

Lecture 10 : Estimation of Non-Additive Genetic Variance and Genetic Correlation

Genetics & Genomics Winter School

Valentin Hivert

contact: v.hivert@imb.uq.edu.au

Institute for Molecular Bioscience

Part I: Estimation of non-additive genetic variance

$$Y = G + E$$

 $\alpha = a$

4

$$Y = G_A + E$$

Assuming an additive model, we have:

$$Y = \mu + \sum_{j} w_{A(j)} \alpha_j + e$$

With $w_{A(j)} = \frac{x_{A(j)} - 2p_j}{\sqrt{2p_j(1 - p_j)}}$

$$Var(Y) = \Theta_A \sigma_A^2 + I \sigma_e^2$$

With Θ_A the additive Genomic Relationship Matrix (GRM).

We can estimate
$$h_{SNP}^2 = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_e^2}$$
 using GREML or HE regression in GCTA.

The total genetic variance of a trait can be partitioned into additive, dominance and epistatic variance:

$$Var(Y) = \Theta_A \sigma_A^2 + \Theta_D \sigma_D^2 + \Theta_{AA} \sigma_{AA}^2 + \dots + I \sigma_e^2$$

Arbitrarily assigned genotypic values (i.e., trait means per genotype class)

Falconer Shiny App: https://shiny.cnsgenomics.com/Falconer2/

The total genetic variance of a trait can be partitioned into additive and dominance variance:

$$Var(Y) = \Theta_A \sigma_A^2 + \Theta_D \sigma_D^2 + I \sigma_e^2$$

- Many effort to characterize non-additive genetic effect from twin studies, BUT confounding effect with shared environmental factors
- Zhu *et al.* (2015) proposed to estimate dominance variance from a sample of unrelated individuals

Zhu Z. et al. Dominance genetic variation contributes little to the missing heritability for human complex traits. AJHG (2015)

The total genetic variance of a trait can be partitioned into additive and dominance variance:

$$Var(Y) = \Theta_A \sigma_A^2 + \Theta_D \sigma_D^2 + I \sigma_e^2$$

- $\Theta_A = G$ is the additive Genomic Relationship Matrix (GRM)
- Θ_D is the dominance GRM where the dominance genetic relatedness between two individuals j and k is computed as:

$$\pi_{D(jk)} = \frac{1}{m} \sum_{i} \frac{(x'_{D(ij)} - 2p_i^2)(x'_{D(ik)} - 2p_i^2)}{4p_i^2(1 - p_i)^2}, \text{ with } x'_D = 0, 2p, 4p - 2 \leftarrow \text{ensure the orthogonality of the model}$$

gcta ——bfile input_file ——make—grm—d ——out dominance_grm

The total genetic variance of a trait can be partitioned into additive, dominance and epistatic variance:

$$Var(Y) = \Theta_A \sigma_A^2 + \Theta_D \sigma_D^2 + \Theta_{AA} \sigma_{AA}^2 + I \sigma_e^2$$

We aim at estimating :

- $h_{SNP}^2 = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_D^2 + \sigma_e^2}$
- $\delta_{SNP}^2 = \frac{\sigma_D^2}{\sigma_A^2 + \sigma_D^2 + \sigma_e^2}$

Haseman-Elston regression (OLS) and REML analysis using GCTA software

Assume a sample of unrelated individuals in an outbred population: $G_{ij} \sim \mathcal{N}(0, Var(G_{ij}))$

Visscher et al. (2014) showed that under OLS:

$$Var(\hat{h}_{SNP}^2|OLS) \simeq \frac{2}{N^2 Var(G_{ij})}$$

Visscher & Goddard (2015) showed that for REML estimation:

$$Var(\hat{h}_{SNP}^2 | REML) \simeq \frac{2}{NVar(\lambda_G)} \simeq \frac{2}{N^2 Var(G_{ij})}$$

Visscher, P.M. *et al.* Statistical Power to Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples. *PLoS Genetics* (2014) Visscher, P.M. & Goddard, M.E. A general unified framework to assess the sampling variance of heritability estimates using pedigree or marker-based relationships. *Genetics* (2015)

Applications

Summary	result	of REML	analysis	:
Source	Varianc	e	SE	
V(G1)	0.42395	9	0.08631	2
V(G2)	-0.0623	31	0.10766	1
V(e)	0.34810	4	0.13447	2
Vp	0.70973	2	0.01856	0
V(G1)/V	0	0.5973	51	0.118408
V(G2)/V	0	-0.0878	323	0.151827
Sum of \	V(G)/Vp	0.50952	28	0.190842

$$Var(\hat{\delta}_{SNP}^2) \simeq \frac{2}{N^2 Var(\Theta_{D_{ij}})}$$

Zhu Z. et al. Dominance genetic variation contributes little to the missing heritability for human complex traits. AJHG (2015)

Applications

Humans

Sugarcane

Part II: Genetic Correlation between two traits

• What is the proportion of variance that two traits share due to genetic causes?

