

Bayesian methods for genomic prediction

Ben Hayes

Queensland Alliance for Agriculture and Food Innovation, University of Queensland

Bayesian methods for Genomic Prediction

- Alternative assumptions regarding the distribution of SNP effects
- Introduction to Bayesian methods
- Genomic prediction with Bayesian methods
- Comparison of accuracy of methods

- Best Linear Unbiased Prediction
 - GBLUP, SNPBLUP
- GREML
- Assumes SNP effects are:
 - all non-zero
 - very small
 - normally distributed

• Alternative distributions?

Alternative distributions?

Assumption	Distribution of SNP effects	Method
Small number of moderate to large effects, many small effects	Students t	BayesA

Alternative distributions?

Assumption	Distribution of SNP effects	Method	
Small number of moderate to large effects, many small effects	Students t	BayesA	
Small number of moderate to large effects, many zero effects	Mixture, spike at zero, Students t	BayesB	
Small number of small effects, many zero effects	Mixture, spike at zero, normal distribution		
Many zero effects, proportion of small effects, some moderate to large effects	Multi-variate normal	BayesR	

Alternative distributions?

BayesC

BayesR

Alternative distributions?

Bayesian approach allows us to incorporate this prior knowledge in the prediction of SNP effects

Bayesian methods for Genomic Prediction

- Alternative assumptions regarding the distribution of SNP effects
- Introduction to Bayesian methods
- Genomic prediction with Bayesian methods
- Comparison of accuracy of methods

• Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

Probability of parameters x given the data y (posterior)

Bayes theorem

Probability of Is proportional to parameters x given the data y (posterior)

Bayes theorem

Probability of parameters x given the data y (posterior)

Is proportional to Probability of data y given the x (likelihood of data)

Bayes theorem

- Consider an experiment where we measure height of 10 people to estimate average height
- We want to use prior knowledge from many previous studies that average height is 174cm with standard error 5cm

y=average height + e

Bayes theorem

Prior probability of x (average height)

Bayes theorem

From the data.....

$$\overline{x} = 178$$

$$s.e = 5$$

Prior probability of x (average height)

Bayes theorem

Likelihood of data (y) given height x, most likely x = 178cm Prior probability of x (average height)

Bayes theorem

- Bayes theorem
- Less certainty about prior information? Use less informative (flat) prior

- Bayes theorem
- Less certainty about prior information? Use less informative (flat) prior

- Bayes theorem
- More certainty about prior information? Use *more* informative prior

- Bayes theorem
- More certainty about prior information? Use more informative prior

Bayesian methods for Genomic Prediction

- Alternative assumptions regarding the distribution of SNP effects
- Introduction to Bayesian methods
- Genomic prediction with Bayesian methods
- Comparison of accuracy of methods

BayesC

•
$$y = 1_n \mu + X\beta + e$$

$$eta_j \left\{ egin{aligned} &\sim N(0,\sigma_eta^2) & ext{ with probability } \pi \ &= 0 & ext{ with probability } 1-\pi \end{aligned}
ight.$$

$$P(\boldsymbol{\beta}, \mu | \boldsymbol{y}) \propto P(\boldsymbol{y} | \boldsymbol{\beta}, \mu) P(\boldsymbol{\beta}, \mu)$$

BayesC

•
$$y = 1_n \mu + X\beta + e$$

$$eta_j \left\{ egin{aligned} &\sim N(0,\sigma_eta^2) & ext{ with probability } \pi \ &= 0 & ext{ with probability } 1-\pi \end{aligned}
ight.$$

BayesC -> Gibbs Sampling

- Cannot solve directly, as estimates of parameters depend on other parameters -> no closed form solution
- For example, estimate of a SNP effect depends on whether or not the SNP is in the zero variance part of distribution or non-zero variance part of the distribution
- Use Gibbs sampling!
- Sample from posterior distribution of parameter conditional on all other parameters

