Sensitivity Analyses in Mendelian Randomization Studies

David Evans

This Session

- Inverse variance weighted MR
- Heterogeneity tests
- Multivariable MR
- MR Egger
- MR Weighted Median
- MR Modal Estimator
- Steiger Filtering

Inverse Variance Weighted Fixed Effects Meta-analysis

Inverse variance weighted (IVW) fixed effects method

- There is one underlying 'true' effect
- All deviations of sample effects from the 'true' effect are due to chance

$$
w_{i}=\frac{1}{\operatorname{var}\left(\beta_{i}\right)}
$$

$$
\beta_{\text {pookd }}=\frac{\sum_{i=1}^{N}\left(w_{i} * \beta_{i}\right)}{\sum_{i=1}^{N}\left(w_{i}\right)}
$$

$$
s e_{\text {pooled }}=\sqrt{\frac{1}{\sum_{i=1}^{N}\left(w_{i}\right)}}
$$

For N studies, each study i contributes more to the meta analysis if its standard error is lower

Calculate p-value

$z=\frac{\beta_{\text {pooled }}}{s e_{\text {pooled }}}=\frac{\sum_{i=1}^{N} w_{i}^{*} \beta_{i}}{\sqrt{\sum_{i=1}^{N} w_{i}}}$

Fixed Effects IVW-MR and Weighted Linear regression
 MR Test
 Inverse variance weighted

IVW is equivalent to a weighted regression of SNP-outcome effects on SNP-exposure effects passing through the origin

The weights are 1/SE_SNP_outcome
The slope is the estimate of the causal effect
Confounders

Performing MR With Summary Statistics

The Issue of Strand

Individual Cl

Evans et al (2021) Behav Genet

Harmonise exposure and outcome effects

	Exposure GWAS				Outcome GWAS			
SNP	Effect	Effect allele	Other allele	Effect allele frequency	Effect	Effect allele	Other allele	Effect allele frequency
rs12345	0.132	A	G	0.28	0.022	A	G	0.26
rs23456	-0.485	G	T	0.41	0.056	T	G	0.61
rs34567	0.203	G	C	0.11	-0.046	G	C	0.88
	Exposure GWAS				Outcome GWAS			
SNP	Effect	Effect allele	$\begin{aligned} & \text { Other } \\ & \text { allele } \end{aligned}$	Effect allele frequency	Effect	Effect allele	Other allele	Effect allele frequency
rs12345	0.132	A	G	0.28	0.022	A	G	0.26
rs23456	-0.485	G	T	0.41	-0.056	G	T	0.39
rs34567	0.203	G	C	0.11	0.046	G	C	0.12

Strand issue exercise

SNP	Study 1 alleles	Study 1 allele freq	Study 2 alleles	Study 2 allele freq	Verdict
rs1	A/G	0.2	A/G	0.2	
rs2	G/T	0.3	T/G	0.72	
rs3	G/C	0.65	G/C	0.62	
rs4	A/T	0.49	A/T	0.50	
rs5	A/T	0.12	A/T	0.89	
rs6	A/G	0.4	A/T	0.4	

MR methods for handling horizontal pleiotropy
 Many methods now exist

What is the problem?

- Mendelian Randomization (MR) uses genetic variants to tes \dagger for causal relationships between phenotypic exposures and disease-related outcomes
- Due to the proliferation of GWAS, it is increasingly common for MR analyses to use large numbers of genetic variants
- Increased power but greater potential for pleiotropy
- Pleiotropic variants affect biological pathways other than the exposure under investigation and therefore can lead to biased causal estimates and false positives under the null

Two Sample MR:

Single Variants

$$
\text { Wald }=\frac{\text { Beta-GY }}{\text { Beta-GX }}
$$

Causal estimate using Wald method:

$$
\frac{\beta \gamma_{j}}{\gamma_{j}}=\beta
$$

Two Sample MR:

Multiple Variants

Causal estimate using IVW from summarised data:

$$
\frac{\sum_{j=1}^{J} \hat{\gamma}_{j}^{2} \sigma_{Y j}^{-2} \hat{\beta}_{j}}{\sum_{j=1}^{J} \hat{\gamma}_{j}^{2} \sigma_{Y j}^{-2}}=\beta
$$

(Approximates TSLS)
where $\hat{\beta}_{j}=\frac{\hat{\Gamma}_{j}}{\gamma_{j}}$ is the ratio method estimate for variant j, and $\sigma_{Y j}$ is the standard error in the regression of the outcome on the j th genetic variant, assumed to be known.

