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Lesson Outline

Lecture (2.30pm-3pm)
* Introduction to QTLs
«  TWAS methods and considerations

Practical (3pm — 3.30pm)
«  TWAS Hub

Li, B. & Ritchie, M.D. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS

Discoveries. Frontiers in Genetics 12(2021).
Wainberg, M., Sinnott-Armstrong, N., Mancuso, N. et al. Opportunities and challenges for transcriptome-wide association studies. Nat Genet 51, 592—

599 (2019). https://doi.org/10.1038/s41588-019-0385-z
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Transcriptome-Wide Association Study (TWAS)

Gene-based association approach that investigates associations between genetically
regulated gene expression and complex diseases or traits.

Hypothesis: One or multiple eQTLs collectively regulate the transcriptional activities of a
gene, and the genetically altered gene expression levels result in modulated disease risk.

Relatively new approach ~2015
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Individual-Level Data-Based TWAS Versus GWAS Summary

Statistics-Based TWAS
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: : Endometrial gene expression
EndOmetrlOS|S TWAS and genotype data from the 206
samples was used to estimate

the weighted effect of each SNP
on each cis-gene

. Combined with summary-level

' endometriosis GWAS data
: ' (17,045 endometriosis cases and

: % : 191,596 controls) to impute gene

; expression and test the effect of
: genetically regulated gene
expression level on the
endometriosis.

~logo(p)

Identified 252 genes associated
with endometriosis located at 39
independent loci.

Chromosome

Mortlock et al. 2020 !
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Advantages

» Gene-based approach is easier to interpret functional disease mechanisms.

* The two steps in TWAS can be conducted independently i.e., you may have genetic and phenotype
information for a large cohort, but not expression data, so you can use eQTLs generated in an
independent dataset.

* You can perform the first step and apply this to multiple different phenotypes in step 2.

* The multiple testing burden is lower in TWAS compared to GWAS. Only need to adjust for the number
of genes tested. (1000’s of genes in TWAS vs millions of SNPs in GWAS)

« TWAS has the capability to predict tissue-specific genetically regulated gene expression levels and
investigate gene-trait associations in disease-related or potentially pathological tissues.
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Factors influencing results and interpretation

» The nature of input GWAS data (eg. individual-level versus GWAS summary statistics).
+ The eQTL models used (power, tissue and cell type heterogeneity).
» The association method used to estimate gene-trait associations (tissue specific vs test-all-tissue).

» Correlated gene expression.
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Individual Level Summary Statistics

Eq. PrediXcan (Gamazon et al. 2015) & MultiXcan Eg. FUSION (Gusev et al. 2016), S-PrediXcan (Barbeira et al.
9 ( ) 2018), S-MultiXcan (Barbeira et al. 2019), UPMOST (Hu et al.

(Barbeira et al. 2019) 2019)

+  Can impute the regression statistics between the gene
expression level of each gene and a trait directly from

* Individual-level genotype data are not easily GWAS summary statistics.
obtainable from published GWAS studies. *  More computationally efficient and has the ability to
_ _ analyse large GWAS.
« Can directly estimate LD structure. « LD matrix derived from a reference set. Discrepancy
« M t timat f trait between the reference LD matrix and the actual LD
ore accurate esimates of gene-tral structure of a study cohort can introduce noise and may
associations. lead to false positive or false negative results.
. . . »  Can prioritize genes using only GWAS summary statistics
Takes significant computational resources. to reduce multiple testing

* Needs additional validation and careful interpretation.
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eQTL Considerations

» Quality of the eQTL dataset - higher quality studies can identify more eQTLs and eQTLs with moderate
to small effect sizes and improve the precision of eQTLs in complex gene regions.

* Power - power to detect eQTLs from transcriptome and genotype datasets is partially dependent on
the sample size.

» Tissue - eQTLs can differ between tissues, cell types and cell states.
» Impacts the prediction accuracy of gene expression levels.

Quality eQTL data in more diverse tissues have been made publicly available thanks to several consortia
(eg. GTEXx, eQTLGen).
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Association method

Tissue-specific (eg. PrediXcan, S-PrediXcan and FUSION)

» |dentify tissue-specific disease mechanisms.

