as instrument
 - o instrument should be strongly associated with exposure
 - 2SLS individual-level data
 - o Summary-data-based method summary-level data
- Genetic architecture
 - Large genetic variation at a single SNP, large LD blocks
 CACNA2D4 -> schizophrenia
- SMR method
 - o SMR using a single SNP instrument
 - HEIDI distinguishing linkage model from pleiotropy model
 - Misuse of SMR

Data agreement

Access to this data requires agreement to the following in to comply with human genetic data ethics regulations.

Please send an email to pctgadmin@imb.uq.edu.au with your name and the below statement to confirm that you agree with the following:

"I agree that access to data is provided for educational purposes only and that I will not make any copy of the data outside the provided computing account."

Practical

- Software
 - o SMR V1.3.1
- Data
 - o eQTL dataset the Westra eQTL data, Westra et al. 2013 Nature Genetics
 - GWAS dataset GWAS of schizophrenia, Trubetskoy et al. 2022 Nature
 - o LD reference cohort

eQTL dataset

- **SMR** format
 - besd summary statistics of eQTL dataset
 - o .epi probes

1	ILMN_1653466	0	934380 HES4 -
1	ILMN_2349633	0	1140818 TNFRSF18 -
1	ILMN_2112256	0	1146750 TNFRSF4 -

o .esi - SNPs

1	rs3131968	0	754192 A	G	
1	rs2905035	0	775659 A	G	
1	rs2980319	0	777122 A	Т	

GWAS dataset

COJO format

SNP	A1	A2	FREQ	BETA	SE	Р	N
rs62513865	С	T	0.927	0.0119977384336167	0.0171	0.4847	58749.13
rs79643588	G	A	0.906	-0.00859684722551828	0.0148	0.5605	58749.13
rs17396518	Т	G	0.566	-0.0021022080918702	0.0087	0.8145	58749.13

Command

- LD reference cohort (PLINK format)
- Command

```
CACNA2D4 -> schizophrenia
```

smr \

- --bfile ld_reference \
- --gwas-summary sz_2022.ma \
- --beqtl-summary westra \
- --out smr_westra_sz

Thank you!

Zhihong Zhu, Ph.D <u>z.zhu@econ.au.dk</u> | <u>z.zhu1@uq.edu.au</u>

DEPARTMENT OF ECONOMICS AND BUSINESS ECONOMICS AARHUS UNIVERSITY