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What is SEM?

* A statistical method for analyzing the relationship between observed
and latent variables

e Used mostly in social and behavioural sciences and also genetic
epidemiology

e Causal and correlational relationships between variables are
modelled explicitly

* Involves constructing a statistical (structural) model, seeing how well
this model fits some data, and obtaining estimates of parameters

* Also known as “Confirmatory Factor Analysis” / “Analysis of
covariance structure” / “Path analysis”



Why SEM?

* Flexibility- almost any linear model can be written as a SEM

* SEM makes it easy to create new models/methods

 Super useful for deriving expected variances/covariances in genetics
* SEM means that you can think about a problem multiple ways

e Advantages for modelling human genetic data:
e Latent variables
* Multivariate phenotypes
* Feedback loops
* Assortative mating
* Vertical transmission
* Gene-environment covariance
* Non-linear constraints



SEM and Genetics
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How does SEM Work?

e (1) Start of with a theory

* (2) Express this theory as a model using a series of structural
equations or as a path diagram (i.e. a “Structural Equation Model”)

* (3) Collect the data

* (4) Fit the model to the data. Obtain parameter estimates and a
measure of how well the model fits the data.

* (5) Revise the theory/model
* (6) Repeat



How does SEM Work?
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“All Models and Wrong — Some Models are
Useful”

* This adage is true for all models, not just SEMs!
* Sometimes different models give exactly the same fit

* In genetic epidemiology, our SEMs are constructed based on
biometrical genetics principles increasing their validity

 SEM and model falsification
* SEM and parameter estimation and confidence intervals

Which model is “correct”?
wel v e [y ;@)ww *
George Box




Fitting Functions and Estimators

* We fit the model to our data using a fitting function. This provides us with a measure of the
goodness of fit of our model and estimates of population parameters of interest

* Most students will be familiar with ordinary least squares (OLS) which we typically use in linear
regression. OLS minimizes the sum of the squared residuals between the estimated regression
line and the observed (y) values of our data
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* In SEM we typically use another fitting function based on the method of maximum likelihood. The
estimates of the population parameters are called “maximum likelihood estimates” (MLEs)



(Full Information) Maximum
Likelihood



Maximum Likelihood Properties

* Consistent

e Asymptotically unbiased
* Efficient

* Scale Invariant

 Sampling distribution of estimates is asymptotically normal

* Asymptotically, twice the difference in log-likelihood between nested
models is distributed as chi-square (e.g. Consider 6; = (a, b, c); 6, = (a3,
b, c=0)- twice the difference in log-likelihoods between the models
would be distributed as x?,)



Likelihood

Imagine tossing a single coin. What is the probability of throwing a head?
If the coin is fair:

P(H) =0.5

P(T) =0.5
If the coin isn’t fair:

P(H)=p

P(T)=1-p

Now imagine tossing the same coin ten times and obtaining the following sequence:
HEAD, HEAD, HEAD, TAIL, HEAD, HEAD, HEAD, HEAD, TAIL, TAIL

What is the probability of observing this particular sequence?
P(HHHTHHHTT) = p~A7*(1-p)"3

Recall that because the events are independent, the probabilities of each coin toss are multiplied together.



Likelihood

Probability is concerned with estimating the chances of observing a particular event given a model for the data
(in this case that the coin is fair p = 0.5)

Probability of the Data given the Model P(D| M) P(HHHTHHHTT|p) = pA7*(1-p)"3

Likelihood flips this relationship around. Now we are interested in what is the likely value for the parameter p
given we have observed the data.

Likelihood of the Model given the Data L(M | D) L(p|HHHTHHHTT) = pA7*(1-p)*3
In other words, is our coin fair given we have observed seven heads and three tails?

Likelihood obeys many of the same rules as probability but not all of them!:
-e.g. The likelihood of independent events are multiplied together (just like probabilities)

We are interested in finding the value of the parameter (here “p”) that maximizes the likelihood of the data.
Q. What is the MLE for p in this particular example?



Likelihood
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Likelihood >1 parameter
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Likelihood- Quantitative Traits

What about quantitative traits?

Imagine we have measured the height of one hundred unrelated individuals.

We assume that height is normally distributed in the population:

1
P(D) = Rk

This probability density is specified by:
-A mean [ (let’s say 170cm)
-A variance o2 (let’s say 25cm?)

The probability density associated with a single individual who has height 180 is therefore:

(180 by

PD) = s

where p = 170 and 0% = 25cm?

