Variance component estimation

Winter School 2022

Jian Zeng

Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model
(3) Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators
(4) Maximum likelihood approaches - ML and REML
- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
(6) Link to Heritability

Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model

3 Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators
(4) Maximum likelihood approaches - ML and REML
- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
(6) Link to Heritability

Fixed models

Assume we have N groups of T individuals each,

$$
y_{i t}=\mu+\beta_{i}+e_{i t}, \quad i=1, \ldots, N \text { and } t=1, \ldots, T
$$

where

- μ is an unknown parameter to estimate (fixed effect)
- β_{i} is an unknown parameter to estimate that is constant for all t at i fixed (fixed effects)
- $e_{\text {it }}$ residuals, with mean $E(e)=0$ and variance-covariance $\operatorname{Var}(\boldsymbol{e})=\sigma_{e}^{2} \boldsymbol{l}$.

$$
\operatorname{Var}\left(y_{i t}\right)=\operatorname{Var}\left(e_{i t}\right)=\sigma_{e}^{2}
$$

Suppose we have 2 groups $(i=1,2)$ of 3 individual $(t=1,2,3)$.

$$
y_{i t}=\mu+\beta_{i}+e_{i t}, \text { or in matrix form } \boldsymbol{y}=\mu+\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e},
$$

where $\boldsymbol{\beta}$ is a vector of fixed effects. The levels represents all the levels of interest,
$\boldsymbol{y}=\left(\begin{array}{l}y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23}\end{array}\right), \boldsymbol{\mu}=\left(\begin{array}{l}\mu \\ \mu \\ \mu \\ \mu \\ \mu \\ \mu\end{array}\right), \boldsymbol{X}=\left(\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right), \boldsymbol{\beta}=\binom{\beta_{1}}{\beta_{2}}, \boldsymbol{e}=\left(\begin{array}{l}e_{11} \\ e_{12} \\ e_{13} \\ e_{21} \\ e_{22} \\ e_{23}\end{array}\right)$

Random models

Assume we have N groups of T individuals each,

$$
y_{i t}=\mu+u_{i}+e_{i t}, \quad i=1, \ldots, N \text { and } t=1, \ldots, T
$$

where

- μ is an unknown parameter to estimate (fixed effect)
- $\left(u_{1}, \ldots, u_{N}\right)$ is a vector or random values with mean $E(\boldsymbol{u})=0$ and variance-covariance $\operatorname{Var}(\boldsymbol{u})=\sigma_{u}^{2} \boldsymbol{I}$ (random effect)
- $e_{i t}$ residuals, with mean $E(e)=0$ and variance-covariance $\operatorname{Var}(\boldsymbol{e})=\sigma_{e}^{2} \boldsymbol{I}$.

$$
\operatorname{Var}\left(y_{i t}\right)=\operatorname{Var}\left(u_{i}\right)+\operatorname{Var}\left(e_{i t}\right)=\sigma_{u}^{2}+\sigma_{e}^{2}
$$

Suppose we have 2 groups $(i=1,2)$ of 3 individual $(t=1,2,3)$.

$$
y_{i t}=\mu+u_{i}+e_{i t} \text { or in a matrix form } \boldsymbol{y}=\mu+\mathbf{Z} \boldsymbol{u}+\boldsymbol{e},
$$

where \boldsymbol{u} is random, the levels are considered drawn from an infinite population of levels,
$\boldsymbol{y}=\left(\begin{array}{l}y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23}\end{array}\right), \boldsymbol{\mu}=\left(\begin{array}{l}\mu \\ \mu \\ \mu \\ \mu \\ \mu \\ \mu\end{array}\right), \boldsymbol{Z}=\left(\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right), \boldsymbol{u}=\binom{u_{1}}{u_{2}}, \boldsymbol{e}=\left(\begin{array}{l}e_{11} \\ e_{12} \\ e_{13} \\ e_{21} \\ e_{22} \\ e_{23}\end{array}\right)$

Mixed models

Mixed models (MM) contain both fixed and random factors

$$
y=X \beta+Z u+e
$$

where

- \boldsymbol{y} vector of observed dependent values, with mean $E(\boldsymbol{y})=\boldsymbol{X} \boldsymbol{\beta}$
- $\boldsymbol{\beta}$ vector of unknown parameters to estimate (fixed effects)
- \boldsymbol{u} vector of unknown random effects, with mean $E(\boldsymbol{u})=0$ and variance-covariance $\operatorname{Var}(\boldsymbol{u})=\boldsymbol{G}$ (usually $\boldsymbol{G}=\sigma_{u}^{2} \boldsymbol{I}$)
- e vector of residuals, with mean $E(e)=0$ and variance-covariance $\operatorname{Var}(\boldsymbol{e})=\boldsymbol{R}$ (usually $\boldsymbol{R}=\sigma_{e}^{2} \boldsymbol{l}$),
- \boldsymbol{X} and \boldsymbol{Z} are design matrices
$\operatorname{Var}(\boldsymbol{y})=\boldsymbol{V}=\boldsymbol{Z G Z} \boldsymbol{Z}^{\top}+\boldsymbol{R}$

