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Genetic prediction
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- Discovery/Training/Derivation
• Estimate the effect sizes (!𝑏) of SNPs on a trait (y) – GWAS

- Tunning/Validation
• Further estimate some parameters (depends on methods; not 

all methods require it)

- Target/Testing/Validation
• Build a polygenetic risk score (PRS) ( #𝑦): 

#𝑦 =&
!

!𝑏!𝑥!

• !𝑏! is the estimated effect size for i-th SNP
• 𝑥! is the genotype value for i-th SNP

• Evaluate the prediction performance/accuracy
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Accuracy and bias
- y is a quantitative phenotype

𝑅" 𝑦, #𝑦 =
𝐶𝑜𝑣(𝑦, #𝑦)"

𝑉𝑎𝑟 𝑦 𝑉𝑎𝑟 ( #𝑦)
• the coefficient of determination
• or the square of correlation coefficient
• or the variance of y explained by #𝑦

• Reduce: y ~ cov; Full: y~ cov + #𝑦
• Incremental 𝑅": 𝑅#$%%" − 𝑅&'($)'"

- Regression of phenotypes (y) on PRS ( #𝑦)
• Deviation from expectation of the slope 
• Expectation is usually 1
• If  not close to expectation, then biased
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- Nagelkerke’s 𝑅"
- AUC
- Decile Odds Ratio
- Variance explained on liability scale
- Risk stratification

Accuracy for binary trait
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1) Nagelkerke’s 𝑅!

https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds

Logistic regression: 
full model: y ~ covariates + score
reduced model: y ~ covariates

- Many pseudo-𝑅! statistic for logistic regression

- Cox & Snell 𝑅!

1 − "!"#$%"#
"&$''

(
)
∈ [0, 1 − 𝐿#$%&'$%

(
)]

N is the sample size; L is the likelihood

- Nagelkerke’s 𝑅!

() *!"#$%"#
*&$''

(
)

() "!"#$%"#
(
)
∈ [0, 1]
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Nagelkerke’s 𝑅! depends on case proportion in the sample

Slide from Naomi



2) AUC 
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ROC 

AUC:
Area under the 
ROC curve

Control’s
PGS

Case’s 
PGS

Receiver 
Operating 
Characteristic 
curve

TN

FN
FP

TP

True Positive Rate = TP / (TP+FN) = Sensitivity

False Positive Rate =FP/(FP +TN) = 1- Specificity

At this cutoff:
~75% of cases were correctly classified
~10% of controls were wrongly classified 

PGS

Toy example:

Current
cutoff

Area Under Receiver Operator Characteristic Curve

Slide from Dr. Guiyan Ni



AUC
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PGS

https://www.youtube.com/watch?v=y4wTRSGrVuo
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Max AUC depends on heritability and disease prevalence

Wray et al. 2010 Plos Genet

- Range 0.5 to 1; 
- 0.5 has no predictive value
- Probability that a randomly selected case 

has a score higher than a randomly 
selected control

- Independent to proportion of cases and 
controls in sample
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3) Odds ratio

Slide from Naomi



Toy example
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𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 = !""#!
!""#"

=
$#!
!$#!
$#"
!$#"

𝑂𝑑𝑑𝑠 = %
&'(

𝑃 = probability of being case
1st decile 
(Bottom 10%)

10th decile 
(Top 10%)

Case 23 83
Control 103 40

Odds being a case in 1st decile 
= 23/103

Odds being a case in 10th decile 
= 83/40

Odds ratio between 10th and 1st decile 
= (23/103) / (83/40) =9.3

Toy example:



- Observed probability 0-1 scale
- Underlying unobserved continuous liability 

scale

- heritability is independent of disease 
prevalence
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4) R2 on liability scale

Liability threshold model

Phenotypic liability
D

en
si

ty K = Proportion of the 
population that are 
diseased

Falconer 1965; Lee 2011
More details in Leture 9



4) R2 on liability scale
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R2 on the liability scale when using ascertained case-control studies

