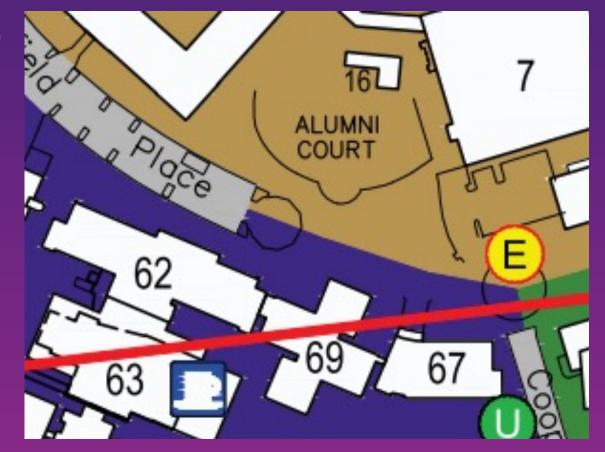

Acknowledgement of Country

The University of Queensland (UQ) acknowledges the Traditional Owners and their custodianship of the lands on which we meet.

We pay our respects to their Ancestors and their descendants, who continue cultural and spiritual connections to Country.

We recognise their valuable contributions to Australian and global society.


General Information:

• We are currently located in Building 69

Emergency evacuation point

- Food court and bathrooms are located in Building 63
- If you are experiencing cold/flu symptoms or have had COVID in the last 7 days please ensure you are wearing a mask for the duration of the module

Data Agreement

To maximize your learning experience, we will be working with genuine human genetic data, during this module.

Access to this data requires agreement to the following in to comply with human genetic data ethics regulations

Please email <u>pctgadmin@imb.uq.edu.au</u> with your name and the below statement to confirm that you agree with the following:

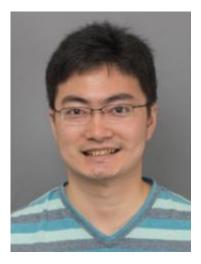
"I agree that access to data is provided for educational purposes only and that I will not make any copy of the data outside the provided computing accounts."

For non-UQ attendees, you are provided with a registration instruction for a guest account (A4 paper).

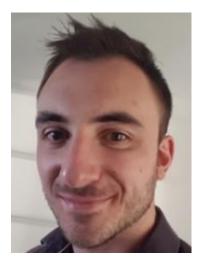
After you have completed the online registration, use the provided Username and the Password that you set to log into the desktop.

Cluster Access

- You have all been provided with login details to computing resources needed for the practical component
- An SSH terminal is needed to connect to the computing:
 - Windows: Install PuTTY
 - Hostname: as provided (203.101.228.xxx)
 - User: as provided
 - Check Connection > SSH > X11 > Enable X11 forwarding
 - Mac/Linux: Use the terminal
 - ssh -X <user>@203.101.228.xxx
- If interactive R plotting does not work on your machine, you can generate plot on the server and then download
 - Windows: use WinSCP -> enter login information
 - Or use Command Prompt -> sftp <user>@203.101.228.xxx
 - get xxx.pdf and the file will be in your user directory


Module 4 Quantitative Genetics

Room 304, Building 69


Slides and Practical notes:

