Use and Interpretation of LD Score Regression

Brendan Bulik-Sullivan

bulik@broadinstitute.org

PGC Stat Analysis Call

Outline of Talk

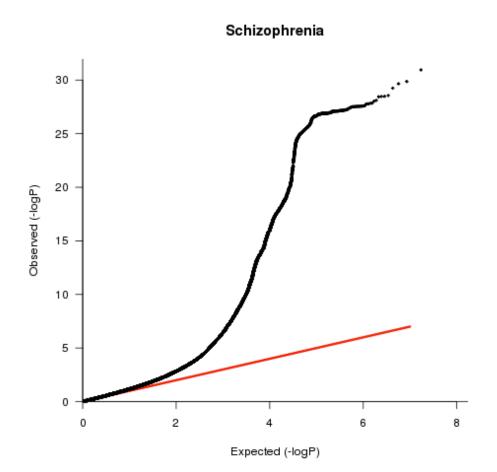
- Intuition, Theory, Results
 - LD Score regression intercept: distinguishing polygenicity from population stratification
 - Genetic correlation from summary statistics
- What can LD Score Regression do for you?
 - Practical advice on using LD Score in day-to-day
 GWAS analysis
- Useful links at the end

LD Score Regression Intercept

Distinguishing Polygenicity from Population Stratification

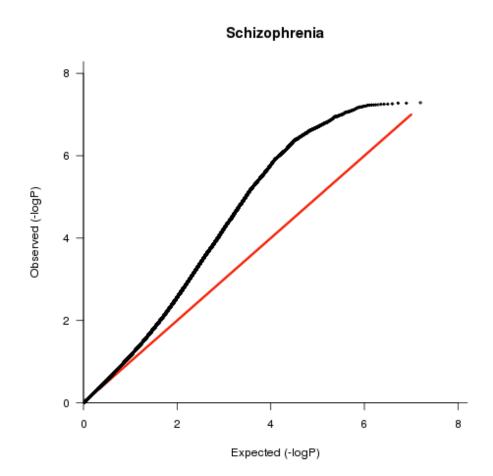
Test Statistic Inflation

Genome-wide distribution of test statistics from large GWAS deviate strongly from the null

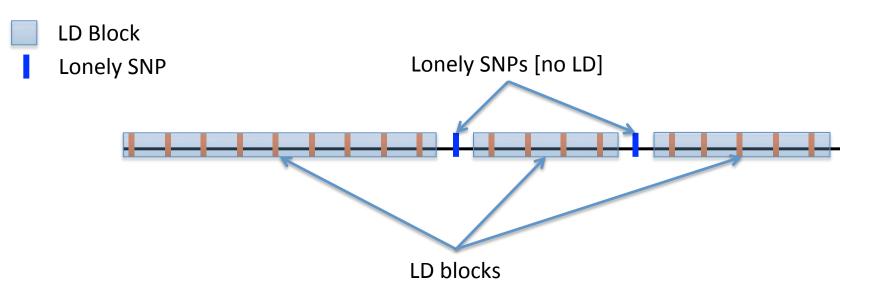


Test Statistic Inflation

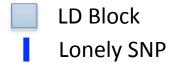
Even when all gwas loci (+/- 1 MB, 10MB for MHC) removed

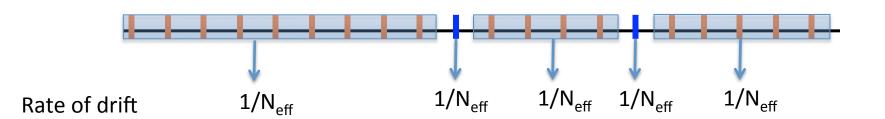


Toy Illustration of Genome



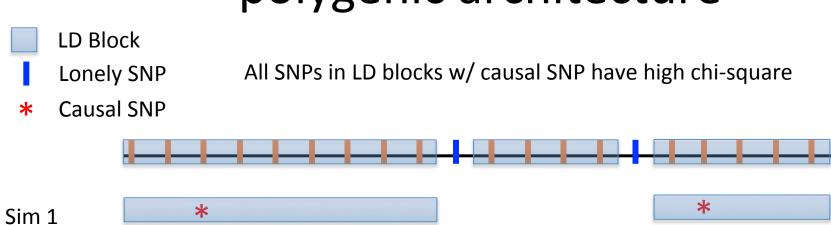
What happens under genetic drift?



