

GnG Winter School 2022

Prediction accuracy and pitfalls

Huanwei Wang (with thanks to Naomi, Guiyan, and Jian Zeng)

huanwei.wang@uq.edu.au

Genetic prediction

- **Discovery**/Training/Derivation
 - Estimate the effect sizes (\hat{b}) of SNPs on a trait (y) GWAS

- Tunning/Validation

- Further estimate some parameters (depends on methods; not all methods require it)
- <u>Target</u>/Testing/Validation
 - Build a polygenetic risk score (PRS) (\hat{y}) :

$$\hat{y} = \sum_{i} \hat{b}_i x_i$$

- \hat{b}_i is the estimated effect size for *i*-th SNP
- x_i is the genotype value for *i*-th SNP
- Evaluate the prediction performance/accuracy

Accuracy and bias

- y is a quantitative phenotype

$$R^{2}(y,\hat{y}) = \frac{Cov(y,\hat{y})^{2}}{Var(y)Var(\hat{y})}$$

- the coefficient of determination
- or the square of correlation coefficient
- or the variance of y explained by \hat{y}
- Reduce: y ~ cov; Full: y~ cov + \hat{y}
- Incremental R^2 : $R_{full}^2 R_{reduce}^2$
- Regression of phenotypes (y) on PRS (\hat{y})
 - Deviation from expectation of the slope
 - Expectation is usually 1
 - If not close to expectation, then biased

- Nagelkerke's R^2
- AUC
- Decile Odds Ratio
- Variance explained on liability scale
- Risk stratification

1) Nagelkerke's R^2

Logistic regression: full model: y ~ covariates + score reduced model: y ~ covariates

- Many pseudo- R^2 statistic for logistic regression
- Cox & Snell R^2

$$1 - \left(\frac{L_{reduced}}{L_{full}}\right)^{\frac{2}{N}} \in [0, 1 - (L_{reduced})^{\frac{2}{N}}]$$

N is the sample size; L is the likelihood

- Nagelkerke's R^2

$$\frac{1 - \left(\frac{L_{reduced}}{L_{full}}\right)^{\frac{2}{N}}}{1 - (L_{reduced})^{\frac{2}{N}}} \in [0, 1]$$

https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds

Nagelkerke's R^2 depends on case proportion in the sample of Queensland

2) AUC

Area Under Receiver Operator Characteristic Curve

Toy example:

True Positive Rate = TP / (TP+FN) = Sensitivity

False Positive Rate =FP/(FP +TN) = 1- Specificity

Slide from Dr. Guiyan Ni

AUC

https://www.youtube.com/watch?v=y4wTRSGrVuo

Max AUC depends on heritability and disease prevalence OF QUEENSLAND

- Range 0.5 to 1;
- 0.5 has no predictive value
- Probability that a randomly selected case has a score higher than a randomly selected control
- Independent to proportion of cases and controls in sample

Figure 2. Relationship between maximum AUC (AUC_{max}) from a genomic profile and heritability on the liability scale $h_{L^*}^2$. For

3) Odds ratio

Cut distribution into deciles Each decile will include both cases and controls Odds of being a case in each decile Odds ratio for each decile compared to the 1st decile

- Good visualisation
- Shows that there could be utility in using high vs low profile risk scores
- But remember case-control samples are 50% cases
- Would look less impressive if a population sample

13

$Odds \ ratio = \frac{Odds_1}{Odds_0} = \frac{\frac{P_1}{P_0}}{\frac{P_0}{1-P_0}}$ $Odds = \frac{P}{1-p}$

P =probability of being case

Toy example:

		1 st decile (Bottom 10%)	10 th decile (Top 10%)
	Case	23	83
	Control	103	40
Odds being a case in 1 st decile = 23/103			
Odds being a case in 10 th decile = 83/40			
Odds ratio between 10^{th} and 1^{st} decile = (23/103) / (83/40) =9.3			

Liability threshold model

- Observed probability 0-1 scale
- Underlying unobserved continuous liability scale
- heritability is independent of disease prevalence

Phenotypic liability

Falconer 1965; Lee 2011

4) R² on liability scale

Introduced in 2008 (Pencina et al.)