𝑅)_++, =
𝑅-_++, ∗ 𝐶

1 + 𝑅-_++, ∗ 𝜃 ∗ 𝐶

𝑅-_++, = 1 − (./01)/2--"%&''
./01)/2--"(&''

),/4

𝐶 = 5(&'5)
8)

5(&'5)
%(&'%)

𝜃 = 8
0

%'5
&'5

(8
0
%'5
&'5

− t)

Case (P)Control (1- P)

Linear regression; Y are 0s and 1s
Null: Y= cov +e
Full: Y= cov + PGS + e

Ref: Lee, 2012, Genet Epidemiol
Modified from Guiyan Ni’s slide 

D
en

si
ty

Phenotypic liability t = threshold

z = density at t

K=Proportion of the population that are 
diseased

Sample

Population
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5) Net reclassification index

Introduced in 2008 (Pencina et al.)

Getting popular, but still under debate

Kathleen et al. 2014

Example from Elliott et al. 2020

”Old model”: pooled cohort equations

7.5% is the threshold for intervention (e.g
statin for CVD)

“New” model: “Old”+PRS
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Factors affecting prediction accuracy

The prediction accuracy of PRS ( )𝑦) for a quantitative trait y

𝑅! 𝑦, )𝑦 =
𝐶𝑜𝑣(𝑦, )𝑦)!

𝑉𝑎𝑟 𝑦 𝑉𝑎𝑟 ()𝑦)

The expected value of this prediction accuracy

𝐸 𝑅! =
ℎ*!

1 + 𝑀/(𝑁ℎ*! )
< ℎ*!

- N: discovery sample size
- M: the number of SNPs (assume LD-independent)
- ℎ*! : the SNP-heritability captured by M SNPs

- An upper bound of ℎ*!
- Larger N, larger 𝑅!
- The trade-off between M and ℎ*!

- More SNPs, larger M, smaller 𝑅!
- More SNPs, larger ℎ*! , larger 𝑅!
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Derivation

Daetwyler et al. Plos One 2008; Visscher et al. 2010; Wray et al. 2013 Nat Rev Gene 

𝑅+ 𝑦, $𝑦 =
𝐶𝑜𝑣(𝑦, $𝑦)+

𝑉𝑎𝑟 𝑦 𝑉𝑎𝑟 ($𝑦)

𝐸 𝐶𝑜𝑣 𝑦, $𝑦 = 𝐸 𝐶𝑜𝑣 /
,

-

𝑏,𝑥, + 𝑒,/
,

-

4𝑏,𝑥, =/
,

-

𝐸(𝐶𝑜𝑣(𝑏,𝑥,, 4𝑏,𝑥,)) =/
,

-

𝑏,𝐸 4𝑏, 𝑉𝑎𝑟(𝑥,)

=/
,

-

𝑏,+𝑉𝑎𝑟(𝑥,) = ℎ-+ Var(y)

𝐸 𝑉𝑎𝑟 $𝑦 = 𝐸 𝑉𝑎𝑟 /
,

-

4𝑏,𝑥, =/
,

-

𝐸 4𝑏,+ 𝑉𝑎𝑟(𝑥,) =/
,

-

𝑏,+ + 𝑉𝑎𝑟 4𝑏, 𝑉𝑎𝑟 𝑥, =/
,

-

𝑏,+𝑉𝑎𝑟(𝑥,) +/
,

-

𝑉𝑎𝑟 4𝑏, 𝑉𝑎𝑟 𝑥,

≈ ℎ-+ Var y + M ∗ Var y /N

𝐸 𝑅+ 𝑦, $𝑦 =
ℎ-+ ∗ ℎ-+

ℎ-+ +M/𝑁
=

ℎ-+

1 +𝑀/(𝑁ℎ-+ )



Genetic prediction
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- Discovery/Training/Derivation
• Estimate the effect sizes (!𝑏) of SNPs on a trait (y) – GWAS

- Tunning/Validation
• Further estimate some parameters (depends on methods; not 

all methods require it)

- Target/Testing/Validation
• Build a polygenetic risk score (PRS) ( #𝑦): 
• Evaluate the prediction performance/accuracy