MR - with direct pleiotropy

Single variant Wald estimate:

$$
\beta_{j}=\beta+\frac{\alpha_{j}}{\gamma_{j}}
$$

$\underset{\substack{\text { Multiple variant } \\ \text { TSLS IVW: }}}{ } \beta+\frac{\sum_{j=1}^{J} \gamma_{j} \sigma_{Y j}^{-2} \alpha_{j}}{\sum_{j=1}^{J} \gamma_{j}^{2} \sigma_{Y j}^{-2}}=\beta+\operatorname{Bias}(\alpha, \gamma)$.

Heterogeneity

We expect that each SNP represents an independent study, and each should give an unbiased (if imprecise) estimate of the causal effect of x on y

Heterogeneity, where effect estimates are more different than expected due to standard errors, arises because at least some of the instruments are invalid

Cochran's Q statistic
$Q=\sum_{k=1}^{K} w_{k}\left(\hat{\beta}_{k}-\hat{\beta}_{I V W}\right)^{2}$

$\mathrm{n}=6$ instruments
Expect $Q=5$ if there is no heterogeneity
Q is chi-square distributed with $\mathrm{n}-1$ degrees of freedom

Option 1: Remove outliers

- Some SNPs might contribute to the majority of the heterogeneity
- If we assume these are the invalid instruments then the IVW estimate excluding c them should be less biased

However - beware of:

- Cherry picking - remove outliers will artificially provide a more precise estimate
- What if the outlier is the only valid instrument, and all the others are invalid?
- E.g. cis-variants for gene expression, DNA methylation, protein
 levels. CRP levels are best instrumented by variants within the CRP gene region. Most other variants that come up in CRP GWAS are upstream effects related to inflammation

Option 2: Multivariable MR

- We are testing for whether X1 has an influence on Y
- We know that some instruments for X1 also have influences on X2
- This opens up the possibility of horizontal pleiotropy biasing our estimate
- What is the X1-Y association adjusting for X2?

Option 3: Fit a model that is robust to some model of horizontal pleiotropy

- IVW fixed effects estimate assumes all SNPs are valid instruments, and averages across them all
- IVW random effects model allows all SNPs to be drawn from a different distribution - the estimate is the same but the standard error is larger if there is any heterogeneity
- Several others...

MR Egger Regression

MR Egger Regression: Central concept

- In Mendelian Randomization when multiple genetic variants are being used as IVs, Egger regression can:
- Identify the presence of 'directional' pleiotropy (biasing the IV estimate)
- provide a less biased causal estimate (in the presence of pleiotropy)

InSIDE Assumption

Relaxing MR's assumptions

We explore the condition that the correlation between the genetic associations with the exposure (the γ_{j} parameters) and the direct effects of the genetic variants on the outcome (the α_{j} parameters) is zero. We refer to the condition that the distributions of these parameters are independent as InSIDE (Instrument Strength Independent of Direct Effect). It can be viewed as a weaker version of the exclusion restriction assumption.

Example:
 ALL INVALID INSTRUMENTS INSIDE ASSUMPTION SATISFIED

SNP - exposure association

InSIDE:
$\hat{\alpha}_{j}$ is independent of its denominator, $\hat{\gamma}_{j}$.
Bias of ratio estimator $\quad \hat{\beta}_{j}=\frac{\hat{\Gamma}_{j}}{\hat{\gamma}_{j}}$ is inversely proportional to γ_{j}.

Egger regression:

$$
\hat{\Gamma}_{j}=\beta_{0 E}+\beta_{E} \hat{\gamma}_{j} .
$$

Intercept not constrained to zero

Egger's test assesses whether the intercept term is significantly different from zero. The estimated values of the intercept can be interpreted as the average pleiotropic effect across all genetic variants. An intercept term different from zero indicates directional pleiotropy

Why Does It Work?