Since individuals are independent, the likelihood of observing the hundred individuals is given by:
L(u, o? | Data) = P(D,)P(D,)...P(Dy)

We wish to find the values of pn and o2 that maximise the likelihood of the data



Likelihood- Multivariate Quantitative Data

What about multivariate quantitative data (e.g. k traits measured on the same individual; related individuals etc)?
Imagine we have measured the height and BMI (k = 2) of 100 unrelated individuals.

Here we typically assume that the joint distribution of the quantitative traits is multivariate normal:

1 1 Ca
P(D) = (Tn)k/2|z|—1/ oW (-

This probability density is specified by:
-A (k x 1) vector of means p
-A (k x k) variance-covariance matrix

Since individuals are independent, the likelihood of observing the hundred individuals is given by:
L(p, Z | Data) = P(D,)P(D,)...P(Dy)

We wish to find the values of p and X that maximise the likelihood of the data



Likelihood- “Modelling the Means”

So far our modelling has not been particularly interesting, only finding MLEs of Mean vectors and Covariance matrices!
However, we can go a step further than this and model p and Z in terms of other parameters

For example, we can model the effect of covariates like sex or genotype on our variables e.g.:
M= a+ Bsex X sex + Bsyp X SNP

We call this modelling fixed effects or “modelling the means”

Here our likelihood is maximized wrt &, Bsex, Bsnp, 2 :
(@, Bsex, Bsnp, £ | Data) = P(D,)P(D,)...P(Dy)

If we were interested in testing for evidence of genetic association, we would typically (but not always!) do it
here in the model for the means

Unlike our outcome variables, there is no requirement for these covariates to be normally distributed



Likelihood- “Modelling the Covariances”

Likewise, we can also (simultaneously) model the covariance structure of our data
This is what SEM is all about!

For example, if we had a set of sibling pairs we might be able to model the variance of our data and the
covariance between relatives in terms of genetic and environmental variance components

0% =0f + o}

1,

012 = E O¢g

We refer to this as “modelling the variances/covariances”

Here our likelihood is maximized wrt ¢, o and the mean vector:
L(w, 04, o7 | Data) = P(D,)P(D,)...P(D,)

Most of the rest of our course concerns how we can informatively parameterize our covariance structure to
answer interesting questions in genetic epidemiology



Likelihood- Modelling Both Means and
Covariances Simultaneously

In SEM we can fit our model to individual level data in which case we maximize the multivariate normal likelihood
according to the model for the means and the model for the covariances we have just discussed.

This is particularly useful if:
-We have missing data
-We wish to remove the effect of covariates from the variance/covariance structure
-We wish to perform specific hypothesis tests/estimate certain parameters in the model for the means

Alternatively, particularly if we do not have missing data, we can fit the model to summary results level data (i.e.
to covariance matrices)

This can be thought of heuristically as minimizing the difference between the covariance matrix implied by the
SEM (the “expected covariance matrix”) and the observed covariance matrix

> —3(0)
Observed Expected

Covariance Covariance
Matrix Matrix




Understanding SEM

> —3(6)

Observed Expected
Covariance Covariance
Matrix Matrix

* Expected covariance matrix is a function of model
parameters

* These expectations depend on the particular structural
equation model

* Parameters chosen to minimize the difference between
observed and expected covariance matrices (MLEs)



SEM- Assumptions
* Linearity

* Multivariate normality
e Exogenous variables exempt

 Binary/ordinal variables can be modelled assuming an underlying normal
distribution of liability

* Methods exist for combining binary and continuous variables

* “All models are wrong- some models are useful”



Optimization



Likelihood
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Optimization

* Maximum likelihood solutions can rarely be
solved in closed form- rather iterative
optimization procedures are commonly
needed

* Choose starting values for parameters

 Calculate likelihood of these parameter
estimates, as well as the first and second
derivative of the likelihood with respect to
the parameters

* Adjust parameter values, and repeat process
until stopping criterion is reached



Likelihood

v

Dy —

D

Optimization

* Maximum likelihood solutions can rarely be
solved in closed form- rather iterative
optimization procedures are commonly
needed

* Choose starting values for parameters

 Calculate likelihood of these parameter
estimates, as well as the first and second
derivative of the likelihood with respect to
the parameters

* Adjust parameter values, and repeat process
until stopping criterion is reached



Likelihood

v

Optimization

* Maximum likelihood solutions can rarely be
solved in closed form- rather iterative
optimization procedures are commonly
needed

