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What 1s Genomic SEM?

« Similar to ordinary SEM but uses a genetic variance-covariance
matrix rather than a phenotypic covariance matrix

* The genetic variance-covariance matrix is usually derived from
the analysis of genome-wide summary statistics data (rather
than individual level genetic and phenotypic data)

* |t uses a different fit function to traditional SEM (Diagonally
weighted least squares)



Genomic control
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Genomic inflation factor and
Genomic Control

> “N"is Genome-wide inflation factor

A =median{y2, 72,..., 72} 0.455

> Test statistic is distributed under the null:

TN/2“~X21

> Problems...




QQ plots

-
Box 2 | Visualization of genome-wide association data
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LD Score Regression
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LD Score regression distinguishes confounding from
polygenicity in genome-wide association studies

Brendan K Bulik-Sullivan!-?, Po-Ru Loh'+4, Hilary K Finucane*5, Stephan Ripke?3, Jian Yang®,
Schizophrenia Working Group of the Psychiatric Genomics Consortium”, Nick Patterson!, Mark | Daly'-3,

Alkes L Price'** & Benjamin M Neale'

Both polygenicity (many small genefic efiects) and
confounding biases, such as cryplic relatedness and population
strafification, can yield an inflated distribution of test statistics
in genome-wide association studies (GWAS). However, current
methods cannot distinguish between inflation from a true
polygenic signal and bias. We have developed an approach,

L[} Score regression, that quantifies the contribution of each by
examining the relationship between test statistics and linkage
disequilibrium (L), The LD Score regression intercept can

be used to estimate a more powerful and accurate correction
factor than genomic control. We find strong evidence that
polygenicity accounts for the majority of the inflation in test
statistics in many GWAS of large sample size.

Vartants in LD with a causal variant show an elevation In test statistics
In assoctation analysis proportional to thetr LD {measured by r¥) with
the causal variant'-*. The more genetic variation an Index variant
tags. the higher the probability that this index vartant will tag a cawsal
warlant. In contrast, inflation from cryptic relatedness within or
between cohorts** or population stratification parely from genetic
drift will not correlate with LD.

Under a polygenic model, In which effect skzes for varlants are
drawn Independently from distributbons with varlance propor-
tional to 1/((1 — p)), where p is the minor allele frequency (MAF),
the expectad x? statlstic of variant j 1s:

Hlx* |§] = NIt M + Na+1 ()

where N 1= the sample size; M 15 the number of SNPs, such that h%/M
Is the average herttability explained per SNP; @ measures the contribu-
u.unulmxﬂumrdmgblaszs.wd:a:mpﬂc relatedness and population
stratification; and £ = E,r% 1s the LT} Score of varlant j, which mea-

sures the amount of genetﬁ variation tagged by j (a full derivation

of this equation Is provided In the Supplementary Note). This rela-
tionship holds for meta-analyses and also for ascertained studies
of binary phenotypes, in which case % 15 on the ohserved scale.
Consequently, 1f we regress the y2 statistics from GWAS against LD
Score (LD Score regression), the Intercept minis one 1s an estimator
of the mean coniribution of confounding bias to the Inflation In the
test statlstics.

RESULTS

Overview of methods

We estimated LI Scores from the European-ancestry samples in the
100 Genomes Project” (EUR) using an unblased estimator® of r2
with 1-cM windows, singletons excluded (MAF = 0.13%) and no r®
cutoff. Standard ermors were estimated by Jackknifing over blocks of
individuals, and we used these standard errors to correct for attenu-
atlon bias In LI Score regression (that is, the downward bias in the
magnitude of the regression shope that ocours when the regressor 1s
measured nolsily; Online Methods).

For LD Score regresston, we excleded variants with EUR MAF <
1% becase the LD Score standard errors for these vartants were very
high (note that the variants included in LD Score regresslon are a sub-
set of the variants induded 1n LT} Score estimation ). In addition, we
excluded locl with extremely large effect skwes or extensive long-range
LD from all regressions because these loc can be considered outhers
1n such an analysis and would have disproportionate influence on the
regression (Online Methods).