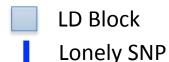


Under pure drift, LD is uncorrelated to magnitude of allele frequency differences between populations

Simulation of a genetic signal in polygenic architecture

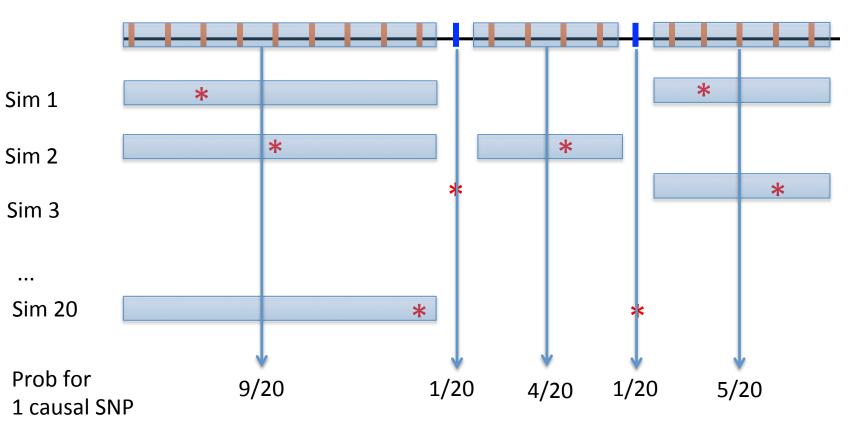


Simulation of a genetic signal in polygenic architecture

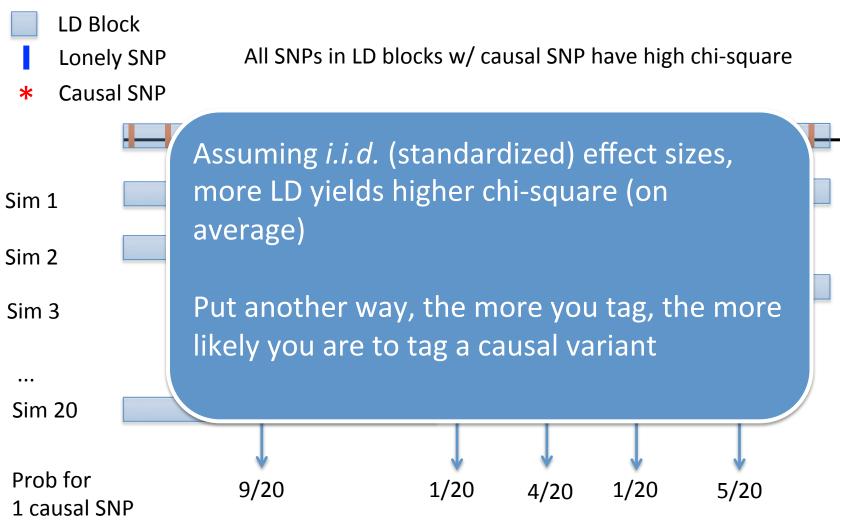


