Acknowledgement of Country

The University of Queensland (UQ) acknowledges the Traditional Owners and their custodianship of the lands on which we meet.

We pay our respects to their Ancestors and their descendants, who continue cultural and spiritual connections to Country.

We recognise their valuable contributions to Australian and global society.

General Information:

- We are currently located in Building 69

E
Emergency evacuation point

- Food court and bathrooms are located in Building 63
- If you are experiencing cold/flu symptoms or have had COVID in the last 7 days please ensure you are wearing a mask for the duration of the
 module

Data Agreement

To maximize your learning experience, we will be working with genuine human genetic data, during this module.

Access to this data requires agreement to the following in to comply with human genetic data ethics regulations

Please email pctgadmin@imb.com.au with your name and the below statement to confirm that you agree with the following:
"I agree that access to data is provided for educational purposes only and that I will not make any copy of the data outside the provided computing accounts."

$\begin{aligned} & \text { 9:00- } \\ & \text { 10:30am } \end{aligned}$	Lecture 1: Introduction to Mendelian randomization. We will introduce the concept of Mendelian randomization, the assumptions underlying the approach, and empirical examples involving application of the method.	David Evans
$\begin{aligned} & \text { 10:30- } \\ & \text { 11:00am } \end{aligned}$	Break	
$\begin{aligned} & 11: 00- \\ & \text { 12:30pm } \end{aligned}$	Practical 1: Single sample Mendelian randomization. Software: R.	Daniel Hwang John Kemp Gunn-Helen Moen Nicole Warrington
$\begin{aligned} & 12: 30- \\ & 1: 30 \mathrm{pm} \\ & \hline \end{aligned}$	Lunch break	
$\begin{aligned} & 1: 30 \mathrm{pm}- \\ & 3: 00 \mathrm{pm} \end{aligned}$	Lecture 2: Sensitivity Analyses in Mendelian randomization. We will introduce methods for detecting and/or correcting for horizontal pleiotropy in Mendelian randomization analyses including heterogeneity testing, MR Egger, MR weighted median and MR modal approaches.	David Evans
3:00-3:30pm	Break	
3:30-4:30pm	Practical 2: Two sample Mendelian randomization. Software: R, MR Base.	Daniel Hwang John Kemp Gunn-Helen Moen Nicole Warrington
4:30-5pm	Questions and Discussion	

Day 2 (June 22 ${ }^{\text {nd }}$ Wednesday): Structural Equation Modelling		
9-10:30am	Lecture 3: Introduction to Structural Equation Modelling. We will introduce the technique of structural equation modelling. Concepts that will be covered include full information maximum likelihood (FIML), optimization, path analysis and covariance algebra. We will discuss examples of structural equation modelling for genetically informative data.	David Evans
$\begin{aligned} & \hline \text { 10:30- } \\ & \text { 11:00am } \end{aligned}$	Break	
$\begin{aligned} & \text { 11:00- } \\ & \text { 12:30pm } \end{aligned}$	Practical 3: Path Tracing Rules, Covariance Algebra, Likelihood	Daniel Hwang John Kemp Gunn-Helen Moen Nicole Warrington
$\begin{aligned} & 12: 30- \\ & 1: 30 \mathrm{pm} \end{aligned}$	Lunch break	
$\begin{aligned} & 1: 30 \mathrm{pm}- \\ & 3: 00 \mathrm{pm} \end{aligned}$	Lecture 4: Structural Equation Modelling (continued) and Genomic SEM. We introduce Genomic SEM, an exciting new method to analyse summary results statistics from GWAS.	David Evans
3:00-3:30pm	Break	
3:30-4:30pm	Lecture 5: Directed Acyclic Graphs (DAGs). We will introduce Directed Acyclic Graphs and illustrate how they can be used to inform study design, analysis of data and understand the implications of confounding, bias and missing data.	David Evans
4:30-5:00pm	Questions and Discussion	All speakers