Height and lung function

Causal estimate

$$
\begin{aligned}
\text { IVW } & =0.59(95 \% \text { CI: } 0.50,0.67) \\
\text { Egger } & =0.58(95 \% \text { CI: } 0.50,0.67) ; \text { intercept }-0.001 \mathrm{p}=0.5
\end{aligned}
$$

BP and Coronary Disease

FUNNEL PLOTS

Systolic BP

Diastolic BP

Visual evidence for asymmetry

BP and Coronary Disease

FUNNEL PLOTS

Systolic BP

BP and Coronary Disease

Scatter Plots

Egger test for intercept $\mathrm{p}=0.2$

Diastolic BP

Egger test for intercept $\mathrm{p}=0.054$

BP and Coronary Disease

FUNNEL PLOTS

Systolic BP

IVW $=0.054 \operatorname{logOR} / \mathrm{mmHg} \mathrm{p}=4 \times 10^{-6}$ Egger $=0.015 \log \mathrm{OR} / \mathrm{mmHg} \mathrm{p}=0.6$

IVW $=0.083 \operatorname{logOR} / \mathrm{mmHg} \mathrm{p}=1 \times 10^{-5}$ Egger $=-0.024 \log \mathrm{OR} / \mathrm{mmHg} \mathrm{p}=0.7$

Weighted Median Approach

Simple Median Method

Figure 2. Fictional example of a Mendelian randomization analysis with 10 genetic variants-six valid instrumental variables (hollow circles) and four invalid instrumental variables (solid circles) for finite sample size (left) and infinite sample size (right) showing IVW (solid line) and simple median (dashed line) estimates compared with the true causal effect (dotted line). The ratio estimate for each genetic variant is the gradient of the line connecting the relevant datapoint for that variant to the origin; the simple median estimate is the median of these ratio estimates.

Order instrumental variables estimates and take the median

- Like all subsequent estimators it enjoys a 50\% breakdown limit

Weighted Median Method

Table 1. Weights and percentiles of weighted median function

	β_{1}	β_{2}	β_{3}	β_{4}	β_{5}	β_{6}	β_{7}	β_{3}	β_{9}	β_{10}
Simple median										
Weight $\left(w_{j}\right)$	$\frac{1}{10}$									
Percentile $\left(p_{j}\right)$	5	15	25	35	45	55	65	75	85	95
Weighting 1										
Weight $\left(w_{1}\right)$ Percentile	$\frac{1}{30}$	$\frac{2}{30}$	$\frac{3}{30}$	$\frac{4}{30}$	$\frac{5}{30}$	$\frac{5}{30}$	$\frac{4}{30}$	$\frac{3}{30}$	$\frac{2}{30}$	$\frac{1}{30}$
1.67	6.67	15.00	26.67	41.67	58.33	73.33	85.00	93.33	98.33	

Weighting 2
$\begin{array}{lcccccccccc}\text { Weight }\left(w_{j}\right) & \frac{2}{36} & \frac{3}{36} & \frac{10}{36} & \frac{8}{36} & \frac{5}{36} & \frac{3}{36} & \frac{2}{36} & \frac{1}{36} & \frac{1}{36} & \frac{1}{36} \\ \text { Percentile }\left(p_{j}\right) & 2.78 & 9.72 & 27.78 & 52.78 & 70.83 & 81.94 & 88.89 & 93.06 & 95.83 & 98.61\end{array}$
Weights and percentiles of the empirical distribution function assigned to the ordered ratio instrumental variable estimates $\left(\beta_{j}\right)$ for the hypothetical examples given in Figure 3.

$$
\mathrm{w}_{\mathrm{j}}^{\prime}=\frac{\hat{\gamma}_{\mathrm{j}}^{2}}{\sigma_{\Upsilon j}^{2}} \quad w_{j}=\frac{\mathrm{w}_{\mathrm{j}}^{\prime}}{\sum_{\mathrm{j}} \mathrm{w}_{\mathrm{j}}^{\prime}}
$$

Penalized Weighted Median Method

Figure 2. Fictional example of a Mendelian randomization analysis with 10 genetic variants-six valid instrumental variables (hollow circles) and four invalid instrumental variables (solid circles) for finite sample size (left) and infinite sample size (right) showing IVW (solid line) and simple median (dashed line) estimates compared with the true causal effect (dotted line). The ratio estimate for each genetic variant is the gradient of the line connecting the relevant datapoint for that variant to the origin; the simple median estimate is the median of these ratio estimates.