All SNPs in LD blocks w/ causal SNP have high chi-square

Causal SNP

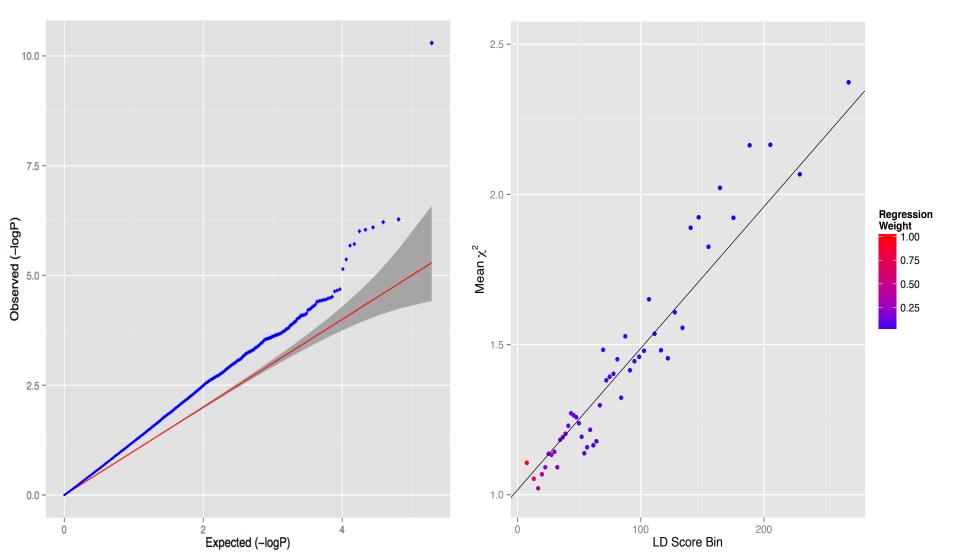


Simulation of a genetic signal in polygenic architecture



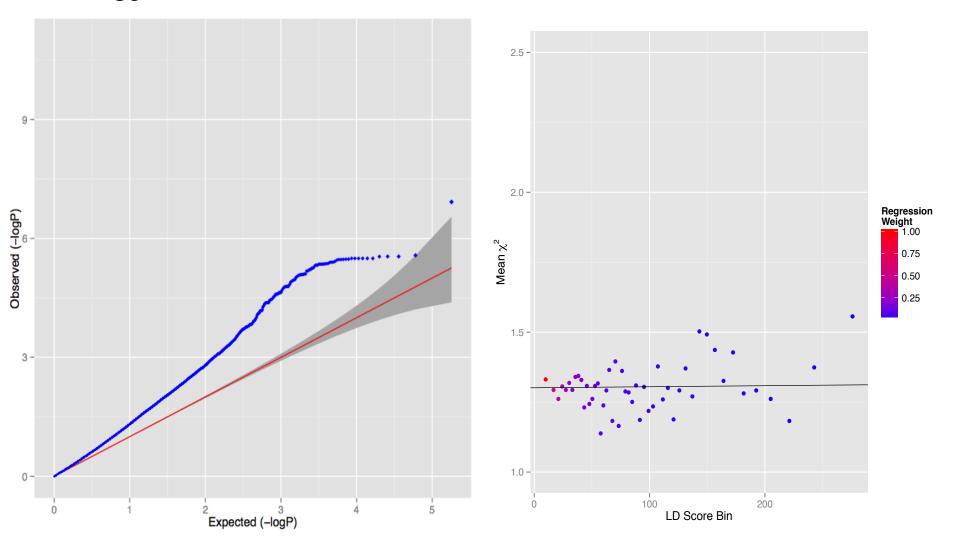
Simulated Polygenicity

• λ_{GC} = 1.30; LD Score Regression intercept = 1.02



Simulated Pop Strat (Sweden vs UK)