Should be independent; no overlap; 
out-of-sample prediction
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Pitfall 1: no target sample – report R2 in discovery sample

x: M markers for N samples

y from N(0,1) independently (null hypothesis)

1) Multiple linear regression of y on x (when M<N)

𝐸 𝑅! = 𝑀/𝑁

2) Select m “best” markers out of M in total, and conduct multiple 
linear regression in the same dataset

𝐸 𝑅! ≫ 𝑚/𝑁

Out-of-sample prediction

By chance

+ winner’s curse
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coma recovery with cross-sex genetic correlations significantly differ-
ent from unity (Supplementary Tables 20–22).

We performed genome-wide association analyses for these traits,
using the 2,490,165 SNPs and 77,756 microsatellites for which the
minor allele was represented in four or more lines, using single-locus
analyses pooled across sexes and separately for males and females. At
P , 1025 (P , 1026), we find 203 (32) SNPs and 2 (0) microsatellites
associated with starvation resistance; 90 (7) SNPs and 4 (2) micro-
satellites associated with startle response; and 235 (45) SNPs and 5 (3)
microsatellites associated with chill coma recovery time (Fig. 4a,
Supplementary Fig. 9 and Supplementary Tables 23 and 24). The
minor allele frequencies for most of the associated SNPs are low,
and there is an inverse relationship between effect sizes and minor
allele frequency (Supplementary Fig. 10).

The DGRP is a powerful tool for rapidly reducing the search space
for molecular variants affecting quantitative traits from the entire gen-
ome to candidate polymorphisms and genes. Although we cannot infer
which of these polymorphisms are causal due to linkage disequilibrium
between SNPs in close physical proximity as well as occasional spurious
long range linkage disequilibrium (Fig. 4a and Supplementary Fig. 9),
the candidate gene lists are likely to be enriched for causal variants. The
majority of associations are in computationally predicted genes or
genes with annotated functions not obviously associated with the three
traits. However, genes previously associated with startle response39

(Sema-1a and Eip75B) and starvation resistance40 (pnt) were identified
in this study; and a SNP in CG3213, previously identified in a
Drosophila obesity screen41, is associated with variation in starvation
resistance. Several genes associated with quantitative traits are rapidly
evolving (psq, Egfr; Supplementary Tables 17 and 23) or are plausible
candidates based on SNP or gene ontology annotations (Supplemen-
tary Table 23).

Predicting phenotypes from genotypes
We used regression models to predict trait phenotypes from SNP
genotypes and estimate the total variance explained by SNPs. The
latter cannot be done by summing the individual contributions of
the single marker effects because markers are not completely inde-
pendent, and estimates of effects of single markers are biased when
more than one locus affecting the trait segregates in the population.
We derived gene-centred multiple regression models to estimate the
effects of multiple SNPs simultaneously. In all cases 6–10 SNPs
explain from 51–72% of the phenotypic variance and 65–90% of the
genetic variance (Supplementary Tables 25 and 26 and Supplemen-
tary Figs 11–13). We also derived partial least square regression
models using all SNPs for which the single marker effect was significant

at P , 1025. These models explain 72–85% of the phenotypic variance
(Fig. 4b, c and Supplementary Fig. 14).

Discussion
The DGRP lines, sequences, variant calls, phenotypes and web tools
for molecular population genomics and genome-wide association
analysis are publicly available (Table 1). The DGRP lines contain at
least 4,672,297 SNPs, 105,799 polymorphic microsatellites and 36,810
transposable elements, as well as insertion/deletion events and copy
number variants and are a valuable resource for understanding the
genetic architecture of quantitative traits of ecological and evolutionary
relevance as well as Drosophila models of human quantitative traits.
These novel mutations have survived the sieve of natural selection and
will enhance the functional annotation of the Drosophila genome,
complementing the Drosophila Gene Disruption Project42 and the
Drosophila modENCODE project43.