* Choose starting values for parameters

 Calculate likelihood of these parameter
estimates, as well as the first and second
derivative of the likelihood with respect to
the parameters

* Adjust parameter values, and repeat process
until stopping criterion is reached



Likelihood

v

Optimization

* Maximum likelihood solutions can rarely be
solved in closed form- rather iterative
optimization procedures are commonly
needed

* Choose starting values for parameters

 Calculate likelihood of these parameter
estimates, as well as the first and second
derivative of the likelihood with respect to
the parameters

* Adjust parameter values, and repeat process
until stopping criterion is reached



Likelihood

v

Optimization

* Maximum likelihood solutions can rarely be
solved in closed form- rather iterative
optimization procedures are commonly
needed

* Choose starting values for parameters

 Calculate likelihood of these parameter
estimates, as well as the first and second
derivative of the likelihood with respect to
the parameters

* Adjust parameter values, and repeat process
until stopping criterion is reached



Likelihood

v

Optimization

* Maximum likelihood solutions can rarely be
solved in closed form- rather iterative
optimization procedures are commonly
needed

* Choose starting values for parameters

 Calculate likelihood of these parameter
estimates, as well as the first and second
derivative of the likelihood with respect to
the parameters

* Adjust parameter values, and repeat process
until stopping criterion is reached



Likelihood

v

Optimization

* Maximum likelihood solutions can rarely be
solved in closed form- rather iterative
optimization procedures are commonly
needed

* Choose starting values for parameters

 Calculate likelihood of these parameter
estimates, as well as the first and second
derivative of the likelihood with respect to
the parameters

* Adjust parameter values, and repeat process
until stopping criterion is reached



log-likelihood

Optimization

Typically we maximize the log-likelihood
because computers find it easier to add
rather than multiply

_ Global maximuh--..._
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iniial condition * In general it is good practice to choose
starting values as close as possible to the
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ldentification



ldentification

. (I;/Ieans that all parameters in a model can be estimated uniquely given the
ata

* A necessary (but not sufficient condition) for identifiability is that you have
the same (or more) observed statistics than parameters you want to
estimate

* |f all parameters in a model are identified, then the model as a whole is
identified

* Even though the model as a whole may be unidentified some parameters
may be identified



ldentified or Not?
(1)0, + 06, =10

(2)0, + 6, =10
0,-0, = 0

(3)0, + 0, = 10
20, +20, = 20



Building Models With Path
Diagrams



Path Diagrams

Path diagrams pictorially represent causal models.
They aid in deriving the variances and
covariances implied by the model.

Observed Variables

O Latent Variables

> Causal Paths

/\ (Co)variance Paths




Path Diagrams

¢1<: X P > Y @var(e)

Y=DbX+e

* Assume variables measured in deviation form
* “b” is a path coefficient
* It quantifies the expected change in Y for every unit change in X is “b”



Path Diagrams- Univariate Regression

var(X)C X b > Y @var(e)

* Y =BX + e (explicit)

 Measurement errorin Y (explicit)

* No measurement error in X (explicit)

* No covariance between X and epsilon (explicit)

e Covariance between X and Y is b*var(X) (explicit)

* Linear relationships between the variables (implicit)
e Multivariate normality (implicit)



Path Diagrams- Univariate Regression

¢1<: X > > Y @var(e)

Structural Equation: Y o bX + e




Path Diagrams- Univariate Regression

C|>1<: X P > Y @var(e)

Structural Equation: Y o bX + e

Observed Covariance Matrix:

VAR(X)  COV(X.Y)

COV(X)Y) VAR(Y)



Path Diagrams- Univariate Regression

C|>1<: X P > Y @var(e)

Structural Equation: Y o bX + e

Observed Covariance Matrix:

VAR(X)  COV(X.Y)

COV(X)Y) VAR(Y)

Number of observed statistics: 3



Path Diagrams- Univariate Regression

¢1<: X P > Y @var(e)

Structural Equation: Y o bX + e

Observed Covariance Matrix: Number of estimated parameters: 3 (¢,, b, var(e))

VAR(X)  COV(X.Y)

COV(X)Y) VAR(Y)

Number of observed statistics: 3



Path Diagrams- Univariate Regression

e

X

Y @var(e)

Structural Equation: Y o bX + e

Observed Covariance Matrix:

VAR(X)  COV(X.Y)

COV(X)Y) VAR(Y)