• λ_{GC} = 1.30; LD Score Regression intercept = 1.32



PGC Schizophrenia

- $\lambda_{GC} = 1.48$
- Intercept = 1.06
- p-value < 10^{-300}

Overwhelming majority of inflation is consistent with polygenic architecture



LD Score Regression

Regress χ2 statistics against LD Score

$$E[\chi^2 | \ell_j] = Nh^2 \ell_j / M + Na + 1$$

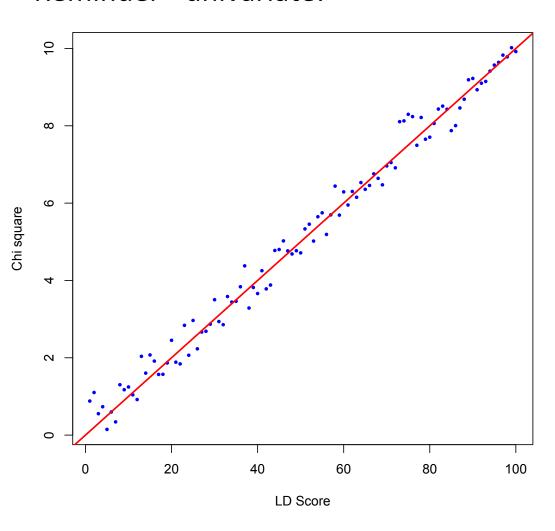
- LD Score (L_j) is a property of SNP j, defined as sum r^2 , estimated as sum r^2 w/ all other SNPs a 1cM window.
- N is sample size.
- M is # SNPs.
- h² is SNP-heritability.
- a is inflation from pop strat/cryptic relatedness.

LD Score Results

- Applied to > 20 GWAS
 - Almost all inflation due to polygenicity.
 - LD Score intercept $< \lambda_{GC}$ in all studies.
- Conclusions:
 - PCA / mixed models mostly appear to work.
 - Genomic control (dividing all $\chi 2$ statistics by λ_{GC}) is unnecessarily conservative.

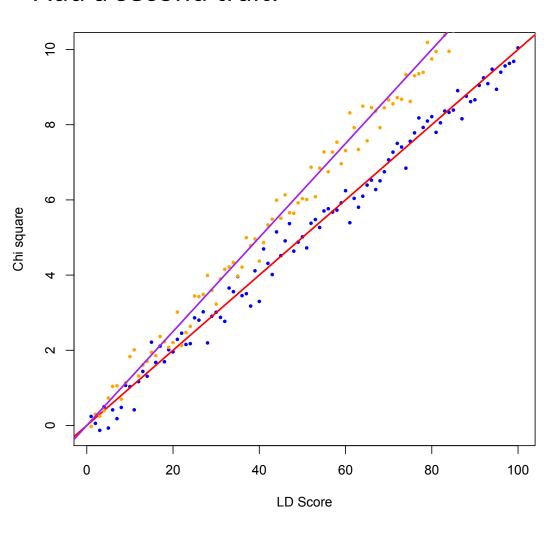
Genetic correlation

Reminder - univariate:

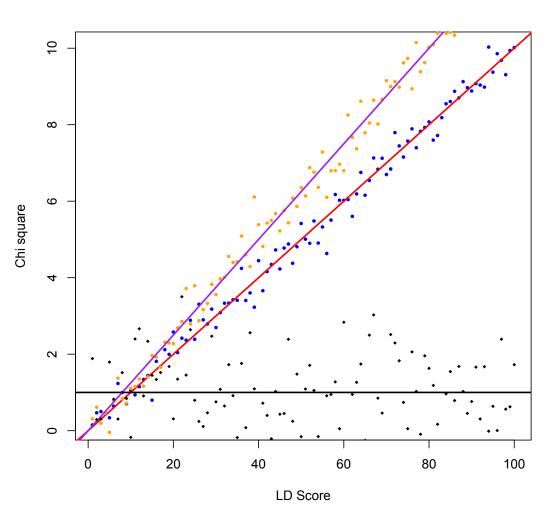


The slope of this regression line is an estimator of heritability

Add a second trait:

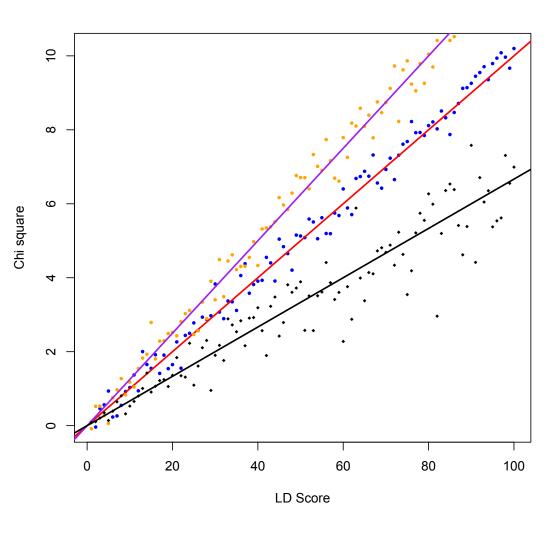


Genetic correlation = 0



Recall that $\chi 2 = Z^2$; to estimate r_{g_r} replace $\chi 2$ with Z_1Z_2 .