Genome-wide molecular population genetic analyses show that
patterns of polymorphism, but not divergence, differ by autosomal
chromosome region, and between the X chromosome and autosomes.
Polymorphism is lower in autosomal centromeric than non-
centromeric regions, but not for the X chromosome. We propose that
the correlation of polymorphism with recombination in regions
where recombination is , 2 cM Mb21 is due to the reduced effective
population size in regions of low recombination8. Selection is less
efficient in regions of low recombination32, consistent with our obser-
vation that the fraction of strongly deleterious mutations and posi-
tively selected sites are reduced in these regions.

All molecular population genomic analyses support the ‘faster X’
hypothesis44. Relative to the autosomes, the X chromosome shows
lower polymorphism, faster rates of molecular evolution, a higher
percentage of gene regions undergoing adaptive evolution, a higher
fraction of strongly deleterious sites, and a lower level of weak negative
selection and relaxation of selection. New X-linked mutations are
directly exposed to selection each generation in hemizygous males,
and the X chromosome has greater recombination than autosomes44;
both of these factors could contribute to this observation.

Genome-wide association analyses of three fitness-related quant-
itative traits reveal hundreds of novel candidate genes, highlighting
our ignorance of the genetic basis of complex traits. Most variants
associated with the traits are at low frequency, and there is an inverse
relationship between frequency and effect. Given that low-frequency
alleles are likely to be deleterious for traits under directional or
stabilizing selection, these results are consistent with the mutation–
selection balance hypothesis1 for the maintenance of quantitative
genetic variation. Regression models incorporating significant SNPs
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Figure 4 | Genotype–phenotype associations for starvation resistance. a, Genome-wide association results for significant SNPs. The lower triangle depicts
linkage disequilibrium (r2) among SNPs, with the five major chromosome arms demarcated by black lines. The upper panels give the significance threshold
(2log(p), uncorrected for multiple tests), the effect in phenotypic standard deviation units, and the minor allele frequency (MAF). b, c, Partial least squares
regressions of phenotypes predicted using SNP data on observed phenotypes. The blue dots represent the predicted and observed phenotypes of lines that were not
included in the initial study. b, Females (r2 5 0.81); c, males (r2 5 0.85).
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The Drosophila melanogaster
Genetic Reference Panel
Trudy F. C. Mackay1*, Stephen Richards2*, Eric A. Stone1*, Antonio Barbadilla3*, Julien F. Ayroles1{, Dianhui Zhu2,
Sònia Casillas3{, Yi Han2, Michael M. Magwire1, Julie M. Cridland4, Mark F. Richardson5, Robert R. H. Anholt6, Maite Barrón3,
Crystal Bess2, Kerstin Petra Blankenburg2, Mary Anna Carbone1, David Castellano3, Lesley Chaboub2, Laura Duncan1, Zeke Harris1,
Mehwish Javaid2, Joy Christina Jayaseelan2, Shalini N. Jhangiani2, Katherine W. Jordan1, Fremiet Lara2, Faye Lawrence1,
Sandra L. Lee2, Pablo Librado7, Raquel S. Linheiro5, Richard F. Lyman1, Aaron J. Mackey8, Mala Munidasa2, Donna Marie Muzny2,
Lynne Nazareth2, Irene Newsham2, Lora Perales2, Ling-Ling Pu2, Carson Qu2, Miquel Ràmia3, Jeffrey G. Reid2,
Stephanie M. Rollmann1{, Julio Rozas7, Nehad Saada2, Lavanya Turlapati1, Kim C. Worley2, Yuan-Qing Wu2, Akihiko Yamamoto1,
Yiming Zhu2, Casey M. Bergman5, Kevin R. Thornton4, David Mittelman9 & Richard A. Gibbs2

A major challenge of biology is understanding the relationship between molecular genetic variation and variation in
quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and
to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the
genotype–phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila
melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and
quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population
genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for
positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low
frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP
facilitates genotype–phenotype mapping using the power of Drosophila genetics.