https://cnsgenomics.com/data/teaching/GNGWS22/model4/

Teaching Team

Jian Zeng

Loic Yengo

Valentin Hivert

Kathryn Kemper

Huanwei Wang

Guest Lecturers

Prof. Naomi Wray

Prof. Ben Hayes

	Lecture 1: Introduction to polygenic prediction. We will introduce	
9-9:30am	the concept, applications, and perspective of polygenic prediction	Naomi Wray
	for complex traits and common diseases.	(Guest Lecturer)
	Practical 1: Calculation of polygenic scores using C+PT. Software: R	
9:30-9:50am	and PLINK.	Jian Zeng
9:50-10am	Break	
10-10:30am	Lecture 2: Prediction accuracy and pitfalls. We will introduce the	
	criteria and methods to assess the prediction accuracy in	Huanwei Wang
	quantitative and disease traits, and discuss factors affecting	
	prediction accuracy as well as traps and pitfalls when conducting	
	prediction analysis.	
10:30-10:50am	Practical 2: Calculation of prediction accuracy and demonstration	
	for Winner's curse in in-sample prediction. Software: R.	Huanwei Wang
10:50-11am	Break	
11-11:30am	Lecture 3: Best linear unbiased prediction (BLUP). We will	
	introduce mixed linear model, genomic relationship matrix (GRM),	Jian Zeng
	and two equivalent models for BLUP prediction.	
11:30-11:50am	Practical 3: Calculation of GRM and solving BLUP equations.	Jian Zeng
	Software: R and GCTA.	5
11:50am-12pm	Questions and discussions	
12-1pm	Lunch break	
	Lecture 4: Bayesian methods for genomic prediction (30min). We	Den Hauss (Cuest
1-1:30pm	will introduce BayesA, B, C and R methods for genomic prediction	Ben Hayes (Guest Lecturer)
	and the properties of these methods.	Lecturer)
1:30-1:50pm	Practical 4: Application of Bayesian methods to simulated data.	Jian Zeng
	Software: R and GCTB.	Jian Zeng
1:50-2pm	Break	
2-2:30pm	Lecture 5: Summary-data-based methods for polygenic	
	prediction. We will introduce the variations of BLUP and Bayesian	Jian Zeng
	methods that only require GWAS summary statistics.	
2:30-2:50pm	Practical 5: Application of summary-data-based methods to	Jian Zeng
	simulated data. Software: R, GCTA and GCTB.	
2:50-3pm	Break	
3-3:30pm	Lecture 6: Additional sources of information to improve	
	prediction within and between ancestries. We will introduce	Loic Yengo
	methods that integrate genome variations with other sources of	
	information, including family history, biomarkers or covariates, and	
	functional genomic annotations, and discuss challenges in trans-	
2.20 2.5000	ancestry prediction. Practical 6. Software: R and PLINK	Lois Vonco
3:30-3:50pm		Loic Yengo
3:50-4pm	Questions and discussions	

Day 2 (June 24 th	Friday): Heritability Estimation	
9-9:30am	Lecture 7: Methods for variance estimation. We will introduce two classes of methods for variance estimation, ANOVA and REML, and discuss their pros and cons.	Jian Zeng
9:30-9:50am	Practical 7: Comparison between ANOVA and REML estimations using a sire model. Software: R.	Jian Zeng
9:50-10am	Break	
10-10:30am	Lecture 8: Heritability and GREML. We will introduce the concept of pedigree-based heritability and SNP-based heritability, discuss the difference between them, and the commonly used methods for estimation, including Haseman–Elston regression and Genomic REML (GREML).	Kathryn Kemper
10:30-10:50am	<i>Practical 8: Estimation of heritability using HE regression and GREML</i> . Software: R and GCTA.	Kathryn Kemper
10:50-11am	Break	
11-11:30am	Lecture 9: Heritability estimation for diseases. We will introduce the liability threshold model for conceptualising and estimating the heritability of diseases.	Loic Yengo
11:30-11:50am	Practical 9: Estimation of heritability at liability scale. Software: R.	Loic Yengo
11:50am-12pm	Questions and discussions	
12-1pm	Lunch break	
1-1:25pm	Lecture 10: Non-additive genetic variance and genetic correlation between traits. We will introduce the concept of non-additive genetic variance and genetic correlation between traits, and methods to estimate the variance components and genetic correlation.	Valentin Hivert
1:25-1:45pm	Practical 10: Estimation of dominance variance component and genetic correlation. Software: R and GCTA.	Valentin Hivert
1:45-1:50pm	Break	
1:50-2:15pm	Lecture 11: Heritability estimation using summary-data-based methods and genome partitioning. We will introduce LD score regression, a family of methods that only requires GWAS summary statistics for heritability estimation, genome partitioning and genetic correlation estimation.	Loic Yengo
2:15-2:35pm	Practical 11: Estimation of heritability using LD score regression. Software: R and Idsc.	Loic Yengo
2:35-2:40pm	Break	
2:40-3:05pm	Lecture 12: Evolutionary forces influencing genetic variance. We will introduce key concepts in population genetics about quantifying genetic variance within and between populations, including Fst, Qst, impact of genetic drift and natural selection on genetic variance.	Valentin Hivert
3:05-3:25pm	Practical 12. Software: R and slim.	Valentin Hivert
3:25-3:30pm	Break	
3:30-3:45pm	Lightning talks about our research	3min/speaker
3:45-4pm	Summary and questions	All speakers