An important conskderation in the estimation of LI} Score s the
extent to which the sample from which LI Score ts estimated matches
the sample for the association study. If there 15 2 mismatch between
the LT Scores from the reference population and the target popalation
used for GWAS, then LI¥ Score regression can be biased In two ways.
First, if LI} Scores in the reference population are equal to LD Scores
In the target population plus mean-zero noise, then the Intercept will
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ANALYSIS

An atlas of genetic correlations across human diseases

and traits

Brendan Bulik-Sullivan'-3%, Hilary K Finucane®, Verneri Anttila!, Alexander Gusev>®, Felix R Day’,
Po-Ru Loh'5, ReproGen Consortium®, Psychiatric Genomics Consortium®, Genetic Consortium for Anorexia
Nervosa of the Wellcome Trust Case Control Consortium 3%, Laramie Duncan', John R B

Nick Patterson’, Elise B Robinson!~, Mark | Daly' -3, Alkes L Price!>5!” & Benjamin M Neale! 10

Identifying genetic correlations between complex traits and
diseases can provide useful etiological insights and halp
prioritize likely causal relationships. The major challenges
preventing estimation of genetic correlation from genome-
‘wide association study (GWAS) data with current methods
are the lack of availability of individual-level genotype data
and widespread sample overlap among meta-analyses. We
circumvent these difficulties by introducing a technique—
cross-trait LD Score regression—for estimating genetic
oorrelation that requires only GWAS summary statistics
and is mot biased by sample overlap. We use this method

o estimate 276 penetic correlations among 24 traits. The
resulis include genetic correlations between anorexia nervosa
and schizophrenia, anorexia and obesity, and educational
attainment and several diseases. These resulis highlight the
power of genome-wide analyses, as there currently are no
significantly associated SNPs for anorexia nervosa and only
three for educational attainment.

Understanding the complex relationships among human traits and
diseases 1s a fundamental goal of epidemiology. Randomized controd-
led trials and longitudina] studles are ime-consuming and expensive,
so many potential risk factors are studied using cross-sectional cor-
relation studies performed for a single time point. Obtaining causal

Program in Medical and Population Genetics, Broad knstitute of MIT and
Harvard, Cambridge, Massachusetts, USA Stanley Certer for Peychiatric
Genetics, Broad Instituie of MIT and Hanvard, , Mas=achameits, USA.
hnalytic and Translational Genetics Unit, Wimsachusatis Geeral Hospital
deam!d HaicalSchonl Bosion, Mamsachusetts, USA. "I:an'tmstcﬂ
h Institute of Techna

LISA.’D:prhnurl of Epidemiclogy, Harerd T.H. Chan Schoal of Public Health,
Bosion, Massachusetts, USA SDepartment of Biostatistics, Harvard TH. Chan
Schoal of Public Health, Boston, Massachusetis, USA. “Medical Research
‘Council (MRC] Epidemiclogy Unit, University of Camiwidge School of Clinical
Medicine, mstitube of Metabolic Science, Biomedical Campus,
‘Cambridge, UK. 3 full list of members and affiliations appears in the

Mate. TThess authors contributed equally to this work.
10These authors jointhy supervised this work. Comespondence should be
aidreond to BLE.-5. (bulis@bradinstitute.orgl, B.M.M. Cneale@bnodinstihube o,
HUCF. Chilaryf@mit.edu) or A.LP. (aprice@hsph. harvard. edu).

Recrived 2 February; accepted 26 August; published online 28 September 2015;
dai:10. 103Bing. 2406

inferences from such studies can be challenging because of 1ssues
such as confounding and reverse causation, which can lead to spurl-
ous assoctations and mask the effects of real risk factors'2, Genetics
can help eluctdate cauese and effect, as inhertted genetic risks cannot
be subject to reverse causation and are correlated with a smaller list
of confounders.