Number of observed statistics: 3

Number of estimated parameters: 3 (¢,, b, var(e))
Expected/Implied Covariance Matrix:

b, b,

b, b2¢,+var(e)

2(0) =



Path Diagrams

var(e)

G5

®y3




Path Diagrams- Multivariable Regression

Structural Equation:

1
var(e) »\Cbiz o
N 23
X3




Path Diagrams- Multivariable Regression

Structural Equation:

Y=b,X; +b,X, +bX;+e

1
var(e) »\Cbiz o
N 23
X3




Path Diagrams- Multivariable Regression

Structural Equation:

Y=b,X; +b,X, +bX;+e

X 1 Observed Covariance Matrix:
)
bl ¢11 ¢12
1
| ; Y e X, .
"\
var(e) b, 5.,
b3
X3




var(e)

Path Diagrams- Multivariable Regression

X1

)
b1y

X,

)
b,

X3

"\
b33

®y3

Structural Equation:
Y=b,X; +b,X, +bX;+e

Observed Covariance Matrix:

VAR(X,)  COV(X;X;) COV(X;X;)  COV(X,Y)

COV(X,X,)  VAR(X,)  COV(X,X;)  COV(X,Y)

¢13 COV(X3,X;) COV(X3X,)  VAR(X,) COV(Xs,Y)

COV(Y,X,)  COV(Y,X,)  COV(Y,X,) VAR(Y)



Path Diagrams- Multivariable Regression

Structural Equation:
Y=b,X; +b,X, +bX;+e

Observed Covariance Matrix:

X1

)
bl ¢11 cI>12

VAR(X,)  COV(X;X;) COV(X;X;)  COV(X,Y)

COV(X,X,)  VAR(X,)  COV(X,X;)  COV(X,Y)

1
Y ) b X2 $,3 COV(X3,Xy)  COV(X3X;)  VAR(X;) COV(X,,Y)
2

var(e) ) COV(YX;) ~ COV(YX,)  COV(Y,X;)  VAR(Y)
P2 P, Number of observed statistics:
b3
)

CI)33



Path Diagrams- Multivariable Regression

Structural Equation:
Y=b,X; +b,X, +bX;+e

Observed Covariance Matrix:

X1

)
bl ¢11 cI>12

VAR(X,)  COV(X;X;) COV(X;X;)  COV(X,Y)

COV(X,X,)  VAR(X,)  COV(X,X;)  COV(X,Y)

1
Y ) b X2 $,3 COV(X3,Xy)  COV(X3X;)  VAR(X;) COV(X,,Y)
2

var(e) ) COV(YX;) ~ COV(YX,)  COV(Y,X;)  VAR(Y)
P2 b5 Number of observed statistics: 10
b3
)

CI)33



Path Diagrams- Multivariable Regression

Structural Equation:
Y=b,X; +b,X, +bX;+e

Observed Covariance Matrix:

X1

)
bl ¢11 cI>12

VAR(X,)  COV(X;X;) COV(X;X;)  COV(X,Y)

COV(X,X,)  VAR(X,)  COV(X,X;)  COV(X,Y)

1
Y ) b X2 $,3 COV(X3,Xy)  COV(X3X;)  VAR(X;) COV(X,,Y)
2

COV(Y,X,)  COV(Y,X,)  COV(Y, Xs) VAR(Y)
var(e) N
b2 d,; Number of observed statistics: 10
b, Number of estimated parameters:
)

CI)33



Path Diagrams- Multivariable Regression

Structural Equation:
Y=b,X; +b,X, +bX;+e

Observed Covariance Matrix:

X1

)
bl ¢11 cI>12

VAR(X,)  COV(X;X;) COV(X;X;)  COV(X,Y)

COV(X,X,)  VAR(X,)  COV(X,X;)  COV(X,Y)

1
Y ) b X2 $,3 COV(X3,Xy)  COV(X3X;)  VAR(X;) COV(X,,Y)
2

COV(Y,X,)  COV(Y,X,)  COV(Y, Xs) VAR(Y)
var(e) N
b2 d,; Number of observed statistics: 10
b, Number of estimated parameters: 10
)

CI)33



var(e)

Path Diagrams- Multivariable Regression

X1

)
b1y

X,

)
b,

X3

"\
b33

cI>12

®y3

Structural Equation:
Y=b,X; +b,X, +bX;+e

Observed Covariance Matrix:

VAR(X,)  COV(X;X;) COV(X;X;)  COV(X,Y)