Getting popular, but still under debate

Kathleen et al. 2014

The NRI, as originally proposed, seeks to quantify whether a new marker provides clinically relevant improvements in prediction. In the definition of "net reclassification indices," the risk prediction model with established predictors is called the "old" model. The model that adds the new marker is the "new" model. "Events" are cases—persons who have or will have the disease or outcome in the absence of intervention. "Nonevents" are controls. The formula defining the NRI is⁴

$$NRI = P(up|event) - P(down|event) + P(down|nonevent) - P(up|nonevent).$$
(1)

"Up" means that the new risk model places a person into a higher risk category than the old model. Similarly, "down" means the new model places a person into a lower risk category. For example, NRI^{0.2} means a two-category index with

which was corrected after recalibration. Using a risk threshold of 7.5%, addition of the polygenic risk score to pooled cohort equations resulted in a net reclassification improvement of 4.4% (95% CI, 3.5% to 5.3%) for cases and -0.4% (95% CI, -0.5% to -0.4%) for noncases (overall net reclassification improvement, 4.0% [95% CI, 3.1% to 4.9%]).

Example from Elliott et al. 2020

"Old model": pooled cohort equations

7.5% is the threshold for intervention (e.g statin for CVD)

"New" model: "Old"+PRS

Factors affecting prediction accuracy

The prediction accuracy of PRS (\hat{y}) for a quantitative trait y

$$R^{2}(y,\hat{y}) = \frac{Cov(y,\hat{y})^{2}}{Var(y)Var(\hat{y})}$$

The expected value of this prediction accuracy

$$E(R^2) = \frac{h_M^2}{1 + M/(Nh_M^2)} < h_M^2$$

- N: discovery sample size
- M: the number of SNPs (assume LD-independent)
- h_M^2 : the SNP-heritability captured by M SNPs
- An upper bound of h_M^2
- Larger N, larger R^2
- The trade-off between M and h_M^2
 - More SNPs, larger M, smaller R^2
 - More SNPs, larger h_M^2 , larger R^2

Derivation

$$R^{2}(y,\hat{y}) = \frac{Cov(y,\hat{y})^{2}}{Var(y)Var(\hat{y})}$$

$$E(Cov(y,\hat{y})) = E\left(Cov\left(\sum_{i}^{M} b_{i}x_{i} + e, \sum_{i}^{M} \hat{b}_{i}x_{i}\right)\right) = \sum_{i}^{M} E(Cov(b_{i}x_{i}, \hat{b}_{i}x_{i})) = \sum_{i}^{M} b_{i}E(\hat{b}_{i})Var(x_{i})$$
$$= \sum_{i}^{M} b_{i}^{2}Var(x_{i}) = h_{M}^{2}Var(y)$$

$$E(Var(\hat{y})) = E\left(Var\left(\sum_{i}^{M} \hat{b}_{i}x_{i}\right)\right) = \sum_{i}^{M} E(\hat{b}_{i}^{2})Var(x_{i}) = \sum_{i}^{M} \left(b_{i}^{2} + Var(\hat{b}_{i})\right)Var(x_{i}) = \sum_{i}^{M} b_{i}^{2}Var(x_{i}) + \sum_{i}^{M} Var(\hat{b}_{i})Var(x_{i})$$
$$\approx h_{M}^{2}Var(y) + M * Var(y)/N$$

$$E(R^{2}(y,\hat{y})) = \frac{h_{M}^{2} * h_{M}^{2}}{h_{M}^{2} + M/N} = \frac{h_{M}^{2}}{1 + M/(Nh_{M}^{2})}$$

Daetwyler et al. Plos One 2008; Visscher et al. 2010; Wray et al. 2013 Nat Rev Gene

Genetic prediction

- <u>Discovery</u>/Training/Derivation

• Estimate the effect sizes (\hat{b}) of SNPs on a trait (y) – GWAS

<u>Tunning</u>/Validation

• Further estimate some parameters (depends on methods; not all methods require it)

Target/Testing/Validation

- Build a polygenetic risk score (PRS) (\hat{y}) :
- Evaluate the prediction performance/accuracy

Should be independent; no overlap; out-of-sample prediction

GENOME-WIDE ASSOCIATION STUDIES - OPINION

Pitfalls of predicting complex traits from SNPs

Naomi R. Wray, Jian Yang, Ben J. Hayes, Alkes L. Price, Michael E. Goddard and Peter M. Visscher