The first methosds to test for genefic overlap were family studies®7.
To estimate the genetic overlap for many patrs of phenotypes, family
study desigms require the measurement of multiple traits for the same
Individuals. Consequently, 1t 1s challenging to scale these designs to
a large number of traiis, especially tralts that are difficult or costly
to measure {for example, low-prevalence diseases). Maore recently,
GWAS have allowed effect size estimates to be obtained for specific
genetic varlants, so 1t s possible to test for shared genetics by looking
for correlations In effect sizes across traits, which does not require
measuring multiple tralis per individual.

There exisis a large class of methods for Interrogating genetlc over-
lzp via GWAS that focus only on genome-wide significant SMPs. One
of the most Influential methods in this cdlass is Mendelian mndomiza-
tion, which uses significantly assoctated SNPs 2s Instrumental varl-
ables to attempt to quantify causal relatbonships between risk factors
and diseasel?. Methods that focus on significant SNPs are effective for
tralts where there are many significant assoclations that account for a
substantial fraction of heritability®? . For many complex. traits, herit-
ability Is distributed over thousands of varlants with small effects, and
the proportion of heritability accounted for by significantly assoctated
varlants at current sample skzes Is small'®. In sich situations, one can
often obtaln more accurate results by using genome-wide data rather
than data for only significantly assoctated varlants!!

A complementary approach 1s to estimate genetlc correlation,
which considers the effects of all SNPs, incheding those that do not
reach genome-wide significance {Online Methods). The two main
exlsting technbques for estimating genetlc correlation from GWAS
data are restricted maximum likelthood (REML)!!-16 and polygenic
scorest” 1%, These methods have only been applied to a few traits
because they require individual-level genotype data, which are dif-
ficult to obtain owing to Informed consent Dmitatlons.

To overcome these lmitations, we have developed a technigue for
estimating genetic correlation using only GWAS summary statlstics
that Is not biased by sample overap. Our method, cross-trait LD Score
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| Lonely SNPs [no LD]
LD blocks

% Causal variants

LD Score regression distinguishes confounding
from polygenicity in genome-wide association
studies

N u Loh, Hilary K Finucane, Stephan Ripke, Jian Yang,

Schizophrenia Working Group of the Psychiatric Genomics Consortium, Nick Patterson,

—_—

—_

Association

All markers correlated with a causal variant show association



LD Score regression distinguishes confounding

I LOnely S N PS [nO LD] from polygenicity in genome-wide association

studies
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Association

Lonely SNPs only show association if they are causal



LD Score regression distinguishes confounding
I LOnely S N PS [nO LD] from polygenicity in genome-wide association

L.D blocks o

% Causal variants

e L

Assuming a uniform prior, we see SNPs with more LD friends
showing more association

The more you tag, the more likely you are to tag a causal variant




| Lonely SNPs [no LD]

LD blocks

% Causal variants

LD Score regression distinguishes confounding
from polygenicity in genome-wide association
studies
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Under pure drift we expect LD to have no relationship to differences in allele frequencies

between populations




Estimating SNP heritability and Controlling Type
1 Error

Confounders \ __— SNP heritability
h2
ihl

E|x7] =1 +|Naf+ Y

where N=sample size, M=# of SNPs, a=inflation due to confounding,
h=g is heritability (total obs.) and | is the LD Score

l-=z 4 E
! kej

Bulik-Sullivan et al. Nature Genetics 2015
Yang et al. EJHG 2011
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Simulated Polygenic Architecture
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Estimating Genetic Covariance by Bivariate LD
Score Regression

More precisely, under a polygenic modelll-13] the expected value

of zyjz;;for a SNP jis _— Genetic covariance

Elzjz20;] = S+ o
e Mo YNNG T Sample overlap etc

where N; is the sample size for study i, Q¢ is the genetic covari-
ance (defined in the Online Methods), fj is the LD Scorel?, N is
the number of individuals included in both studies and 2 is the
phenotypic correlation among the Ng overlapping samples. We