Genetic correlation of ~0.5



The signed positive slope shows that genetic effects tend to be shared genome-wide

Formally

$$\mathbb{E}[z_{1j}z_{2j}] = \frac{\sqrt{N_1 N_2} \rho_g}{M} \ell_j + \frac{\rho N_s}{\sqrt{N_1 N_2}}$$

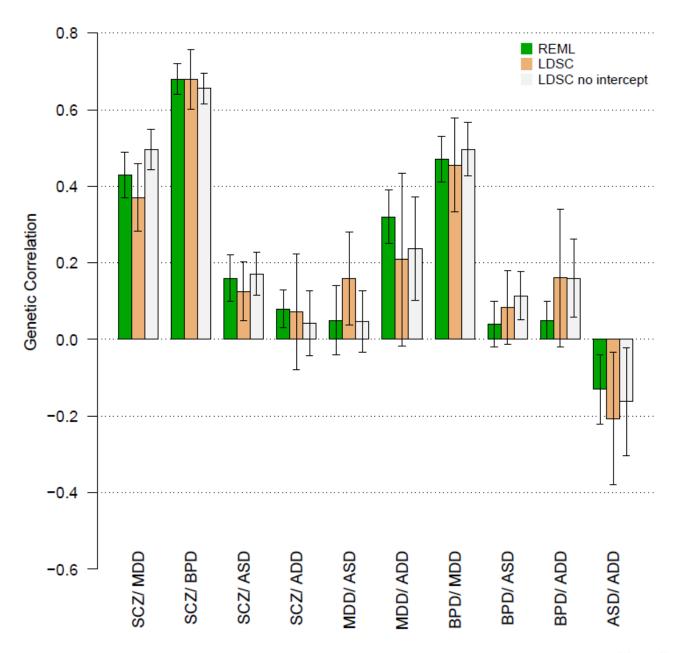
where N_1 and N_2 are the sample sizes for the two studies p_g is the genetic correlation l_j is the LD score M is the total number of markers p is the phenotypic correlation N_s is the number of overlapping samples