« Limited power if dataset relatively small.

* What if causal tissue unavailable?

» Exploration of multiple tissue can increase multiple testing burden.
Test-all-tissue approach (eg. MulTiXcan, s-MulTiXcan and UTMOST)

« Assumption that TWAS will only assign statistical significance to tissues that are biologically relevant to

the complex trait of interest. This assumption, however, can be easily violated by eQTLs shared
between tissues.

» The shared eQTL effects across tissues indicates that TWAS cannot distinguish disease-relevant
tissues from irrelevant tissues that share similar gene expression levels from a statistical perspective

* Improved power but not tissue-specific and thus, cannot reveal tissue-specific genetic regulatory
mechanisms.

» Computing resources and time required by cross-tissue TWAS methods are much higher.
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Comparison

PrediXcan

S-PrediXcan

FUSION

MultiXcan

S-MultiXcan

UTMOST

Input GWAS data type

Individual-level genotype data

GWAS summary statistics

GWAS summary statistics

Individual-level genotype
data

GWAS summary statistics

GWAS summary statistics

Statistical models for
eQTL identifications

Elastic Net
Fine-mapped MASHR-based models
Joint-Tissue Imputation (JTI) models

Same as PrediXcan

Bayesian sparse linear
mixed model (BSLMM)

Same as PrediXcan

Same as PrediXcan

Group LASSO with
specialized regularization

Source reference

GTEx, MESA, CommonMind, StarNet,

Same as PrediXcan

GTEx, TCGA

Same as PrediXcan

Same as PrediXcan

GTEx, StarNet,

panels DGN, PsychENCODE BLUEPRINT

eQTL Databases http://predictdb.org/ http://predictdb.org/ http://guseviab.org/ http://predictdb.org/ http://predictdb.org/ https://github.com/Joker-
https://zenodo.org/record/3842289# projects/fusion/ Jerome/UTMOST
.YNVbJBOpGdY

Current GTEx version® | GTEx v8 GTEx v8 GTEx v7 GTEx v8 GTEx v8 GTEx v6p

Gene-trait association
methods

Linear or logistic regression

Dependent on GWAS
method

Dependent on GWAS
method

Principal component
regression

Singular value
decomposition (analogous
to MultiXcan)

Generalized Berk-Jones
test

Tissue-specificity

Tissue-specific

Tissue-specific

Tissue-specific

Cross-tissue

Cross-tissue

Cross-tissue

Output Single-tissue gene-trait associations Single-tissue gene-trait Single-tissue gene-trait Cross-tissue gene-trait Cross-tissue gene-trait Cross-tissue gene-trait
associations associations associations associations associations
Pros Up-to-date eQTL databases; Computationally efficient; Computationally efficient Up-to-date eQTL Computationally efficient; Computationally efficient
Accurate representation of test cohort | Up-to-date eQTL databases; Up-to-date eQTL
LD databases; databases;
Cons Multiple testing burden; Reference LD matrix can Multiple testing burden; Computationally Reference LD matrix can Reference LD matrix can

Computationally burdensome in introduce noises Reference LD matrix can burdensome; introduce noises introduce noises;
comparison to summary-statistics introduce noises
based TWAS;

References using PMID | 26258848, 32917697, 33020666 29739930 30926970 30668570 30668570 30804563

@ Dated August 2021.

Li & Ritchie 2021




THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Limitations

» Prediction accuracy of gene expression levels is limited by the heritability (h?) of each gene.

* Only using cis-eQTLs within a certain distance from genes. Trans-eQTLs may explain a large
proportion of the heritability.

» Lack of eQTL data from different ancestry groups, diseases, medical conditions, sex, etc.

«  TWAS power can be influenced by the quality of gene expression prediction (sample sizes,
concordance between transcriptome reference population and testing populations, coverage of eQTLs
in the test dataset, etc.), or genetic factors (e.g., genetic heritability of gene expression levels,
heritability of the phenotype, sample size, MAF, etc.).

« When eQTL datasets have highly dissimilar sizes across tissues, the tissue with the most significant
TWAS P value cannot necessarily be assumed to be causal, because reference-panel size affects
the P value.

