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Reminder Linear models

Fixed models
Assume we have N groups of T individuals each,

yit = µ+ βi + eit , i = 1, . . . ,N and t = 1, . . . ,T

where

µ is an unknown parameter to estimate (fixed effect)

βi is an unknown parameter to estimate that is constant for all t at i fixed (fixed
effects)

eit residuals, with mean E(e) = 0 and variance-covariance Var(e) = σ2
e I .

Var(yit) = Var(eit) = σ2
e

Suppose we have 2 groups (i = 1, 2) of 3 individual (t = 1, 2, 3).

yit = µ+ βi + eit , or in matrix form y = µ+ Xβ + e,

where β is a vector of fixed effects. The levels represents all the levels of interest,

y =


y11
y12
y13
y21
y22
y23

 ,µ =


µ
µ
µ
µ
µ
µ

 ,X =


1 0
1 0
1 0
0 1
0 1
0 1

 ,β =

(
β1
β2

)
, e =


e11
e12
e13
e21
e22
e23
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Reminder Linear models

Random models
Assume we have N groups of T individuals each,

yit = µ+ ui + eit , i = 1, . . . ,N and t = 1, . . . ,T

where

µ is an unknown parameter to estimate (fixed effect)

(u1, . . . , uN) is a vector or random values with mean E(u) = 0 and
variance-covariance Var(u) = σ2

u I (random effect)

eit residuals, with mean E(e) = 0 and variance-covariance Var(e) = σ2
e I .

Var(yit) = Var(ui ) + Var(eit) = σ2
u + σ2

e

Suppose we have 2 groups (i = 1, 2) of 3 individual (t = 1, 2, 3).

yit = µ+ ui + eit or in a matrix form y = µ+ Zu + e,

where u is random, the levels are considered drawn from an infinite population of levels,

y =


y11
y12
y13
y21
y22
y23

 ,µ =


µ
µ
µ
µ
µ
µ

 ,Z =


1 0
1 0
1 0
0 1
0 1
0 1

 , u =

(
u1
u2

)
, e =


e11
e12
e13
e21
e22
e23
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Reminder Linear models

Mixed models
Mixed models (MM) contain both fixed and random factors

y = Xβ + Zu + e

where

y vector of observed dependent values, with mean E(y) = Xβ

β vector of unknown parameters to estimate (fixed effects)

u vector of unknown random effects, with mean E(u) = 0 and variance-covariance
Var(u) = G (usually G = σ2

u I )

e vector of residuals, with mean E(e) = 0 and variance-covariance
Var(e) = R (usually R = σ2

e I ),

X and Z are design matrices

Var(y) = V = ZGZ> + R

Slide Courtesy of P. Visscher Winter School 2022 6 / 40



Reminder Linear models

Example

Fitting a mean, unrelated sires, uncorrelated errors

y = µ + Zu + e

V = Var(y) = ZZ>σ2
u + Iσ2

e

If Z =


1 0
1 0
1 0
0 1
0 1
0 1

 , then ZZ> =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1



And we get V =


σ2
u + σ2

e σ2
u σ2

u 0 0 0
σ2
u σ2

u + σ2
e σ2

u 0 0 0
σ2
u σ2

u σ2
u + σ2

e 0 0 0
0 0 0 σ2

u + σ2
e σ2

u σ2
u

0 0 0 σ2
u σ2

u + σ2
e σ2

u

0 0 0 σ2
u σ2

u σ2
u + σ2

e
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Reminder Linear models

Aim

GBLUP reminder

y = 1nµ+ Zg + e

breeding values g ∼ N (0,Gσ2
a ), where G is the genomic relationship matrix.

GBLUP solves the following system of equations
1′n1n 1′nZ

Z ′1n Z ′Z + G−1 σ
2
e

σ2
a

[µ̂ĝ
]

=

[
1′ny
Z ′y

]

BLUP: estimate the mean µ and predict breeding values g , all based on known variance

Aim of these lectures: estimate variance components (estimate λ)

Two ways to estimate variance components:

ANOVA: ANalysis Of VAriance

Maximum Likelihood approaches
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Balanced designs; one-way models; the sire model

Sire model
Consider a sire model with s unrelated sires and n progeny per sire; one-way model (one
random effect: sire), with a balanced design (same number of observations per sire).