Key point: not biased by sample overlap

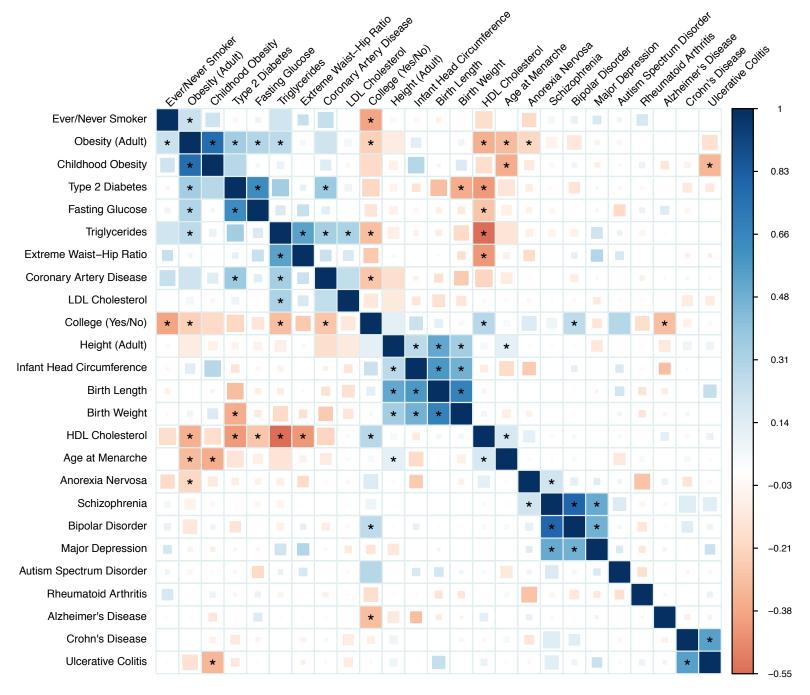
Proof of concept

Supplementary Table 1. Bivariate analyses

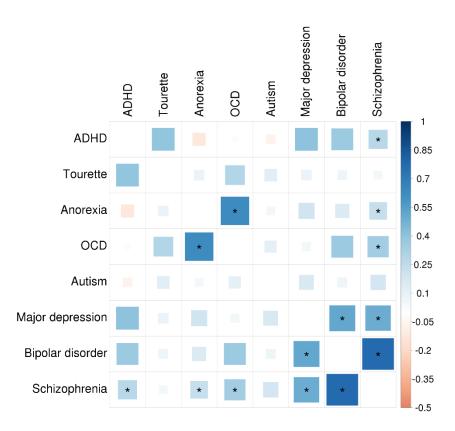
	Trait 1/ Trait 2				
	SCZ/BPD	SCZ/MDD	SCZ/ASD	SCZ/ADHD	BPD/MDD
SNPs	909307	885448	896627	778235	938610
Cases	9032/6664	9051/8998	9111/3226	9013/4108	6665/8997
Controls	7980/5258	10385/7823	12146/3308	10115/9936	7408/7680
SNP-h ² Trait 1 ^a	0.22 (0.01)	0.21 (0.01)	0.23 (0.01)	0.23 (0.01)	0.23 (0.01)
SNP-h ² Trait 2 ^a	0.22 (0.01)	0.19 (0.02)	0.16 (0.02)	0.23 (0.02)	0.20 (0.02)
Covariance ^b	0.151 (0.010)	0.087 (0.011)	0.030 (0.011)	0.019 (0.011)	0.102 (0.013)
SNP- r_g (SE)	0.68 (0.04)	0.43 (0.06)	0.16 (0.06)	0.08 (0.05)	0.47 (0.06)
λ_{1st} -cov(SE)	1.7 (0.05)	1.2 (0.05)	1.2 (0.03)	1.1 (0.03)	1.2 (0.00)
λ_{1st} - r_g	4.7	1.6	1.5	1.2	1.6
p ^c	<e-16< th=""><th>6.0e-15</th><th>0.0071</th><th>0.072</th><th>1.5e-14</th></e-16<>	6.0e-15	0.0071	0.072	1.5e-14
	M-A: 2.1 ¹ , Offspring ^{2,e} :		Parent ³ : 2.9 Sibling ³ : 2.6	Parent ^{4,g} : > 1	
literature ^d	2.4,5.2,4.5,6.0 Sib ^{2,e} :	f	Sibling (ASD/ADHD) ⁶ : 2.4		
λ_{1st}	3.9,3.7,3.9,5.0	M-A ^f : 1.5			M-A ^{5,h} : 3.1,2.7
literature r_g	0.60 ^{2,i}	N/A	N/A	N/A	0.65 ^{7,j}



Bulik-Sullivan et al, bioRxiv



New Psychiatric r_g



In addition: +20% rg between AN and BMI

Pause for questions ...

What can LD Score do for you?

Practical advice on using LD Score in dayto-day GWAS analysis

Software

- LD Score regression implemented in free + open-source python command-line tool ldsc:
 - github.com/bulik/ldsc
- Tutorials & FAQ here:
 - github.com/bulik/ldsc/wiki
- Ask me questions on the google group!