Bulik-Sullivan et al. Nature Genetics (2015)
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Genomic SEM
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GenomicSEM

* Apply structural equation model to estimated genetic covariance
matrices

— Moves past family-based methods by allowing user to

examine traits that could not be measured in the same
sample

* Genomic SEM provides flexible framework for estimating limitless
number of structural equation models using multivariate genetic
data from GWAS summary statistics

— Can be applied to sum stats with varying and unknown
degrees of overlap



Genomic SEM uses these principles to fit structural equation
models to genetic covariance matrices derived from GWAS
summary statistics using 2 Stage Estimation

e Stage 1: Estimate Genetic Covariance Matrix and associated
matrix of standard errors and their co-dependencies

— We use LD Score Regression, but any method for estimating this
matrix (e.g. GREML) and its sampling distribution can be used

e Stage 2: Fit a Structural Equation Model to the Matrices from
Stage 1



Start with GWAS Summary Statistics for the
Phenotypes of Interest

e No need for raw data

* No need to conduct a primary GWAS yourself:
Download them online!

— sumstats for over 3700 phenotypes have been
helpfully indexed at http://atlas.ctglab.nl/

— sumstats for over 4000 UK Biobank phenotypes are

downloadable at http://www.nealelab.is/uk-
biobank

CHR SNP BP A1 A2 1INFO OR SE P Nca Nco MAF
8 rs62513865 101592213 T C 0.957 1.01461 0.0153 0.3438 59851 113154 0.07330
8 rs79643588 106973048 999 1.02122 0.0136 ©.1231 59851 113154 0.09200
8 rsl17396518 108690829 80 1.00331 0.0080 ©0.6821 59851 113154 0.43500
8 rs6994300 102569817 66 0.88126 0.4243 0.7658 16823 25632 0.00556
8 rs138449472 108580746 34 0.97181 0.0598 0.6320 41253 79756 0.00852
8 rs983166 108681675 91 0.99144 0.0080 @.2784 59851 113154 ©.43200

> > > - >

G 0.
G 0.9
G 0.4
G 0.7
C 0.9


http://atlas.ctglab.nl/
http://www.nealelab.is/uk-biobank

Stage 1 Estimation: Multivariable
LDSC

Create a genetic covariance matrix, S: an
“atlas of genetic correlations”

Diagonal elements are
(heritabilities)

5
h,
2
o o JP (A
2
_O-gl,gk O-gZ,gk h;’f B

Off-diagonal elements are
coheritabilities



Stage 1 Estimation: Multivariable
LDSC

Also produced is a second matrix, V, of
squared standard errors and the
dependencies between estimation errors

[ SE(RY) Diagonal elements are
cov(l',0y42) SE(Opg)’ squared standard errors of
' SE.. .Y’ genetic variances and covariances
SE(h)
SE(0,; )
SE(h)” |

Off-diagonal elements are dependencies
between estimation errors used to directly
model dependencies that occur due to
sample overlap from contributing GWASs



Genomic SEM
Applications



Genetic Correlation Matrix

mood

mood

misery

irritability

irritability

hurt

fedup

nervous

nervous

worry

tense

embarass

embarass

nerves

lonely

guilt

-0.1 0.01 0.12 0.23 0.34 0.45 0.56 0.67 0.78 0.89 1



Model 1: Common Factor Model

chisq df p_chisq AIC CFI SRMR
4884.104 54 @ 4932.104 0.8933184 0.1095286

/

73 (.03) .78(.03)

69 (.03) \.71 (03) \
80 (.03) 79 (.Mﬁ
1 1
: \_/

& > =

28(02)  .43(02) .35(03) 33 (.02) 46 (.03) 39 (.02) 36 (.03) 52 (.03) 37(03) .50 (.04) 37 (.03)

1 1

©O~(1)
020



Model 2

chisq df p_chisq AIC CFI SRMR
2758.176 53 @ 2808.176 @.9402513 0.0766612
76 (.02)