yit = µ+ ui + eit
Var(yit) = σ2

u + σ2
e

Cov(yit , yik) = σ2
u

i = 1 . . . , s
t = 1, . . . , n

y = Xβ + Zu + e
Var(y) = ZZ>σ2

u + Iσ2
e

Var(yi ) = ZiZ>i σ2
u

X : matrix of one column of
sn ones
β = µ

## Simulating data
> set.seed(123)
> mu = 1.2; s = 10; n = 20
> sigmau = 1; sigmae = 0.2
> ui = rnorm(s,sd=sigmau)
> eit = rnorm(n*s, sd=sigmae)
> y = matrix(NA_real_, nrow=n*s, ncol=1)
> for(i in 1:s){
+ ind = (n*(i-1)+1) : (n*(i-1)+n)
+ y[ind] = mu + ui[i] + eit[ind]
+ }

## create a grouping factor
> grp = factor(rep(1:s,each = n))

## create Z
> Z = matrix(0,nrow=s*n, ncol=s)
> for(i in 1:s){
+ ind = which(grp = = i)
+ Z[indic,i] = 1
+ }
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Balanced designs; one-way models; ANOVA ANOVA: ANalysis Of VAriance

ANOVA table - general framework

Source of variation df SS MS E(MS)
Mean dfM = 1 SSM SSM/dfM E(SSM/dfM)
Between sires dfB = s − 1 SSB SSB/dfS E(SSB/dfS)
Within sires (residuals) dfW = s(n − 1) SSW SSW /dfW E(SSW /dfW )
Total N SST

df: degrees of freedom
SS: sum of squares
MS: Mean square (mean of SS)
E(MS): Expectation of MS
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Balanced designs; one-way models; ANOVA ANOVA: ANalysis Of VAriance

Sums of squares

We decompose SST into a mean, a between and a within family component:

SST =
∑

i

∑
t y

2
it =

∑
i

∑
t(yit − ȳ + ȳ)2

=
∑

i

∑
t(yit − ȳ)2 + Nȳ2

=
∑

i

∑
t [(yit − ȳi ) + (ȳi − ȳ)]2 + Nȳ2

=
∑

i

∑
t

[
(yit − ȳi )

2 + 2(yit − ȳi )(ȳi − ȳ) + (ȳi − ȳ)2]+ Nȳ2

ȳ is the grand mean, ȳi is the family mean.

The middle term is equal to zero by definition of a mean:
∑

t(yit − ȳi ) = 0.
The last term is independent of j so

∑
i

∑
t(ȳi − ȳ)2 = n

∑
i (ȳi − ȳ)2

Decomposition of SS

SST = Nȳ2 + n
∑

i (ȳi − ȳ)2 +
∑

i

∑
t(yit − ȳi )

2

= SSM + SSB + SSW
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Balanced designs; one-way models; ANOVA ANOVA: ANalysis Of VAriance

ANOVA table - our sire model
Using

SSM = (
∑
i

∑
t

yit)
2/(sn)

SSB =
∑
i

(
∑
t

yit)
2/n − (

∑
i

∑
t

yit)
2/(sn)

SSW =
∑
i

∑
t

y2
it − SSB − SSM

SST =
∑
i

∑
t

y2
it

we get

Source of variation df SS MS E(MS)
Mean 1 SSM SSM/1 Nµ2 + nσ2

u + σ2
e

Between sires s − 1 SSB B = SSB/(s − 1) nσ2
u + σ2

e

Within sires (residuals) s(n − 1) SSW W = SSW /(s(n − 1)) σ2
e

Total N = sn SST

cf lecture notes for calculations and proofs
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Balanced designs; one-way models; ANOVA ANOVA: ANalysis Of VAriance

Sum of Squares - Sire model

SST =
∑
i

∑
t

y2
it

SSM = (
∑
i

∑
t

yit)
2/(sn)

SSB =
∑
i

(
∑
t

yit)
2/n

− (
∑
i

∑
t

yit)
2/(sn)

SSW =
∑
i

∑
t

y2
it − SSB − SSM

> SST = sum(y^2); SST
[1] 422.0067

> SSM = sum(y)^2 / (s*n); SSM
[1] 279.1494

> SSB = 0
> for(i in 1:s){
+ ind = (n*(i-1)+1) : (n*(i-1)+n)
+ yit = sum(y[ind])
+ SSB = SSB + yit^2/n
+ }
> SSB = SSB - SSM; SSB
[1] 133.8501

> SSW = sum(y^2) - SSB - SSM; SSW
[1] 9.007134
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Balanced designs; one-way models; ANOVA ANOVA: ANalysis Of VAriance