Introduction to Mendelian Randomization

David Evans ${ }^{1,2,3}$
1 Institute for Molecular Bioscience, University of Queensland
2 University of Queensland Diamantina Institute 3 MRC Integrative Epidemiology Unit, University of Bristol

This Session

- Problems with observational data
- Randomized controlled trials
- Mendelian Randomization (MR):
- How it works
- Core assumptions
- Calculating causal effect estimates
- MR example
- Limitations of MR

The Problem with Inferring Causality in Observational Studies

CHD risk according to duration of current Vitamin E supplement use compared to no use

Rimm et al NEJM 1993; 328: 1450-6

Use of vitamin supplements by US adults, 1987-2000

Source: Millen AE, Journal of American Dietetic Assoc 2004;104:942-950

Vitamin E supplement use and risk of Coronary Heart Disease

Stampfer et al NEJM 1993; 328: 144-9; Rimm et al NEJM 1993; 328: 1450-6; Eidelman et al Arch Intern Med 2004; 164:1552-6

MANY OTHER EXAMPLES

VITAMIN C, VITAMIN A, HRT, MANY DRUG TARGETS.......

WHAT'S THE EXPLANATION?

Vitamin E levels and confounding risk factors:

Women's Heart and Health Study Lawlor et al, Lancet 2004

Confounding

Smoking, diet, alcohol, socioeconomic position....

Confounders

Exposure

Outcome

Vitamin E
Heart disease

Classic limitations to "observational" science

- Confounding
- Reverse Causation
- Bias

RCTs: the Gold Standard in Inferring Causality

The Need for Observational Studies

- Randomized Controlled Trials (RCTs):
- Not always ethical or practically feasible eg anything toxic
- Expensive, requires experimentation in humans
- Impractical for long follow up times
- Should only be conducted on interventions that show very strong observational evidence in humans
- Observational studies:
- Association between environmental exposures and disease measured in observational designs (non-experimental)
eg case-control studies or cohort studies
- Reliably assigning causality in these types of studies is very limited

Mendelian randomization

How can it help observational epidemiology?

What does MR do?

- Assess causal relationship between two variables
- Estimate magnitude of causal effect

How does it do this?

By harnessing Mendel's laws of inheritance

Mendel's Laws of Inheritance

1. Segregation: alleles separate at meiosis and a randomly selected allele is transmitted to offspring
2. Independent assortment: alleles for separate traits are transmitted independently of one another

Mendel in 1862

Mendelian randomization and RCTs

MENDELIAN RANDOMIZATION

+ independent assortment
RANDOM SEGREGATION OF ALLELES

CONFOUNDERS EQUAL BETWEEN GROUPS

 GROUPSOUTCOMES COMPARED BETWEEN GROUPS

Mendelian randomization: Smoking and Lung Cancer

MENDELIAN
RANDOMIZATION

+ independent assortment
RANDOM SEGREGATION OF ALLELES

CONFOUNDERS EQUAL BETWEEN GROUPS

LUNG CANCER COMPARED BETWEEN GROUPS

Mendelian Randomization: 3 Core Assumptions

Confounders

SNP \qquad Exposure
Outcome

(3)
(1) SNP is associated with the exposure
(2) SNP is NOT associated with confounding variables
(3) SNP ONLY associated with outcome through the exposure

Why are genetic associations special?

- Robustness to confounding due to Mendel's laws:
- Law of segregation: inheritance of an allele is random and independent of environment etc
- Law of independent assortment: genes for different traits segregate independently (assuming not in LD)
- The direction of causality is known - always from SNP to trait
- Genetic variants are potentially very good instrumental variables
- Using genetic variants as IVs is a special case of IV analysis, known as Mendelian randomization

Calculating Causal Effect Estimates

After SNP identified robustly associated with exposure of interest:

- Wald Estimator
- Two-stage least-squares (TSLS) regression

Calculating Causal Effect Estimates

Copyright 92006 Nature Publishing Group
Nature Reviews | Genetics

Two-stage
Least Squares (2SLS):
(1) Regress exposure on SNP \& obtain predicted values
(2) Regress outcome on predicted exposure (from $1^{\text {st }}$ stage regression)
(3) Adjust standard errors
*Needs to be done in the one sample ("Single sample MR")

Calculating Causal Effect Estimates

Copyright $\Theta 2006$ Nature Publishing Group Nature Reviews | Genetics

Two-stage Least Squares (2SLS):
(1) Regress exposure on SNP \& obtain predicted values
(2) Regress outcome on predicted exposure (from $1^{\text {st }}$ stage regression)
(3) Adjust standard errors

This gives you: difference in outcome per unit change in (genetically-predicted) exposure
Genetically determined exposure \rightarrow "randomized" \rightarrow can ascribe causality
(if assumptions are met)
*Needs to be done in the one sample ("Single sample MR")

MR can also be performed using just the results from GWAS

- Also known as two-sample MR, SMR, or MR with summary data etc
- Advantages:
- The data is readily available, non-disclosive, free, open source
- The exposure and outcome might not be measured in the same sample
- The sample size of the outcome variable, key to statistical power, is not limited by requiring overlapping measures of the exposure
- Disadvantages:
- Some extensions of MR not possible, e.g. non-linear MR, use of GxE for negative controls, various sensitivity analyses

Calculating Causal Effect Estimates

Confounders

$$
\beta_{\text {SNP-OUTCOME }}=\beta_{\text {CAUSAL EXP-OUTCOME }} \times \beta_{\text {SNP-EXPOSURE }}
$$

*Can be used in different samples ("Two sample MR")

Calculating Causal Effect Estimates

BP and weight:

*Can be used in different samples ("Two sample MR")

Generate causal estimate Two-stage least squares

```
library(sem)
mod1 <- tsls(outcome ~ exposure, ~ allele.score, data=data)
    # two-stage least squares with allele score
mod2 <- tsls(outcome ~ exposure, ~ rs123 + rs456 + rs789 + rs1011 + rs1213, data=data)
    # two-stage least squares with individual SNPs
library(AER)
mod3 <- ivreg(outcome ~ exposure | allele.score, data=data)
mod4 <- ivreg(outcome ~ exposure | rs123 + rs456 + rs789 + rs1011 + rs1213, data=data)
```


MR Example using CRP

- C-Reactive Protein (CRP) is a biomarker of inflammation
- It is associated with BMI, metabolic syndrome, CHD and a number of other diseases
- It is unclear whether these observational relationships are causal or due to confounding or reverse causality
- This question is important from the perspective of intervention and drug development

Using a genetic instrument for proinflammatory CRP

TWO ALTERNATIVES

1. If CRP DOES NOT causally affect cardiometabolic traits:

CRP gene variant should NOT be related to cardiometabolic traits
2. If CRP CAUSALLY affects metabolic traits:

CRP gene variant should also be related to these metabolic traits
"Bi-directional Mendelian Randomization": Testing causality and reverse causation

	Effect estimates				
Outcome / explanatory variable	Observational	Instrumental variable	$\boldsymbol{P}_{\text {Iv }}$	$\boldsymbol{P}_{\text {diff }}$	$\boldsymbol{F}_{\text {first }}$
CRP/BMI	1.075 $(1.073,1.077)$	1.06 $(1.02,1.11)$	0.002	0.6	50.2

Limitations to Mendelian Randomization

1- Population stratification

2- Canalisation ("Developmental compensation")

3- The existence of instruments

4- Power and "weak instrument bias"

5- Pleiotropy

Power and Weak Instruments

- Power:
- Genetic variants explain very small amounts of phenotypic variance in a given trait
- VERY large sample sizes are generally required
- Weak instruments:
- Genetic variants that are weak proxies for the exposure
- Results in biased causal estimates from MR
- Different impact of the bias from weak instruments:
- Single Sample MR: to the confounded estimate
- Two-Sample MR: to the null

Using Multiple Genetic Variants as Instruments

Figure I. DAG for a Mendelian randomisation analysis using four genetic variants as instrumental variables for the effect of fat mass on bone mineral density.