» Causal tissues or cell types are unclear in the majority of complex diseases or traits.
« Statistically significant TWAS results indicate only association, but not causation.
«  TWAS prioritizes multiple genes, some likely to be non-causal.
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b GWAS (2005—present) c TWAS (2015—-present)
100 4 © | 100 - |
Y Y
o o
> (o)
Ke) i)
[ [
NUY O XD 0A DY W WD ORR
Multiple hits per locus due to Multiple hits per locus due to
linkage disequilibrium co-regulation
d .
Scenario Estimated percentage Case-study locus
of non-causal hit genes
Correlated expression 20% (r® > 0.2) SORT1 (LDL, liver)
Correlated predicted expression 75% (r? > 0.2) IRF2BP2 (LDL, liver)
Expression models share variants 69% (> 1 shared) NOD2 (Crohn's, whole blood)
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Correlated predicted expression

Total expression = genetic (cis-eQTLs, trans-eQTLS),

. . Spearman = 0.90
environmental and technical components.

1.0 A PSF{C1. CELSR2 SORT1
:
o
. . . . Q 0.8
Predicted expression = genetic (common cis-eQTLS). e
= - ATxN7L2, oF SMAS
Q .0 T
A gene pair can have correlated predicted expression if the 2
. £ 04
same causal eQTL regulates both genes or if two causal g SYPLS,
eQTLs in LD each regulate one of the genes. £ 0, AMIGOT
g GSTM;
o |
. . 0.0 : , : : ‘
Correlated predicted expression can cause non-causal 0.0 0.2 04 06 0s o
hits even in the absence of correlated total expression. Expression corr. with SORTY

Wainberg et al. 2019 17



Scenarios in TWAS that may lead to non-causal hits

a Trait b Trait

- -

~

—T/G\——C/A—G/T
GWAS
hit

Wainberg et al. 2019

cla T/A—T/C
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Strategies to mitigate limitations

» Fine-mapping of causal gene sets (FOCUS)(Mancuso et al. 2019) directly models predicted expression
correlations and uses them to assign genes posterior probabilities of causality.

+ Use an eQTL dataset from only the most mechanistically related tissue available (balance between
tissue bias and sample size).

* If no sufficiently large eQTL datasets from closely related tissues are available, we recommend
aggregating information across all available tissues in a tissue-agnostic manner.

+ eQTL dataset size affects the P-value. As such you should consider TWAS effect size in addition to P-
value when investigating causal tissues for TWAS-associated genes.

+ Test statistics can be inflated from by-chance QTL co-localization when the GWAS locus is highly
significant and LD is extensive. Can test significance conditional on high GWAS effects (permutation
test).

20
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TWAS Hub

TWAS hub is an interactive browser of results from integrative analyses of GWAS and functional data for
hundreds of traits and >100k expression models. The aim is facilitate the investigation of individual TWAS
associations; pleiotropic disease/trait associations for a given gene of interest; predicted gene associations for
a given disease/trait of interest with detailed per-locus statistics; and pleiotropic relationships between traits
based on shared associated genes.

For each trait, a TWAS is carried out using the FUSION software (http://guseviab.org/projects/fusion/). Gene
models/weights were calculated from GTEX (45 tissues), METSIM (Adipose), NTR (Blood), ROSMAP (Brain),
YFS (Blood), CommonMind (Brain) and TCGA (24 cancer tissues).

Genotypes are restricted to common, well-imputed HapMap3 SNPs. Typically, gene expression was analyzed
with covariates for sex, age, genetic ancestry, and multiple gene expression PCs. For analyses of gene
expression in tumors (from TCGA) local copy number alterations was also included as a covariate.

Open TWAS Hub in your browser http://twas-hub.org/

22
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Trait View — Table 1

First, go to the traits tab and search for Schizophrenia.