Estimation of σ2u and σ2e

Principle of ANOVA
“Equate SS of analysis of variance to their expected values, giving a set of equations that
are linear in the variance components to be estimated”

For the one-way design: two equations, two unknowns:

B = nσ2
u + σ2

e

W = σ2
e

Hence,

σ̂2
e = W

σ̂2
u = (B −W )/n

> B = SSB/(s-1); B
[1] 14.87224

> W = SSW/(s*(n-1)); W
[1] 0.04740597

> c(sqrt(W),sigmae)
[1] 0.2177291 0.2000000

> c(sqrt((B - W)/n),sigmau)
[1] 0.8609538 1.0000000
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Balanced designs; one-way models; ANOVA Properties of estimators

50 repeats - no(?) Bias

> u = e = NULL
> for(iter in 1:50){
+ ui = rnorm(s,sd=sigmau)
+ eit = rnorm(n*s, sd=sigmae)
+
+ y = mu + Z %* % ui + eit
+
+ SST = sum(y^2)
+ SSM = t(y) %*% X %*%
+ solve(t(X) %*% X) %*%
+ t(X) %*% y
+ SSB = t(y) %*% Z %*%
+ solve(t(Z)%*%Z) %*%
+ t(Z) %*% y - SSM
+ SSW = sum(y^2) - SSB - SSM
+
+ B = SSB/(s-1); B
+ W = SSW/(s*(n-1)); W
+
+ e = c(e, sqrt(W))
+ u = c(u, sqrt((B - W)/n))
+ }

0.
6

0.
8

1.
0

1.
2

1.
4

random effects

0.
18

0.
19

0.
20

0.
21

0.
22

0.
23

residuals
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Balanced designs; one-way models; ANOVA Properties of estimators

Properties of estimators

1 Unbiased
E(σ̂2

e ) = E(W ) = σ2
e

E(σ̂2
u) = E(B −W )/n = E(B)/n − E(W )/n

= (σ2
u + σ2

e /n)− σ2
e /n

= σ2
u

2 Minimum Variance: Estimates have minimum variance among all possible unbiased
estimators. True for normal and non-normal data

3 Distribution: Under normality, only the estimate of the residual variance has a χ2

distribution
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Balanced designs; one-way models; ANOVA Properties of estimators

4 Sampling variances

Using that SSW ∼ σ2
eχ

2(dfW ), and Var(SSW ) = 2σ4
e dfW , we have

Var(σ̂2
e ) = Var(W ) = Var(SSW )/df 2

w

= dfW 2σ4
e /df

2
W

= 2σ4
e /dfW

Var(σ̂2
u) = Var((B −W )/n)

= [Var(B) + Var(W )] /n2

=
[
2E(B)2/dfB + 2E(W )2/dfW

]
/n2

=
[
2(nσ2

u + σ2
e )2/dfB + 2σ4

e /dfW
]
/n2

= (2/n2)
[
(nσ2

u + σ2
e )2/(s − 1) + σ4

e /(s(n − 1))
]

Var(t̂) = Var((B −W )/(B + (n − 1)W ))

> var(e^2)
[1] 1.728204e-05
> 2*sigmae^4/(s*(n-1))
[1] 1.684211e-05
>
> var(u^2)
[1] 0.2296663
> 2/n^2 * ( (n*sigmau^2+sigmae^2)^2/(s-1) + sigmae^4/(s*(n-1)) )
[1] 0.223112
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Maximum likelihood approaches - ML and REML Why can’t we focus only on ANOVA approaches?

Problems with Unbalanced Designs

SS can be partitioned in many ways

I fit effect α before β
I fit effect β before α

no obvious SS (or other quadratic form) to estimate variance components from

SS (MS) are not orthogonal (independent)

using an ANOVA approach gives biased estimates of variance components for a
mixed model
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Maximum likelihood approaches - ML and REML Why can’t we focus only on ANOVA approaches?

Methods proposed for unbalanced designs

Henderson’s (1953) methods I, II, and III
I Essentially Least Squares methods
I Problems with mixed models

Maximum Likelihood (ML)
I Unified procedure for estimating fixed effects and variance components
I Desirable asymptotic properties
I Bias in variance components

Residual (restricted) Maximum Likelihood (REML)
I Similar to ANOVA for balanced designs
I No bias due to loss in degrees of freedom for fitting fixed effects
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Maximum likelihood approaches - ML and REML Maximum likelihood
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Maximum likelihood approaches - ML and REML Maximum likelihood

Log-likelihood - general case
Our model y = Xβ + Zu + e can also be written as a generalised linear model (GLM)

y = Xβ + e, where e ∼ Nn(0,V )

with V = ZGZ> + R, where usually G = σ2
u I and R = σ2

e I .

