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Inverse Variance Weighted
Fixed Effects Meta-analysis



Inverse variance weighted
(IVW) tixed effects method

* There is one underlying ‘frue’ effect

« All deviations of sample effects from the ‘frue’
effect are due to chance
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For N studies, each study i contributes more to the meta analysis if its standard
error is lower



Calculate p-value
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IVW is equivalent to a weighted regression
of SNP-outcome effects on SNP-exposure
effects passing through the origin

The weights are 1/SE_SNP_outcome

The slope is the estimate of the causal effect
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Performing MR With

Summary Statistics

Obtain instruments from
exposure GWAS

Extract SNP effects from
outcome GWAS

O—Target SNP
(O——Best LD proxy

“if LD Proxies \

If an exposure instrument




The Issue of Strand
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Harmonise exposure and
outcome effects

Exposure GWAS Outcome GWAS
Effect Other Effect allele Effect Other Effect allele
SNP Effect allele allele frequency |Effect allele allele frequency
rs12345 0.132|A G 0.28 0.022(A G 0.26
rs23456 -0.485(G i} 0.41 0.056|T G 0.61
rs34567 0.203|G C 0.11 -0.046|G € 0.88
\'7
Exposure GWAS Outcome GWAS
Effect Other Effect allele Effect Other Effect allele
SNP Effect allele allele frequency | Effect allele allele frequency
rs12345 0.132|A G 0.28 0.022|A G 0.26
rs23456 -0.485|G iL§ 0.41 -0.056|G T 0.39
rs34567 0.203|G C 0.11 0.046 |G C 0.12




Strand issue exercise

SNP Study 1 Study 1 Study 2 Study 2 Verdict
alleles allele freq | alleles allele freq
rsl A/G 0.2 A/G 0.2

rs2 G/T 0.3 T/G 0.72
rs3 G/C 0.65 G/C 0.62
rs4 A/T 0.49 A/T 0.50
rsd A/T 0.12 AT 0.89

1rs6 A/G 0.4 A/T 0.4



MR methods for handling
horizontal pleiotropy

Many methods now exist



What is the problem?

Mendelian Randomization (MR) uses genetic variants to test
for causal relationships between phenotypic exposures and
disease-related outcomes

Due to the proliferation of GWAS, it is increasingly common for
MR analyses to use large numbers of genetic variants

Increased power but greater potential for pleiotropy

Pleiotropic variants affect biological pathways other than the
exposure under investigation and therefore can lead to
biased causal estimates and false positives under the null



Two Sample MR:

Single Variants
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Two Sample MR:
Multiple Variants

J
Causal estimate using IVW ZJ 1 f)/.? O-YJ '8 J
from summarised data: J A _9 — ,8 .
). j=1 '}’j Oy ;

where f§; = L is the ratio method estimate for variant j,

(Approximates TSLS)

and ovy; is the standard error in the regression of the out-

PY come on the jth genetic variant, assumed to be known.



MR - with direct pleiotropy
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Heterogeneity

We expect that each SNP represents an independent study, and each should give an
unbiased (if imprecise) estimate of the causal effect of x on'y

Heterogeneity, where effect estimates are more different than expected due to standard
errors, arises because at least some of the instruments are invalid

Cochran’s Q statistic

K
Q=> wi(Bx— Brvw)’ —— ——
k=1

0.1 1.0 10 0.1 1.0 10

n=6 instruments
Expect Q =5 if there is no heterogeneity
Q is chi-square distributed with n-1 degrees of freedom



Option 1: Remove outliers

« Some SNPs might contribute to the majority
of the heterogeneity

 If we assume these are the invalid
instruments then the IVW estimate excluding ¢
them should be less biased

However — beware of:

« Cherry picking —remove outliers will
artificially provide a more precise estimate

«  What if the outlieris the only valid
insfrument, and all the others are invalide

SNF - outcome effact

o E.g. cis-variants for gene expression, DNA methylation, protein SNP - exposure effect
levels. CRP levels are best instrumented by variants within the
CRP gene region. Most other variants that come up in CRP
GWAS are upstream effects related to inflammation



Option 2: Multivariable
MR

We are testing for whether U
X1 has an influence on Y / 1
We know that some SNP - X
instruments for X1 also have 1 1 B
influences on X2 . | !
This opens up the possibility I
of horizontal pleiotropy . |
biasing our estimate _ |
WQQTTis Thfe X1 —2Ygossocioﬂon : [3
adjusting for X2

Justing SNP, X, ?