The first table of the Trait View shows all of the transcriptome-wide significant associations for the given
trait (after bonferroni correction for all models tested). Loci have been grouped into contiguous blocks and
model selection run on each locus to identify the independently significant genes (which are reported in the

right-most column). . .
Schizophrenia (2014)

—

623 significantly associated models . 165 unique genes
SIGNIFICANT LOCI Q
# o, chr p0 pl # assoc # joint best TWAS best SNP cond SNP % var joint genes
genes genes P P P exp

1 7715776 9571422 2 1 1.9¢-08 2.1e-07 7.8e-01 100 RERE

1 149880483 150316576 1 1 9.2e-08 1.1e-08 4.2e-02 87 PLEKHO1
3 1 242590540 244359621 3 2 1.8e-10 1.0e-07 1.9e-01 94 CEP170  SDCCAG8
4 2 73631564 74155641 1 1 2.8e-07 1.8e-07 22e-01 94 ALMS1P
5 2 197134790 202078494 11 2 2.1e-13 1.le-11 8.5e-01 100 C2orf47  SF3B1
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Trait View — Table 2

The second table shows all pleiotropic associations to other traits for any of the independently significant genes. The table is
ordered by the “Chi? ratio” which is computed as the average Chi? statistic for the selected genes in the secondary trait, divided by
the average statistic for all genes in the secondary trait. Ignoring issues of LD, this is an estimate of the heritability enrichment of
the target genes relative to all genes and tends to provide reasonable results. For example, we can see that schizophrenia
associated genes are also enriched for bipolar disorder, smoking, blood pressure, anxiety, nervous feelings, etc. The remaining
columns list the number of significant genes in the target trait at Bonferroni correction [+] and at transcriptome-wide significance
[++], the correlation of effect-sizes across the [+] genes, as well as links to each of the [+] genes.

PLEIOTROPIC ASSOCIATIONS Q
Trait chisq ratio # genes* # % genes** corr corr genes
genes** P

Schizophrenia (2018) 147 48 30 66.7 1.00 9.5e-50 AC011816.1  AC103965.
Bipolar Disorder or Schizophrenia 146 47 33 733 0.99 4.3e-39 AC011816.1  AC103965.
Bipolar Disorder (2018) 5.7 8 3 6.7 0.99 5.6e-07 AC103965.1 CACNA2D4
Bipolar Disorder (2011) 51 3 0 0.0 0.00 1.0e+00 CACNA2D4 ITIH4-AS1
Pack years adult smoking proportion 4.9 2 1 22 0.00 1.0e+00 CHRNAS5 KLC1
Pack years of smoking 24 1 1 22 000 10e+00  CHRNAS
Diastolic blood pressure, automated reading 4.1 10 8 178 -0.14 6.9e-01 ALMSIP  CEP170 FE(
Worrier / anxious feelings 3.9 7 5 111 0.39 3.9e-01 AS3MT C2orf47 CAC
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Trait View — Table 3

The third table shows the breakdown of associations by gene expression panel. These are ordered by the
average TWAS Chi? statistic in the panel — an estimate of the average trait heritability explained by
predictors from that expression study. The columns also report the # and % of significant associations from
that study. In this case, we see no relevant tissue-specific enrichment for schizophrenia (see Prostate
Cancer for an example of tissue specificity).

ASSOCIATIONS BY PANEL Q

study tissue # hits % hits/tests avg chisq
GTEXx Pancreas 7 0.44 2.6
GTEXx Prostate 4 0.49 2.6
GTEx Small Intestine Terminal Ileum 3 0.68 2.6
GTEXx Brain Cerebellum 8 0.42 2.5

GTEx Breast Mammary Tissue 13 0.68 2245
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Locus View

Click on locus #7 in the schizophrenia associations table to go to the Locus View for the CNTN4 locus. The

top panel shows a Manhattan plot of the GWAS association before and after conditioning on the predicted
expression.

chr3:1,442,951-3,792,945

—

Best TWAS P=2.04e-07 - Best GWAS P=3.88e-09 conditioned to 0.000311

Marginal v

-log1l0 P
L]

1.5M 2M

2.5M 3M

physical position
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Locus View

The next panel shows all the significantly associated models, their model performance, correlation with the
top index SNP, and coloc posterior probabilities (PP3 = two distinct causal variants; PP4 = a single shared
causal variant). Here we see a single predictive model for CNTN4 at this locus (from CommonMind brain)
with a high PP4 and a much stronger TWAS vs eQTL Z-score, suggesting the TWAS is aggregating
additional predictive signal - all good indicators of a pleiotropic effect. Since only one model is significant in
the locus it is the “joint’ly selected model by default.