The likelihood of such model is

L(β, σ2
u , σ

2
e ) =

(
1
2π

)N/2

|V |−1/2 exp

(
1
2

(y − Xβ)>V−1(y − Xβ)

)

The log-likelihood in the general case is

`(β, σ2
u , σ

2
e ) = −1

2

[
log(|V |) + (y − Xβ)>V−1(y − Xβ)

]
The log-likelihood for the sire model is

`(β, σ2
u , σ

2
e ) = −1

2

[
log(|V |) + (y − 1µ)>V−1(y − 1µ)

]
,

and V = ZGZ> + R = ZZ>σ2
u + Iσ2

e .
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Maximum likelihood approaches - ML and REML Maximum likelihood

Maximum Likelihood approach - one-way model
It follows (Searle, Linear Models, page 418) that,

`(β, σ2
u , σ

2
e ) =− 1

2
[
s log(nσ2

u + σ2
e ) + s(n − 1) log(σ2

e ) + SSW /σ2
e + SSB/(nσ2

u + σ2
e )

+ sn(ȳ − µ)2/(nσ2
u + σ2

e )
]

Maximum Likelihood Estimation (MLE)

Taking differentials with respect to µ, σ2
u

and σ2
e , we obtain

µ̂ = ȳ

σ̂2
u =

(
(
s − 1
s

)B −W

)
/n

σ̂2
e = W

with the condition that ((s − 1)/s)B ≥W

> c(sum(y)/(n*s), mu)
[1] 1.275278 1.200000

> c(((s-1)/s*B-W)/n, sigmau)
[1] 0.7988936 1.0000000

> c(sqrt(W), sigmae)
[1] 0.1923142 0.2000000

=> classic estimate of the mean, same estimate for σ2
e as ANOVA,

but biased estimate of σ2
u ((B-W)/n for anova)
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Maximum likelihood approaches - ML and REML Residual maximum likelihood (REML)

ML vs REML

Maximum Likelihood (ML)

` = −
[
(log(|V |) + (y − Xβ)>V−1(y − Xβ)

]
/2

‘Determinant of a variance matrix, plus a weighted sum of squares of residuals’

Residual (or restricted) Maximum Likelihood (REML)

`R = −
[
(log(|V |)− log(|X>V−1X |−1) + (y − X β̂)>V−1(y − X β̂)

]
/2

− log(|X>V−1X |−1): variance term associated with the estimation of β̂
“penalty term”

Where does that come from?
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Maximum likelihood approaches - ML and REML Residual maximum likelihood (REML)

Penalty term

Marginal model

y = Xβ + e
E(y) = Xβ

Var(y) = V = ZGZ>σ2
u + Rσ2

e

y ∼ N (Xβ,ZGZ>σ2
u + Rσ2

e )

Linear combinations of y have a non-negative variance (V is ‘non-negative definite’)

If we knew the matrix V , then
β̂ = (X>V−1X )−1X>V−1y (weighted least squares)
Var(β̂) = (X>V−1X )−1

Side note: the model y = Xβ + Zu + e is more restrictive than the marginal model:
variances of both e and u are non-negative.
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Maximum likelihood approaches - ML and REML Residual maximum likelihood (REML)

Estimation/computation

How to maximise the likelihood?

Maximise likelihood = maximise log-likelihood
Many methods, e.g.,

I Derivative free
I E(xpectation)M(aximisation)
I Using second differentials

Fixed effects and REML
Usual estimates are,

β̂ = (X>V̂−1X )−1X>V̂−1y

These estimates of fixed effects are not maximum likelihood estimates!!!