Pitfall 1: no target sample – report R² in discovery sample

x: M markers for N samples

y from N(0,1) independently (null hypothesis)

1) Multiple linear regression of y on x (when M<N)

 $E(R^2) = M/N$

By chance

2) Select m "best" markers out of M in total, and conduct multiple linear regression in the same dataset

 $E(R^2) \gg m/N$ + winner's curse

Out-of-sample prediction

ARTICLE

The Drosophila melanogaster Genetic Reference Panel

Trudy F. C. Mackay^{1*}, Stephen Richards^{2*}, Eric A. Stone^{1*}, Antonio Barbadilla^{3*}, Julien F. Ayroles¹[†], Dianhui Zhu², Sònia Casillas³[†], Yi Han², Michael M. Magwire¹, Julie M. Cridland⁴, Mark F. Richardson⁵, Robert R. H. Anholt⁶, Maite Barrón³, Crystal Bess², Kerstin Petra Blankenburg², Mary Anna Carbone¹, David Castellano³, Lesley Chaboub², Laura Duncan¹, Zeke Harris¹, Mehwish Javaid², Joy Christina Jayaseelan², Shalini N. Jhangiani², Katherine W. Jordan¹, Fremiet Lara², Faye Lawrence¹, Sandra L. Lee², Pablo Librado⁷, Raquel S. Linheiro⁵, Richard F. Lyman¹, Aaron J. Mackey⁸, Mala Munidasa², Donna Marie Muzny², Lynne Nazareth², Irene Newsham², Lora Perales², Ling-Ling Pu², Carson Qu², Miquel Ràmia³, Jeffrey G. Reid², Stephanie M. Rollmann¹[†], Julio Rozas⁷, Nehad Saada², Lavanya Turlapati¹, Kim C. Worley², Yuan-Qing Wu², Akihiko Yamamoto¹, Yiming Zhu², Casey M. Bergman⁵, Kevin R. Thornton⁴, David Mittelman⁹ & Richard A. Gibbs²

Predicting phenotypes from genotypes

We used regression models to predict trait phenotypes from SNP genotypes and estimate the total variance explained by SNPs. The latter cannot be done by summing the individual contributions of the single marker effects because markers are not completely independent, and estimates of effects of single markers are biased when more than one locus affecting the trait segregates in the population. We derived gene-centred multiple regression models to estimate the effects of multiple SNPs simultaneously. In all cases 6–10 SNPs explain from 51–72% of the phenotypic variance and 65–90% of the genetic variance (Supplementary Tables 25 and 26 and Supplementary Figs 11–13). We also derived partial least square regression models using all SNPs for which the single marker effect was significant

"A cross-validated Bayesian prediction analysis using all genetic markers on the same data found that only 6% of phenotypic variation could be explained by the predictor."

(Wray et al., 2013. Nat. Rev. Genet.)

Pitfall 2: target sample overlapped with discovery sample

- Overlapping target and discovery sample
- Greater similarity between target and discovery sample (such as relatedness)
 - Cross-validation: not a pitfall, but to be aware

$$cov(\hat{y}_i, y_i) = cov\{\sum_{j=1}^{m} (x_{ij}\hat{b}_j), \sum_{j=1}^{m} x_{ij}b_j + e_i\}$$
$$= \sum_{j=1}^{m} var(x_{ij})\hat{b}_j b_j + \sum_{j=1}^{m} x_{ij} cov(\hat{b}_j, e_i)$$
If b estimated from the same data in which prediction is made, then the second term is non-zero

Pitfall 3: non-independence

- Estimate SNP effects and/or select SNPs from total sample (discovery + target sample)
- Re-estimate effects in the target sample after selecting in the discovery sample

Summary

- measurement of prediction performance
 - R^2 for quantitative traits
 - for binary traits
 - Pseudo-R² (Nagelkerke's R²)
 - AUC
 - Decile Odds Ratio
 - variance explained on liability scale
 - risk stratification (Net reclassification index)
- factors affecting prediction accuracy
 - SNP-heritability (h_M^2) ,
 - number of SNPs (M)
 - discovery sample size (N)
- pitfalls
 - No target sample (only discovery sample)
 - Overlapping discovery & target sample
 - non-independence

Thank you for your attention