COV(X,X,)  VAR(X,)  COV(X,X;)  COV(X,Y)

¢13 COV(X3,X;) COV(X3X,)  VAR(X,) COV(Xs,Y)
COV(Y,X,)  COV(Y,X,)  COV(Y,X,) VAR(Y)

Number of observed statistics: 10

Number of estimated parameters: 10
(bllb21b3l¢1ll¢121¢13l¢221 ¢23I¢33lva r(e))



var(e)

Path Diagrams- Multivariable Regression

X1

)
b1y

X,

)
b,

X3

"\
b33

®y3

Observed Covariance Matrix:

VAR(X,)
COV(X,,X,)

COV(X;,X,)

COV(Y,X,)

COV(Y,X,)

COV(X; X;)  COV(X; X,)
VAR(X,)  COV(X,X;)

COV(X;X,)  VAR(X,)

COV(Y, X,)

Expected Covariance Matrix:

G5

2(0) =

b1

P

13

bid,1+bydy,
+b3d,5

b1

b2

b3

by, b0,
+b3dys

COV(X,Y)
COV(X,,Y)

COV(X,,Y)

VAR(Y)

13

b3

b33

bybss+b b,
+b, 03

by, +b,ds,
+b3d,5

by, b0,
+b3dy;

bybss+b b5
+b,dy3

b.2d,1+b, %D,
+by2b45+2b, by d, +
2b;b3y5+2b,b3d,st
var(e)



Path Diagrams

1 Structural Equations:

Observed Covariance Matrix:

V1 V2 V3 V4
1 1 1
O Number of observed statistics:
™ Ve, Vis V4

Number of estimated parameters:



Path Diagrams- Common Factor Model

1 Structural Equations:

Observed Covariance Matrix:

Number of observed statistics:

Number of estimated parameters:



Path Diagrams- Common Factor Model

1 Structural Equations:
V,;=ANC+E,
V,=AC+E,
Vy=AC+Eg
V,=NCH+E,

Observed Covariance Matrix:

Number of observed statistics:

Number of estimated parameters:



Path Diagrams- Common Factor Model

1 Structural Equations:
V,;=ANC+E,
V,=AC+E,
Vy=AC+Eg
V,=NCH+E,

Observed Covariance Matrix:

VAR(V,)  COV(V,V,)  COV(V,V;)  COV(V,V,)

COV(V,V,)  VAR(V,) COV(V,V;)  COV(V,V,)
> =

COV(V,V,)  COV(V,V,) VAR(V,) COV(V,V,)

COV(V,V,) COV(V,V,)  COV(V, V) VAR(V,)

Number of observed statistics:

Number of estimated parameters:



Path Diagrams- Common Factor Model

1 Structural Equations:
V,;=ANC+E,
V,=AC+E,
Vy=AC+Eg
V,=NCH+E,

Observed Covariance Matrix:

VAR(V,)  COV(V,V,)  COV(V,V;)  COV(V,V,)

COV(V,V,)  VAR(V,) COV(V,V;)  COV(V,V,)
> =

COV(V,V,)  COV(V,V,) VAR(V,) COV(V,V,)

COV(V,V,) COV(V,V,)  COV(V, V) VAR(V,)

Number of observed statistics: 10

Number of estimated parameters:



Path Diagrams- Common Factor Model

1 Structural Equations:
V,;=ANC+E,
V,=AC+E,
Vy=AC+Eg
V,=NCH+E,

Observed Covariance Matrix:

VAR(V,)  COV(V,V,)  COV(V,V;)  COV(V,V,)

COV(V,V,)  VAR(V,) COV(V,V;)  COV(V,V,)
> =

COV(V,V,)  COV(V,V,) VAR(V,) COV(V,V,)

COV(V,V,) COV(V,V,)  COV(V, V) VAR(V,)

Number of observed statistics: 10

Number of estimated parameters: 8
()\1' )\2' )\3' )\4' VEl' VE2' VE3' VE4)



Path Diagrams- Common Factor Model

Observed Covariance Matrix:

VAR(V;)  COV(V,V,)  COV(V,Vy)  COV(V,V,)

COV(V,V,)  VAR(V,)  COV(V,V5)  COV(V,V,)
> =

COV(V,V,) COV(V,V,)  VAR(V,) COV(V3V,)

COV(V,V;)  COV(V,V,)  COV(V,, Vs) VAR(V,)

Expected Covariance Matrix:

A 24V, MA, ANA; MA,
z(e) — AN A+Ve, MAs AA,
A\ Asd, As?+Ves AsA,




Monozygotic Twins

Path Diagrams

Dizygotic Twins




Path Diagrams- Classical Twin Design

Monozygotic Twins Dizygotic Twins

Structural Equations:



Path Diagrams- Classical Twin Design

Monozygotic Twins Dizygotic Twins

Structural Equations:
T1l,,=A;+C, +E Tl,,=A, +C, +E,
T2, =A,+C, +E, T2,,=A,+C, +E,



Path Diagrams- Classical Twin Design

Monozygotic Twins Dizygotic Twins

Number of Observed Variables:



Path Diagrams- Classical Twin Design

Monozygotic Twins Dizygotic Twins

Number of Observed Variables: 3



Path Diagrams- Classical Twin Design

Monozygotic Twins Dizygotic Twins

Observed Covariance Matrices:

VAR(T1,,,) COV(T1,,,T2y,) VAR(T1p,) COV(T1p,T2p,)

- .
COV(T1,,,T2,,,) VAR(T2,,,) COV(T1,,,T2,) VAR(T2p,)

ZMZ



Path Diagrams- Classical Twin Design

Monozygotic Twins Dizygotic Twins

Number of parameters: 3; 0 = (V,, V, V)



Path Diagrams- Classical Twin Design

Monozygotic Twins

Expected Covariance Matrices:

V, +V 4V V,+Vc

zMZ
V,+Vc V,+V 4V

ZDZ

Dizygotic Twins

V+V 4V 72V +V

%V, +V V,+V+V



Path Diagrams- Classical Twin Design

Monozygotic Twins

Expected Covariance Matrices:

aZ+c’+e? a%+c?

zMZ
a%+c? aZ+c’+e?

Dizygotic Twins

a2+c2+e? Yha2+c?

Ysa2+c2 a2+c2+e?



Path Diagrams- Extended Twin Design
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Other Path Models

* Mendelian randomization models
* G-REML models

* Multivariate models

* Models involving feedback loops

* Many, many others...



Deriving Expected Variances and
Covariances Using
Path Tracing Rules



1.

Deriving variances & covariances

|dentify all legitimate chains (a series of paths)
that connect one variable to another (covariances)
or connect a variable back to itself (variances)

The expected value of a chain is the product of all
coefficients associated with each path making up
that chain

The final expected variance or covariance equals
the sum of the values of all legitimate chains



Path Tracing Rules. Legitimate chains:

1. All chains begin by travelling backwards against the
direction of a (single or double-headed) arrow, head to tail.
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3. All chains must include exactly one double-headed arrow.
This implies a chain must change directions exactly once.



Path Tracing Rules. Legitimate chains:

1. All chains begin by travelling backwards against the
direction of a (single or double-headed) arrow, head to tail.

2. Once a double headed arrow has been traversed, the
direction reverses such that the chain travels forward

3. All chains must include exactly one double-headed arrow.
This implies a chain must change directions exactly once.

4. All chains must be counted exactly once and each must be
unique. However, order matters: abc is a distinct chain from
cha.



Path Tracing Example
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Path Tracing Example

COV(HA)=g*a*V,+g*b
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COV(HA)=g*a*V,+g*b*COV,,
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COV(H,A)=g*a*V,+g*b*COV,,
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Path Tracing Example

VAR(G)=x+b *COV,z *a+a*COV,s *b+a*V, *a+b*V,*b




Path Tracing Example

VAR(G) = X + 2*a*b*COV,, + a2*V, + b2*V,
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VAR(H) = g




Path Tracing Example

VAR(H) = g * var(G)




Path Tracing Example

VAR(H) =g *var(G) * g




Path Tracing Example

VAR(H) = g2 * var(G)




Deriving Expected Variances and
Covariances Using
Covariance Algebra



Rules of Covariance Algebra

CoV(c, X) =0
COV(cX,, X,) = cCOV(X,, X,)
COV(X, + X,, X;) = COV(X,, X;) + COV(X,, X.)

VAR(X,) = COV(X,, X,)



Covariance Algebra Example
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Covariance Algebra Example
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VAR(H) = COV(H, H)
= COV(g*G, g*Q)
=g*g*CoV(G, G)
= g2*VAR(G)




Covariance Algebra Example

H=g*G
G=a*A+b*B
VAR(H) = COV(H, H)
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=g*g*COV(G, G)
= g2*VAR(G)
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