Although the invalid IVs do not contribute directly to the median estimate, they do influence it in small samples

- Like all subsequent estimators it enjoys a 50% breakdown limit

Penalized Weighted Median Method

- One way of minimizing this problem is down-weighting the contribution to the analysis of genetic variants with heterogeneous ratio estimates
- Heterogeneity between estimates can be quantified by Cochrane's Q statistic:

$$
Q=\Sigma_{j} Q_{j}=\Sigma_{j} w_{j}^{\prime}\left(\hat{\beta}_{j}-\hat{\beta}\right)^{2}
$$

- The Q statistic has a chi-squared distribution on J - 1 degrees of freedom under the null hypothesis of no heterogeneity
- Each individual component of Q has a chi-square distribution with 1 df. Bowden proposes using a one sided upper P value (denoted q_{j}):

$$
w_{j}^{*}=w_{j}^{\prime} \times \min \left(1,20 q_{j}\right)
$$

Penalized Weighted Median Method

Table 1. Weights and percentiles of weighted median function

	β_{1}	β_{2}	β_{3}	β_{4}	β_{5}	β_{6}	β_{7}	β_{3}	β_{9}	β_{10}
Simple median										
Weight $\left(w_{j}\right)$	$\frac{1}{10}$									
Percentile $\left(p_{j}\right)$	5	15	25	35	45	55	65	75	85	95
Weighting 1										
Weight $\left(w_{j}\right)$ Percentile$\frac{1}{30}$	$\frac{2}{30}$	$\frac{3}{30}$	$\frac{4}{30}$	$\frac{5}{300}$	$\frac{5}{30}$	$\frac{4}{30}$	$\frac{3}{30}$	$\frac{2}{30}$	$\frac{1}{30}$	
1.67	6.67	15.00	26.67	41.67	58.33	73.33	85.00	93.33	98.33	

Weighting 2
Weight (w_{j}) $\quad \frac{2}{36} \quad \frac{3}{36} \quad \frac{10}{36} \quad \frac{8}{36} \quad \frac{5}{36} \quad \frac{3}{36} \quad \frac{2}{36} \quad \frac{1}{36} \quad \frac{1}{36} \quad \frac{1}{36}$
$\begin{array}{lllllllllllll}\text { Percentile } & \left(p_{j}\right) & 2.78 & 9.72 & 27.78 & 52.78 & 70.83 & 81.94 & 88.89 & 93.06 & 95.83 & 98.61\end{array}$
Weights and percentiles of the empirical distribution function assigned to the ordered ratio instrumental variable estimates $\left(\beta_{j}\right)$ for the hypothetical examples given in Figure 3.

Mode Based Estimator

ZEMPA

Figure 1. Illustration of the ZEro Modal Pleiotropy Assumption (ZEMPA) in the simple (i.e. unweighted) mode-based estimate (MBE). β_{M} is the simple MBE causal effect and β is the true causal effect; n_{l} denotes the number of variants with a given horizontal pleiotropic effect (n_{0} denotes the number of valid instruments). Panel A: ZEMPA is satisfied. Panel B: ZEMPA is violated. SNP, single nucleotide polymorphism.

Kernel Density Estimation

Summary of Robust Estimators

Reverse causal instruments

Problem: MR of type 2 diabetes on BMI

Can we avoid including reverse-causal SNPs as instruments?

- If A causes B and B causes C
- The effect of A on B should be larger than the effect of A on C

Expect that
$r^{2}(S N P, B)=r^{2}(S N P, A) \times r^{2}(S N P, B)$

Steiger test used to evaluate if $r^{2}(S N P, A)>r^{2}(S N P, B)$
If this is not satisfied, infer that this instrument is not influencing the exposure primarily.

Summary

- MR uses natural randomization to mimic an RCT
- It is useful, data is abundant, but it is not a panacea for causal inference
- Often valuable for proving that an hypothesised association is not causal
- Crucial to perform sensitivity analyses and obtain metrics regarding the likely reliability of the MR estimates

References

- Bowden et al. Detecting individual and global horizontal pleiotropy in Mendelian randomization: a job for the humble heterogeneity statistic? American Journal of Epidemiology 2018, kwy 185
- Bowden et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator Genet Epideml 40(4), 304-14
- Bowden et al. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption Int J Epidemiol 46(6), 1985-1998
- Bowden et al. Mendelian randomization with invalid instruments: effect estimation and bias through Egger regression. Int J Epidemiol, 44(2), 512-25
- Burgess et al. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol, 181 (4), 251-60
- Hemani et al. Evaluating the potential role of pleiotropy in Mendelian randomization studies Human Molecular Genetics, Volume 27, Issue R2, 1 August 2018, Pages R195-R208
- Hemani et al. Orienting the causal relationship between imprecisely measured traits using GWAS summary data PLoS Genet 2017 13(11): e1007081