Option 3: Fit a model that is
robust to some model of
horizontal pleiotropy

* VW fixed effects estimate assumes all SNPs are valid
INnstruments, and averages across them all

* VW random effects model allows all SNPs to be
drawn from a different distribution — the estimate is
the same but the standard error is larger if there is
any heterogeneity

« Several others...



MR Egger Regression



MR Egger Regression: Central
concept

* |In Mendelian Randomization when multiple genetic
variants are being used as Vs, Egger regression
can:

o ldentify the presence of ‘directional’ pleiotropy
(biasing the IV estimate)

o provide a less biased causal estimate
(in the presence of pleiotropy)



InSIDE Assumption

Relaxing MR’s assumptions
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We explore the condi-
tion that the correlation between the genetic associations
with the exposure (the y; parameters) and the direct effects
of the genetic variants on the outcome (the z; parameters)
is zero. We refer to the condition that the distributions of
these parameters are independent as InSIDE (Instrument
Strength Independent of Direct Effect). It can be viewed as
a weaker version of the exclusion restriction assumption.



Example:
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InSIDE: ¢; is independent of its denominator, ;.

: : : A T, . . :
Bias of ratio estimator 3, = 5 s inversely proportional to 7.
J
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Egger regression:

= Boe + BEY;-

Intercept not constrained to zero

A vw
s!?pe ~ Egger
] I
E slope
True
slope

E{ p Increasing

0 0 | | | | | | | | | instrument
y strength

Egger’s test assesses whether the intercept term is significantly
different from zero. The estimated values of the intercept can be

mterpreted as the average pleiotropic effect across all genetic variants.

An intercept term different from zero indicates directional pleiotropy
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vw
slope

p

L)
.
.

|

SNP - exposure association

M L.

~ Egger
B E slope

.
-
.
.
.
.
.
True .
P F’ slope »
-
-
.
-
.

Increasing
instrument

y strength
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,BEgger —

var (,E’SNP—EXPOSURE)

_ cov(By; + @, 7;)

var(¥;)

_ Beov(@i, 7) + cov(@;, 7))

var(¥y;)

s cov(@;,¥;)

var(7;)

As N — oo, cov(@;, 7;) — cov(a;, y;)

As #markers — oo, cov(a;,y;) = 0



Height and lung function
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SNP-Lung Function
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Egger = 0.58 (95% CI: 0.50, 0.67); intercept -0.001 p=0.5
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BP’ and Coronary Disease
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Weighted Median Approach



Simple Median Method
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Fictional example of a Mendelian randomization analysis with 10 genetic variants—six valid instrumental variables (hollow circles)

and four invalid instrumental variables (solid circles) for finite sample size (left) and infinite sample size (right) showing IVW (solid line) and simple
median (dashed line) estimates compared with the true causal effect (dotted line). The ratio estimate for each genetic variant is the gradient of the
line connecting the relevant datapoint for that variant to the origin; the simple median estimate is the median of these ratio estimates.

Order instrumental variables estimates and take the median

o Like all subsequent estimators it enjoys a 50% breakdown limit o



Weighted Median Method

Table 1. Weights and percentiles of weighted median function

B B B B B B B B B Bu

Simple median

Weight (w; ] ﬁ =

1 I 1 I
I ] T 0 I 0 10 10
Percentile :_r'_| b5 15 25 5 45 55 a5 s Bo 95
Weighting 1
Weight (w)) 5 % % % = = % = % 3
Percentile 167 &67 1500 2667 4167 5833 73.33 8500 9333 G833
Weighting 2
. - 2 3 1 8 5 3 2 | I I
Weight(wy)) % % =% =% % 3% 3% 3% 3% %
Percentile :_r'_, b X7R 972 2778 5278 TOE3Z Bl94 H8.B9 93104 9583 9E.E6]