BayesC -> Gibbs Sampling

- Sample from posterior distribution of parameter conditional on all other parameters
- For example, for SNP effect β_i
 - First sample if in zero effect or non zero effect part of distribution (δ_i)
 - Then if in non-zero part of the distribution, sample from

$$N\left(\frac{\mathbf{X_{ij}'y}-\mathbf{X_{ij}'X}\beta_{(ij=0)}-\mathbf{X_{ij}'1_n}\mu}{\mathbf{X_{ij}'X_{ij}}+\sigma_e^2/\sigma_\beta^2},\sigma_e^2/\left(\mathbf{X_{ij}'X_{ij}}+\sigma_e^2/\sigma_\beta^2\right)\right)$$

BayesC -> Gibbs Sampling

- Sample from posterior distribution of parameter conditional on all other parameters
- For example, for SNP effect β_i
 - First sample if in zero effect or non zero effect part of distribution (δ_i)
 - Then if in non-zero part of the distribution, sample from

$$N\left(\frac{\mathbf{X}_{ij}'\mathbf{y} - \mathbf{X}_{ij}'\mathbf{X}\boldsymbol{\beta}_{(ij=0)} - \mathbf{X}_{ij}'\mathbf{1}_{\mathbf{n}}\boldsymbol{\mu}}{\mathbf{X}_{ij}'\mathbf{X}_{ij} + \sigma_e^2/\sigma_\beta^2}, \sigma_e^2/(\mathbf{X}_{ij}'\mathbf{X}_{ij} + \sigma_e^2/\sigma_\beta^2)\right)$$

BayesC -> Gibbs Chain

- Set starting values for σ_e^2 , μ , δ
- Then (for many iterations)
 - For each SNP, sample δ_i , β_i conditional on other parameters
 - Sample σ_e^2 , μ with updated δ_i , β_i
 - Samples reconstruct posterior distributions of parameters

BayesC -> Gibbs Chain

- Set starting values for σ_e^2 , μ , δ
- Then (for many iterations)
 - For each SNP, sample δ_i , β_i conditional on other parameters
 - Sample σ_e^2 , μ with updated δ_i , β_i
 - Samples reconstruct posterior distributions of parameters

BayesC -> Gibbs Chain

- Set starting values for σ_e^2 , μ , δ
- Then (for many iterations)
 - For each SNP, sample δ_i , β_i conditional on other parameters
 - Sample σ_e^2 , μ with updated δ_i , β_i
 - Samples reconstruct posterior distributions of parameters

Bayesian methods for Genomic Prediction

- Alternative assumptions regarding the distribution of SNP effects
- Introduction to Bayesian methods
- Genomic prediction with Bayesian methods
- Comparison of accuracy of methods

Real Data, 800K

- Reference
 - Holstein = 3049 bulls, 8478 cows
 - Jersey = 770 bulls, 3917 cows
- Validation
 - Holstein = 262 bulls
 - Jersey = 105 bulls
 - Australian Reds = 114 bulls
- GEBV with GBLUP, BayesR
- (Kemper et al GSE, 2014)

Real Data, 800K

• r(GEBV,DTD)

	Fat	Milk	Protein I	at%	Protein%	Average	
Holstein							
GBLUP	0.60	0.59	0.58	0.72	0.83	0.66	
BAYESR	0.64	0.62	0.57	0.81	0.84	0.69	
Jersey							
GBLUP	0.56	0.62	0.67	0.64	0.76	0.65	
BAYESR	0.56	0.69	0.71	0.76	0.79	0.70	
Australian Reds							
GBLUP	0.20	0.16	0.11	0.32	0.34	0.22	
BAYES	0.26	0.21	0.13	0.44	0.36	0.28	

BayesR

Bayesian methods for Genomic Prediction

Bayesian approach allows us to incorporate prior knowledge in prediction of SNP effects

Bayesian methods can have an advantage when:

QTL of moderate to large effect on the trait (eg Fat%, DGAT1)

Very large numbers of SNP (800K, sequence) -> set some SNP effects to zero

Multi-breed, across population genomic predictions