ASSOCIATED MODELS Q

# Study Tissue Gene h2 eQTL model # model model eQTL TWAS TWAS Top PP3 PP4 joint
R2 weights R2 R2P GWAS 4 P* SNP
Z corr

Brain
Pre-

1 CommonMind fre o CNTN4 0.15 0.03 enet 34 0.05 4.7e-07 315 5.2 2e-07 0.56 0.02 0.98 TRUE
ronta

Cortex
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Gene View

Click on CNTN4 to go to the Gene View. The top table shows all the predictive models that have been
computed for this gene and their respective performance. Here we again see that for the model trained in
brain, the best multivariate predictive model (in this case elastic net with cross-validation P=4.7e-07) far
outperforms the best eQTL (P=2.3e-04), which provides further confidence that the TWAS predictor is
capturing real additional signal and leading to a more significant disease association.

MODELS Q
#,  panel tissue h2 h2 h2 eQTL BLUP ENET BSLMM LASSO eQTL BLUP ENET BSLMM LASSO
se P R2 R2 R2 R2 R2 P P P P P
Brain Pre- 17
1 CommonMind  frontal 0.149 0.034 ' (;35 0.028 0.044 0.053 0.05 0.046 2.3e-04 4.0e-06 4.7e-07 9e-07 2.3e-06
Cortex
Adipose 87
2 GTEx Visceral 0.241 0.084 ’ 53- 0.012 NA 0.023 NA 0.006 7.5e-02 NA 2.1e-02 NA 1.5e-01
Omentum
i 2.9e-
3 GTEx Thyroid 0.233 0.053 05 0.209 NA 0.194 NA 0.195 6.6e-16 NA  9.0e-15 NA 6.8e-15
Thyroid 3.6e-
4 TCGA ) 0.192 0.040 0.127 0.094 0.133 NA 0.136  25e-12 19e-09 7.5e-13 NA 3.7e-13
Carcinoma 07

28




THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Gene View

The second table shows a heatmap of association for this gene
between all traits (rows) and all models (columns 4-). We order the
heatmap by the “avg Chi? ratio” column, which is computed as the Trait Avg Avg Max 1 2 3 4

TRAIT ASSOCIATIONS

average Chi? for the gene-disease pair (across all models) divided e

by the average Chi? for all genes in the listed disease (across all

models). This normalization accounts for sample size and heritability ~ Sipolar Disorder or 101 a6 386 . L7 [ .
differences between traits and emphasize associations that are i

stronger than expected by chance (without the normalization, highly  schizophrenia (2018 88 182 312 - 25 36 48
heritable and polygenic traits like height, for example, would

constantly be at the top of the list simply because they have so many """ #0%% e s wo - Y. -
detectable causal variants). The subsequent columns list the raw Worry too long after - - 51 | 2a oo RS
average Chi2 statistic, maximum Chi? statistic across all models (to cmbarrassment

filter for model-specific associations), and then the individual Z- Ever depressed for a whole oy s 1 I ..
scores for each model. Here we see that schizophrenia is the week ' ' ' ‘ ' ' '
second most enriched trait for CNTN4 associations, followed by Bipolar Disorder (2018) . 78 cs BN .- Bl
feelings-related measurements — potentially informing our

understanding of how this gene fits into the cross-trait relationships. (BZOO“;OT“‘SS I 43 59 81 21 24 28 24
Sorting on column #1 shows that the brain model is only significantly

associated with schizophrenia. Sorting on the “max chi2” column et L b a1 86 147 19 -17 | -36  -38

shows that no other models are strongly associated (with any trait). "

Medication: Cholesterol

" 4.1 6.3 105 =27, -0.1 =27/ =222
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Possible target gene

TWAS evidence suggests CNTN4 is associated with schizophrenia and this is a brain-specific effect.

CNTN4 was recently implicated in schizophrenia and shown to change neurodevelopment in zebrafish
by Fromer et al. 2016 Nat Neurosci.
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