.93 (.02) .82 (.03) 87 (.03) .86 (.03)

78 (.03) .88(.02) .82(.03) .86(.03)
91 (.03) 76 (.03) jS (:03) i 86 (.03)
1 1 1 1 1 1 1 1 1 1 1 1

13 (.02) 18(.02) 39 (.03) 23(.02)  .42(.04) 33(.03) 24 (.03) 44.(.03) 33(.03) 26 (.03) 26 (.03) 26 (.03)




Model 3

chisq df p_chisq AIC CFI SRMR
1879.308 51 @ 1933.308 ©.9596185 0.05733665
67 (.03)

73 (.02) 84 (.02)

90 (.03)

97 (.02) 85 (03)

87(.03) 77 (03)

.80 (.04) 91(.02) 89(.03) .90 ( 03)
94 (.03) 78 (.03) .89 (.03)
1 1 1 1 1 .

06 (:02) 13.(.02) 37 ¢ 03) 17 (02)  .38(.03) 25(.03) 2102 41 (.03) 27 (.02) 20 (.02) 19 (. 03) 18 (.03)




Example: Partitioning into Maternal and Fetal
Components

OBw-sBP_M

Offspring

Offspring Own SBP

SBP
BW latent latent U |latent
: i SBP-SBP
variable variable - variable

Opw_M-sBP

Opw_M-SBP_M
1

Offspring
birthweight

Own birthweight Own SBP Offspring SBP

Moen et al. Behav Genet (submitted)



Adding SNPs to Genomic SEM



Example: the p factor as a GWAS target

The American Journal of

Psychiatr

Mechanisms of Psychiatric lliness

175" Year of Publication

All for One and One for All: Mental Disorders in
One Dimension

Avshalom Caspi, Ph.D., Terrie E. Moffitt, Ph.D.

Clinical Psychological Science

The p Factor: One General Psychopathology cu. i

© The Author(s) 2013
- - - Reprints and permissions:
Factor in the Structure of Psychiatric sagepulscomyjourmalsPermissions nav
DOI: 10.1177/2167702613497473
Disorders?

cpx.sagepub.com
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Common Factor Model

Genetic Correlation Matrix

SCZ
scz .53 (.08)
- 29 (.09)
PTSD
1 1
ANX > = =
: — 26 (.11) 35 (.11) 79 (.07) 91 (.44) 71 (:36)

0 0.110.220.330.440.550.660.77 0.88 0.99 1.1



Add SNP Effects to the “Atlas”

2

OsNp

hf Genetic Covariances
, from LDSC

OsNP,g2 Og1,02 h;

OSNP,gl

SFuH: 5
OsNp,g3 Tg1,53 02,03 h;
c e h2
GSNP,gk O-gl,gk O-gZ,gk g3,gk k
Betas from
GWAS sumstats
scaled to

covariances
using MAFs



GWAS of a Latent Factor

Genetic Correlation Matrix
—————————————— »’ 998 (.049)
.53 (.08)

29 (.09)
46 (.04) \

N \_/

26 (.11) 35 (.11) 79 (.07) 91 (.44) 71 (.36)

-
e T T T T T T

86 (.06)
7

81 (.06)




Estimates of SNP level heterogeneity

(Qsnp)

* Asks to what extent the effect of the SNP operates through the
common factor

« y2 distributed test statistic, indexing fit of the common pathways
model against independent pathways model
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Manhattan Plot
Latent Factor

« 128 lead SNPs
27 unique loci not previously identified in
any of the five univariate GWA studies‘)
: » 41 previously significant in a univariate
study, but not for p-factor (@ )

i « 1 significant Qgyp estimate ()
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GWAS by subtraction

/1Cog—CP /1Non—cog—EA

y

Cognitive Educational
performance attainment

—




Partitioning Genetic Effects

Maternal Offspring
latent latent
variable variable

Birth weight Own birth
of offspring weight

Warrington et al. (2021) Nat Commun
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