Understanding how molecular variation maps to phenotypic variation
for quantitative traits is central for understanding evolution, animal
and plant breeding, and personalized medicine1,2. The principles of
mapping quantitative trait loci (QTLs) by linkage to, or association
with, marker loci are conceptually simple1,2. However, we have not yet
achieved our goal of explaining genetic variation for quantitative traits
in terms of the underlying genes; additive, epistatic and pleiotropic
effects as well as phenotypic plasticity of segregating alleles; and the
molecular nature, population frequency and evolutionary dynamics of
causal variants. Efforts to dissect the genotype–phenotype map in
model organisms3,4 and humans5–7 have revealed unexpected com-
plexities, implicating many, novel loci, pervasive pleiotropy, and
context-dependent effects.

Model organism reference populations of inbred strains that can be
shared among laboratories studying diverse phenotypes, and for
which environmental conditions can be controlled and manipulated,
greatly facilitate efforts to dissect the genetic architecture of quan-
titative traits3,4. Measuring many individuals of the same homozygous
genotype increases the accuracy of the estimates of genotypic
value1 and the power to detect variants, and genotypes of molecular
markers need only be obtained once. We constructed the Drosophila
melanogaster Genetic Reference Panel (DGRP) as such a community
resource. Unlike previous populations of recombinant inbred lines
derived from limited samples of genetic variation, the DGRP consists

of 192 inbred strains derived from a single outbred population. The
DGRP contains a representative sample of naturally segregating
genetic variation, has an ultra-fine-grained recombination map
suitable for precise localization of causal variants, and has almost
complete euchromatic sequence information.

Here, we describe molecular and phenotypic variation in 168 re-
sequenced lines comprising Freeze 1.0 of the DGRP, population
genomic inferences of patterns of polymorphism and divergence
and their correlation with genomic features, local recombination rate
and selection acting on this population, genome-wide association
mapping analyses for three quantitative traits, and tools facilitating
the use of this resource.

Molecular variation in the DGRP
We constructed the DGRP by collecting mated females from the
Raleigh, North Carolina, USA, population, followed by 20 generations
of full-sibling inbreeding of their progeny. We sequenced 168 DGRP
lines using a combination of Illumina and 454 sequencing technology:
29 of the lines were sequenced using both platforms, 129 lines have
only Illumina sequence, and 10 lines have only 454 sequence. We
mapped sequence reads to the D. melanogaster reference genome,
re-calibrated base quality scores, and locally re-aligned Illumina
reads. Mean sequence coverage was 21.43 per line for Illumina
sequences and 12.13 per line for 454 sequences (Supplementary

*These authors contributed equally to this work.
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Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA. {Present addresses: FAS Society of Fellows, Harvard University, 78 Mt Auburn Street, Cambridge, Massachusetts 02138,
USA (J.F.A.); Functional Comparative Genomics Group, Institut de Biotecnologia i de Biomedicina - IBB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (S.C.); Department of
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“A cross-validated Bayesian 
prediction analysis using 
all genetic markers on the 
same data found that only 
6% of phenotypic variation 
could be explained by the 
predictor.”
(Wray et al., 2013. Nat. Rev. Genet.)
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Pitfall 2: target sample overlapped with discovery sample

- Overlapping target and discovery sample
- Greater similarity between target and discovery sample (such as 

relatedness)
- Cross-validation: not a pitfall, but to be aware
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Pitfall 3: non-independence

- Estimate SNP effects and/or select SNPs from total sample (discovery 
+ target sample)

- Re-estimate effects in the target sample after selecting in the 
discovery sample

- Out-of-sample prediction
- Estimate SNP effects in total sample
- Direct report R2 in the discovery sample
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Summary
• measurement of prediction performance

• R2 for quantitative traits
• for binary traits

• Pseudo-R2 (Nagelkerke’s R2)
• AUC
• Decile Odds Ratio
• variance explained on liability scale
• risk stratification (Net reclassification index)

• factors affecting prediction accuracy
• SNP-heritability (ℎ>" ),
• number of SNPs (M)
• discovery sample size (N)

• pitfalls
• No target sample (only discovery sample)
• Overlapping discovery & target sample
• non-independence



Thank you for your attention
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