LD Score is Fast and Easy

- Trivial run-time & memory (~15s, ~1GB for h²).
- Automated data re-formatting and QC.
 - munge_sumstats.py included w/ ldsc.
 - No need for one-off perl scripts.
- Download pre-computed LD Scores.
 - broadinstitute.org/~bulik/eur ldscores/
 - (European-only, for now)

Example: Estimating r_g(BIP, SCZ)

Automatically applies same MAF/INFO etc filters used in our papers + various sanity checks (e.g., log odds in OR column?)

Automatically aligns strand + ref allele + filters out strand ambiguous SNPs

```
python munge_sumstats.py
        --sumstats pgc.cross.SCZ17.2013-05.txt
        --N 17115
        --out scz
        --merge-alleles w hm3.snplist
python munge sumstats.py
        --sumstats pgc.cross.BIP11.2013-05.txt
        --N 11810
        --out bip
        --merge-alleles w hm3.snplist
python ldsc.py
        --rg scz.sumstats.gz,bip.sumstats.gz
        --ref-ld-chr eur w ld chr/
        --w-ld-chr eur_w_ld_chr/
        --out scz bip
```

45 seconds on my MacBook Air

Basic QC with LD Score intercept

- QC Question: have we adequately controlled for confounding from population stratification?
- Solution: check LD Score intercept close to 1.
 - Caveat: only sensitive to sources of genome-wide inflation; can't tell you whether 10 suspect SNPs are OK.

QC with LD Score h²

- QC Question: do we see more or less inflation than we would expect given N and h²?
- Low inflation can mean phenotype problems.
 - Non-screened controls.
 - Bad phenotype def'n.
 - Data munging error, e.g., column swap in ped file.
- Solution: compare h²(old data), h²(new data).
 - Big + significant differences may indicate problems.

QC with LD Score r_g

- QC Question: does phenotype definition in new data match older data?
 - Coordinating pheno def'n across studies is hard.
 - Data munging error, e.g., column swap in ped file.
- Solution: compute r_g(new data, old data)
 - Particularly useful for summary-statistic metaanalysis consortia.

Streamlined PRS

- Statements about prediction R² from PRS analysis are often equivalent to statements about h² or r_g:
- PRS for X predicts¹ Y *if and only if* $r_g(X, Y) != 0$.
- PRS for X predicts¹ X *if and only if* $h^2(X) > 0$.

Streamlined PRS

- LD Score r_g/h² often faster/easier than PRS
 - No LD pruning.
 - No individual-level genotype data.
 - Don't have to worry about sample overlap.
 - Don't have to split sample into train/test sets.
 - Caveat: GCTA and PRS have (slightly) better power than LD Score, possibly makes a big difference for small N.

Practical Advice

- LD Score is noisy at small N.
 - Rule of thumb: use GCTA for N < 3k.
- Partitioned h² requires very large N.
 - Rule of thumb: not worth trying for < 5k cases.

Practical Advice

- Idsc not presently applicable to admixed data.
 - LD structure in admixed samples is more complex.
- If no pop strat / no sample overlap,
 constrained intercept LD Score has lower SE
 - Equivalent to Haseman-Elston regression (Bulik-Sullivan, bioRxiv, 2015)

Notes for PGC users

- munge_sumstats.py --daner flag processes
 Ricopili-format data (daner* files)
- Idsc.py --samp-prev and --pop-prev flags convert to liability-scale h²

Acknowledgements

- r_g + functional h² + ldsc joint work w/ Hilary Finucane
- Ben Neale
- Alkes Price
- Nick Patterson
- Po-Ru Loh
- Mark Daly
- Many others ...

URLs

- Idsc
 - github.com/bulik/ldsc
 - Installation instructions
 - FAQ
- Tutorials / wiki
 - github.com/bulik/ldsc/wiki
- Pre-computed European LD Scores
 - broadinstitute.org/~bulik/eur_ldscores/
- ldsc_users google group:
 - groups.google.com/forum/?hl=en#!forum/ldsc_users

LD Score Papers

- LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
- Partitioning heritability by functional category using GWAS summary statistics
- An Atlas of Genetic Correlations across Human Diseases and Traits
- Relationship between LD Score and Haseman-Elston Regression