Palmer et al (2011) Stat Method Res

- Allelic scores
- Testing multiple variants individually
- Meta-analyse individual SNPs

Calculating Power in Mendelian Randomization Studies

$\rho-c$ mRnd: Power calculations f... \times
mRnd: Power calculations for Mendelian Randomization

Limitations to Mendelian Randomization

1- Population stratification

2- Canalisation ("Developmental compensation")

3- The existence of instruments

4- Power (also "weak instrument bias")

5- Pleiotropy

Pleiotropy

- Genetic variant influences more than one trait
- Horizontal vs Vertical pleiotropy

Pleiotropy

- Genetic variant influences more than one trait
- Pleiotropy only violates MR's assumptions if it involves a pathway outside that of the exposure and is a pathway that affects your outcome

Violation

MR Base

Jie "Chris" Zheng
http://www.mrbase.org/

Gib Hemani

Phil Haycock

i About
[I. Acknowledgements

* Data access agreement

Logged in as
David Evans
epxde@bristol.ac.uk

* Perform MR analysis

\ddagger Choose exposures
Fhoose outcomes
\ddagger Run MR
Q Quick SNP lookup

Select methods for analysis

Many methods exist for performing two sample MR. Different methods have sensitivities to different potential issues, accommodate different scenarios, and vary in their statistical efficiency.

Choose which methods to use:

- Wald ratio
\square Fixed effects meta analysis (simple SE)
\square Fixed effects meta analysis (delta method)
Random effects meta analysis (delta method)
\square Maximum likelihood
- MR Egger
- MR Egger (bootstrap)
- Weighted median

Penalised weighted median

- Inverse variance weighted

LD clumping

Most two sample MR methods require that the instruments do not have LD between them.

Linkage disequilibrium

- Do not check for LD between SNPs
- Use clumping to prune SNPs for LD

LD proxies

If a particular exposure SNP is not present in an outcome dataset, should proxy SNPs be used instead through LD tagging?

- Use proxies?

Minimum LD Rsq value
0.6

- Allow palindromic SNPs?

MAF threshold for aligning palindromes
$0.01 \quad 0.3 \quad 0.49$

Submit

Once you have selected exposures, outcomes, and analysis options you are ready to perform the analysis

Useful References

$\triangleright \frac{\text { Brion et al (2013). Calculating statistical power in Mendelian randomization studies. Int J Epidemiol, 42(5), }}{1497-501}$ 1497-501.
Δ Davey-Smith \& Hemani (2014). Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet, 23(1), R89-98.
$\Delta \frac{\text { Davey-Smith \& Ebrahim (2003). "Mendelian randomization": can genetic epidemiology contribute to }}{\text { understanding environmental }}$ understanding environmental determinants of disease? IJE, 32, 1-22.
$\Delta \frac{\text { Davies et al (2018). Reading Mendelian randomization studies: a guide, glossary, and checklist for }}{}$ clinicians. BMJ, Jul 12, 362:k601.
$\Delta \frac{\text { Evans \& Davey-Smith (2015). Mendelian randomization: New applications in the coming age of }}{}$ hypothesis free causality. Annu Rev Genomics Hum Genet, 16, 327-50.
D Hemani et al. (2018). The MR-Base platform supports systematic causal inference across the human phenome. Elife, May 30, 7, e34408.
Δ Lawlor et al. (2008). Mendelian randomization studies: using genes as instruments for making causal inferences in epidemiology. Stat Med, 27(8), 1133-63.
\triangleright Zheng et al. (2017). Recent developments in Mendelian randomization studies. Curr Epidemiol Rep, 4(4), 330-345.