Weights and percentiles of the empirical distribution fanction assigned to the ordered
ratio instrumental variable estimates (8, } for the hypothetical examples given in

Figure 3.
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Penalized Weighted
Median Method
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Figure 2. Fictional example of a Mendelian randomization analysis with 10 genetic variants—six valid instrumental variables (hollow circles)
and four invalid instrumental variables (solid circles) for finite sample size (left) and infinite sample size (right) showing IVW (solid line) and simple
median (dashed line) estimates compared with the true causal effect (dotted line). The ratio estimate for each genetic variant is the gradient of the
line connecting the relevant datapoint for that variant to the origin; the simple median estimate is the median of these ratio estimates.

Although the invalid IVs do not contribute directly to the median estimate, they do
influence it in small samples

o Like all subsequent estimators it enjoys a 50% breakdown limit o



Penalized Weighted
Median Method

One way of minimizing this problem is down-weighting the
contribution to the analysis of genetic variants with
heterogeneous ratio estimartes

Heterogeneity between estimates can be quantified by
Cochrane’s Q statisfic:

Q=2Q; = Zw/(B;-B)
The Q statistic has a chi-squared distribution on J - 1 degrees
of freedom under the null hypothesis of no heterogeneity

Each individual component of Q has a chi-square distribution
with 1 df. Bowden proposes using a one sided upper P value
(denoted g)):

w;* =w’; x min(1, 20q;)



Penalized Weighted
Median Method

Table 1. Weights and percentiles of weighted median function
T £y B Bs i B fis B
Simple median
y_: - | | 1 | | I 1 1 | I
Weightiw)) % % % % W w ™ ® @ 1@
Percentile (py) 5 15 25 5 43 35 65 7 B 93
Weighting 1
r_: - | 2 L} 5 3 i ] 2 I
Weight(w)) % % % % % % = = =
Percentile 67 6.67 15.00 26.67 41.67 5833 73.33 8500 9333 9833
Weighting 2
Weight (w)) 3% % % % % 3% 3% % % 3
Percentile (p,}) 2.78 9.72 27.78 5178 70.83 B1.94 88.89 93.06 9583 98.6l

Weights and percentiles of the empirical distribution fanction assigned to the ordered
ratio instrumental variable estimates (8, } for the hypothetical examples given in

Figure 3.



Mode Based Estimator
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Figure 1. lllustration of the ZEro Modal Pleiotropy Assumption (ZEMPA) in the simple (i.e. unweighted) mode-based estimate (MBE). i, is the simple
MBE causal effect and f is the true causal effect; n, denotes the number of variants with a given horizontal pleiotropic effect (ny denotes the number
of valid instruments). Panel A: ZEMPA is satisfied. Panel B: ZEMPA is violated. SNP, single nucleotide polymorphism.



Kernel Density Estimation
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SNP effect on outcome
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Reverse causal
Instruments
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Identifying instruments for X Identifying instruments for Y
against 'Y against X

IH .. .

/ O O

Identified by GWAS on the exposure, valid instrument
O Identified by GWAS on the exposure, invalid instrument

O Not identified by GWAS on the exposure



Can we avoid including
reverse-causal SNPs as
instruments?

If A causes B and B causes C

TheceffecT of A on B should be larger than the effect of A
on

Expect that

SNH 1 A B
r2(SNP,A) r2(A,B) r2(SNP,B) = r(SNP,A) x r3(SNP,B)

Steiger test used to evaluate if r3(SNP,A) > r2(SNP,B)

If this is not satisfied, infer that this instrument is not influencing the
exposure primarily.



Summary

MR uses natural randomization 1o mimic an RCT

It is useful, data is abundant, but it is not a panacea
for causal inference

Often valuable for proving that an hypothesised
association is not causal

Crucial to perform sensitivity analyses and obtain
metrics regarding the likely reliability of the MR
estimates
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