Slide from Dr Jian Zeng

Bivariate GREML analysis to estimate genetic correlation in unrelated individuals

gcta64 --reml-bivar --grm test --pheno test.phen --out test

$$y_{1} = X_{1}b_{1} + g_{1} + e_{1}$$

$$y_{2} = X_{2}b_{2} + g_{2} + e_{2}$$

$$V = var \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} G_{1}\sigma_{g1}^{2} + I\sigma_{e1}^{2} & G_{12}\sigma_{g1g2} + I\sigma_{e1e2} \\ G_{12}\sigma_{g1g2} + I\sigma_{e1e2} & G_{2}\sigma_{g2}^{2} + I\sigma_{e2}^{2} \end{bmatrix}$$

For traits measures on different samples

$$V = var \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} G_1 \sigma_{g1}^2 + I \sigma_{e1}^2 & G_{12} \sigma_{g1g2} \\ G_{12} \sigma_{g1g2} & G_2 \sigma_{g2}^2 + I \sigma_{e2}^2 \end{bmatrix}$$

Lee *et al.* Estimation of pleiotropy between complex diseases using SNP-derived genomic relationships and restricted maximum likelihood. *Bioinformatics* (2012)¹⁶

Bivariate GREML analysis to estimate genetic correlation in unrelated individuals

Sampling variance of \hat{r}_{g} for traits measured on the same sample:

$$Var(\hat{r_g}) \approx \frac{(1 - r_g r_p)^2 + (r_g - r_p)^2}{h_{G_1}^2 h_{G_2}^2 N^2 Var(G_{ij})}$$

Sampling variance of \hat{r}_{g} for traits measured on different samples:

$$Var(\hat{r}_{g}) \approx \frac{r_{g}^{2}(N_{1}^{2}h_{G1}^{4} + N_{2}^{2}h_{G2}^{4}) + 2h_{G1}^{2}h_{G2}^{2}N_{1}N_{2}}{2h_{G1}^{4}h_{G2}^{4}N_{1}^{2}N_{2}^{2}Var(G_{ij})}$$

Visscher, P.M. *et al.* Statistical Power to Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples. *PLoS Genetics* (2014)¹⁷

a Precision of genetic correlation estimates

b Power to detect non-null genetic correlations

Van Rheenen, W. et al. Genetic correlations of polygenic disease traits: from theory to practice. Nat Rev (2019)

19

Estimating genetic correlation between traits measured on different samples

Source VarianceSE $0.35 - 1.440557$ HeritabilitiesCoheritabilitiesV(G)_tr18.7049611.440557 $0.30 - 1.440577$ $0.30 - 1.440577$ $0.30 - 1.440577$	
Source Variance SE V(G)_tr1 8.704961 1.440557 0.30 -	
V(G)_tr1 8.704961 1.440557 0.30 -	
V(G)_tr2 31.130274 5.619958	
$C(G)_{tr12}$ 0.050401 2.073481	
V(e)_tr1 14.838636 1.404844 😽 0.20 -	
V(e)_tr2 61.047385 5.512983	
$C(e)_{tr12}$ 12.059304 2.036266 $= 0.15$	
$Vp_tr1 23.543596 0.433530 0.10 - 0.$	
Vp_tr2 92.177659 1.695391	
V(G)/Vp_tr1 0.369738 0.059975	
V(G)/Vp_tr2 0.337720 0.059952	
rG 0.003062 0.125778	
logL -28744.199 -0.05 -	1
n 11980 10	
	우
	ġ
	A-0
	SI

Lee et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet (2013)

Estimating genetic correlation between traits measured in different populations (e.g. ancestries, breeds)

Brown et al. (2016) introduced the genetic impact correlation, the correlation between the standardized effect sizes in two populations.

 $\rho_{gi} = \operatorname{Cor}(\sigma_1\beta_1, \sigma_2\beta_2).$

With $\sigma_i = \sqrt{2p_i(1-p_i)}$ with p_i the allele frequencies in population i.

→ Implemented in the Python package Popcorn.

Brown et al. Transethnic Genetic-Correlation Estimates from Summary Statistics. AJHG (2016)

Practical 10: Use GCTA GREML to perform 1) the joint estimation of additive and dominance variance in a trait, and 2) the estimation of genetic correlation between two traits

CRICOS code 00025B