The likelihood was optimised independent of the fixed effects

ML properties for the estimates of fixed effects do not apply − > no LRT, e.g. use
Wald test
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Maximum likelihood approaches - ML and REML Residual maximum likelihood (REML)

REML for balanced one-way model

`R = −1
2
[
(s − 1) log(nσ2

u + σ2
e ) + s(n − 1) log(σ2

e ) + SSW /σ2
e + SSB/(nσ2

u + σ2
e )
]

We solve the partial derivatives
∂`R
∂σ2

e
and

∂`R
∂σ2

u
and obtain

REML estimates

σ̂2
e = W

σ̂2
u = (B −W )/n

Same as ANOVA estimates (balanced, one way)!
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Maximum likelihood approaches - ML and REML Residual maximum likelihood (REML)

Estimates

If B >W , then the maximum likelihood estimates are identical to the ANOVA
estimates

If B <W (negative ANOVA estimates), then
σ̂2
u = 0
σ̂2
e = (w1W + w2B)/(w1 + w2)

= (SSB + SSW )/(ns − 1)
= TSS/(N − 1)

where the weights wi =1/variance.
w1 = 1/(2σ2

e /(s(n − 1)))
w2 = 1/(2σ4

e /(s − 1))
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ML vs REML

Balanced designs; on-way models
µ̂ = ȳ

σ̂2
u =

(
(
s − 1
s

)B −W

)
/n

σ̂2
e = W

> c(sum(y)/(n*s), mu)
[1] 1.275278 1.200000

> c(((s-1)/s*B-W)/n, sigmau)
[1] 0.7988936 1.0000000

> c(sqrt(W), sigmae)
[1] 0.1923142 0.2000000

σ̂2
e = W

σ̂2
u = (B −W )/n

> c(sqrt(W),sigmae)
[1] 0.2177291 0.2000000

> c(sqrt((B - W)/n),sigmau)
[1] 0.8609538 1.0000000
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ML vs REML

Balanced designs; on-way models; fixed effects

> library(lme4)
> p = 20
> X = matrix(rnorm(s*n*p), nrow=s*n)
> X = scale(X)
> beta = rnorm(p, sd=0.1)

> ML.u=ML.e=
+ REML.u=REML.e= vector("numeric", length=50)
> for(iter in 1:50){
+ ui = rnorm(s,sd=sigmau)
+ eit = rnorm(n*s, sd=sigmae)
+
+ y = mu + X%*% beta + Z %*% ui + eit
+
+ a = lmer(y~ X+ (1|grp), REML=FALSE) # ML
+ b = lmer(y~ X+ (1|grp), REML=TRUE) # REML
+
+ ML.u[iter] = as.data.frame(VarCorr(a))[1,5]
+ ML.e[iter] = as.data.frame(VarCorr(a))[2,5]
+ REML.u[iter] = as.data.frame(VarCorr(b))[1,5]
+ REML.e[iter] = as.data.frame(VarCorr(b))[2,5]
+ }
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ML vs REML

Unbalanced designs; one-way models; fixed effects

> n = sample(5:20,s, replace=TRUE)
> grp=factor(rep(1:s, n))

> ML.u=ML.e=
+ REML.u=REML.e= vector("numeric", length=50)
> for(iter in 1:50){
+ ui = rnorm(s,sd=sigmau)
+ eit = rnorm(n*s, sd=sigmae)
+
+ y = mu + X%*% beta + Z %*% ui + eit
+
+ a = lmer(y~ X+ (1|grp), REML=FALSE) # ML
+ b = lmer(y~ X+ (1|grp), REML=TRUE) # REML
+
+ ML.u[iter] = as.data.frame(VarCorr(a))[1,5]
+ ML.e[iter] = as.data.frame(VarCorr(a))[2,5]
+ REML.u[iter] = as.data.frame(VarCorr(b))[1,5]
+ REML.e[iter] = as.data.frame(VarCorr(b))[2,5]
+ }
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Link to Heritability

Outline

1 Reminder Linear models

2 Balanced designs; one-way models; the sire model

3 Balanced designs; one-way models; ANOVA
ANOVA: ANalysis Of VAriance
Properties of estimators

4 Maximum likelihood approaches - ML and REML
Why can’t we focus only on ANOVA approaches?
Maximum likelihood
Residual maximum likelihood (REML)

5 ML vs REML

6 Link to Heritability
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Link to Heritability

Genome-Wide Complex Trait Analysis (GCTA)

y = 1nµ+ g + e, (1)

Var(g) = Gσ2
a with G the relatedness (GRM) matrix; V = Var(y) = Gσ2

g + Iσ2
e .

σ2
g and σ2

e estimated by REML; h2 =
σ2
g

Var(y)
.

limitation of R: lmer: random effects are assumed independent; you cannot input the
GRM. lmer4qtl seems to be a recent alternative.
In any case, R is not advised for ML/REML analysis with big datasets (too slow)

We use GCTA
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