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What is Genomic SEM?

• Similar to ordinary SEM but uses a genetic variance-covariance 
matrix rather than a phenotypic covariance matrix

• The genetic variance-covariance matrix is usually derived from 
the analysis of genome-wide summary statistics data (rather 
than individual level genetic and phenotypic data)

• It uses a different fit function to traditional SEM (Diagonally 
weighted least squares)
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“λ” is Genome-wide inflation factor

Test statistic is distributed under the null:

Problems…



QQ plots

McCarthy et al. (2008) Nature Genetics



Polygenicity vs Type 1 Error

Warrington et al. (2019) Nat Genet



LD Score Regression





How does LD shape association?



How does LD shape association?

LD blocks

Lonely SNPs [no LD]



How does LD shape association?

LD blocks

Lonely SNPs [no LD]

* Causal variants

*
Association

All markers correlated with a causal variant show association



How does LD shape association?

LD blocks

Lonely SNPs [no LD]

* Causal variants

*
Association

Lonely SNPs only show association if they are causal



What happens under polygenicity?

LD blocks

Lonely SNPs [no LD]

* Causal variants

Assuming a uniform prior, we see SNPs with more LD friends 
showing more association

The more you tag, the more likely you are to tag a causal variant



What happens under stratification?

LD blocks

Lonely SNPs [no LD]

* Causal variants

Under pure drift we expect LD to have no relationship to differences in allele frequencies 
between populations



where N=sample size, M=# of SNPs, a=inflation due to confounding, 

h2g is heritability (total obs.) and lj is the LD Score

Bulik-Sullivan et al. Nature Genetics 2015

Yang et al. EJHG 2011

SNP heritability 

Estimating SNP heritability and Controlling Type 
1 Error

Confounders
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Estimating Genetic Covariance by Bivariate LD 
Score Regression

Bulik-Sullivan et al. Nature Genetics (2015)

Genetic covariance

Sample overlap etc



Pervasive Genetic Pleiotropy

Horikoshi et al. Nature (2016)
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GenomicSEM

• Apply structural equation model to estimated genetic covariance 
matrices

– Moves past family-based methods by allowing user to 
examine traits that could not be measured in the same 
sample

• Genomic SEM provides flexible framework for estimating limitless 
number of structural equation models using multivariate genetic 
data from GWAS summary statistics 

– Can be applied to sum stats with varying and unknown 
degrees of overlap



Genomic SEM uses these principles to fit structural equation 
models to genetic covariance matrices derived from GWAS 

summary statistics using 2 Stage Estimation

• Stage 1: Estimate Genetic Covariance Matrix and associated 
matrix of standard errors and their co-dependencies

– We use LD Score Regression, but any method for estimating this 
matrix (e.g. GREML) and its sampling distribution can be used 

• Stage 2: Fit a Structural Equation Model to the Matrices from 
Stage 1



Start with GWAS Summary Statistics for the 
Phenotypes of Interest

• No need for raw data
• No need to conduct a primary GWAS yourself: 

Download them online!
– sumstats for over 3700 phenotypes have been 

helpfully indexed at http://atlas.ctglab.nl/
– sumstats for over 4000 UK Biobank phenotypes are 

downloadable at http://www.nealelab.is/uk-
biobank

http://atlas.ctglab.nl/
http://www.nealelab.is/uk-biobank


Create a genetic covariance matrix, S: an 
“atlas of genetic correlations”

Diagonal elements are
(heritabilities)

Off-diagonal elements are
coheritabilities

Stage 1 Estimation: Multivariable 
LDSC



Stage 1 Estimation: Multivariable 
LDSC

Also produced is a second matrix, V, of 
squared standard errors and the 
dependencies between estimation errors

Diagonal elements are
squared standard errors of
genetic variances and covariances

Off-diagonal elements are dependencies 
between estimation errors used to directly 
model dependencies that occur due to 
sample overlap from contributing GWASs



Genomic SEM
Applications





Model 1: Common Factor Model
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Model 2



Model 3



Example: Partitioning into Maternal and Fetal
Components

Moen et al. Behav Genet (submitted)



Adding SNPs to Genomic SEM



Example: the p factor as a GWAS target
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Add SNP Effects to the “Atlas”

Genetic Covariances
from LDSC

Betas from
GWAS sumstats

scaled to 
covariances
using MAFs



GWAS of a Latent Factor
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• Asks to what extent the effect of the SNP operates through the 

common factor

• 𝜒2 distributed test statistic, indexing fit of the common pathways 

model against independent pathways model
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Estimates of SNP level heterogeneity 
(QSNP)



• 128 lead SNPs

• 27 unique loci not previously identified in 

any of the five univariate GWA studies (   )

• 41 previously significant in a univariate 

study, but not for p-factor (      )

• 1 significant QSNP estimate (*)

Manhattan Plot
Latent Factor



Cognitive 
performance

Educational 
attainment 

Non-cog Cog 

SNP  

GWAS by subtraction
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Partitioning Genetic Effects

Warrington et al. (2021) Nat Commun
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