Example

Fitting a mean, unrelated sires, uncorrelated errors

$$
\boldsymbol{y}=\boldsymbol{\mu}+\mathbf{Z u}+\boldsymbol{e}
$$

$\boldsymbol{V}=\operatorname{Var}(\boldsymbol{y})=\boldsymbol{Z} \boldsymbol{Z}^{\top} \sigma_{u}^{2}+\boldsymbol{I} \sigma_{e}^{2}$
If $\boldsymbol{Z}=\left(\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right)$, then $\boldsymbol{Z} \boldsymbol{Z}^{\top}=\left(\begin{array}{cccccc}1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1\end{array}\right)$
And we get $\boldsymbol{V}=\left(\begin{array}{cccccc}\sigma_{u}^{2}+\sigma_{e}^{2} & \sigma_{u}^{2} & \sigma_{u}^{2} & 0 & 0 & 0 \\ \sigma_{u}^{2} & \sigma_{u}^{2}+\sigma_{e}^{2} & \sigma_{u}^{2} & 0 & 0 & 0 \\ \sigma_{u}^{2} & \sigma_{u}^{2} & \sigma_{u}^{2}+\sigma_{e}^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_{u}^{2}+\sigma_{e}^{2} & \sigma_{u}^{2} & \sigma_{u}^{2} \\ 0 & 0 & 0 & \sigma_{u}^{2} & \sigma_{u}^{2}+\sigma_{e}^{2} & \sigma_{u}^{2} \\ 0 & 0 & 0 & \sigma_{u}^{2} & \sigma_{u}^{2} & \sigma_{u}^{2}+\sigma_{e}^{2}\end{array}\right)$

Aim

GBLUP reminder

$$
\boldsymbol{y}=1_{\boldsymbol{n}} \mu+Z \boldsymbol{g}+\boldsymbol{e}
$$

breeding values $\boldsymbol{g} \sim \mathcal{N}\left(0, \boldsymbol{G} \sigma_{a}^{2}\right)$, where \boldsymbol{G} is the genomic relationship matrix. GBLUP solves the following system of equations

$$
\left[\begin{array}{cc}
1_{n}^{\prime} 1_{n} & 1_{n}^{\prime} \boldsymbol{Z} \\
\boldsymbol{Z}^{\prime} 1_{n} & \boldsymbol{Z}^{\prime} \boldsymbol{Z}+\boldsymbol{G}^{-1} \frac{\sigma_{e}^{2}}{\sigma_{a}^{2}}
\end{array}\right]\left[\begin{array}{l}
\hat{\mu} \\
\hat{\boldsymbol{g}}
\end{array}\right]=\left[\begin{array}{l}
1_{n}^{\prime} \boldsymbol{y} \\
\boldsymbol{Z}^{\prime} \boldsymbol{y}
\end{array}\right]
$$

BLUP: estimate the mean μ and predict breeding values \boldsymbol{g}, all based on known variance

Aim of these lectures: estimate variance components (estimate λ)

Two ways to estimate variance components:

- ANOVA: ANalysis Of VAriance
- Maximum Likelihood approaches

Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model
(3) Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators

4. Maximum likelihood approaches - ML and REML

- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML

6 Link to Heritability

Sire model

Consider a sire model with s unrelated sires and n progeny per sire; one-way model (one random effect: sire), with a balanced design (same number of observations per sire).

```
\(y_{i t}=\mu+u_{i}+e_{i t}\)
\(\operatorname{Var}\left(y_{i t}\right)=\sigma_{u}^{2}+\sigma_{e}^{2}\)
\(\operatorname{Cov}\left(y_{i t}, y_{i k}\right)=\sigma_{u}^{2}\)
\(i=1 \ldots, s\)
\(t=1, \ldots, n\)
\(\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\mathbf{Z u}+\boldsymbol{e}\)
\(\operatorname{Var}(\boldsymbol{y})=\boldsymbol{Z Z}^{\top} \sigma_{u}^{2}+\boldsymbol{I} \sigma_{e}^{2}\)
\(\operatorname{Var}\left(\boldsymbol{y}_{i}\right)=\boldsymbol{Z}_{i} \boldsymbol{Z}_{i}^{\top} \sigma_{u}^{2}\)
\(\boldsymbol{X}\) : matrix of one column of
sn ones
\(\boldsymbol{\beta}=\mu\)
```

```
## Simulating data
```


Simulating data

> set.seed(123)
> set.seed(123)
> mu = 1.2; s = 10; n = 20
> mu = 1.2; s = 10; n = 20
> sigmau = 1; sigmae = 0.2
> sigmau = 1; sigmae = 0.2
> ui = rnorm(s,sd=sigmau)
> ui = rnorm(s,sd=sigmau)
> eit = rnorm(n*s, sd=sigmae)
> eit = rnorm(n*s, sd=sigmae)
> y = matrix(NA_real_, nrow=n*s, ncol=1)
> y = matrix(NA_real_, nrow=n*s, ncol=1)
> for(i in l:s){
> for(i in l:s){

+ ind = (n*(i-1)+1) : (n*(i-1)+n)
+ ind = (n*(i-1)+1) : (n*(i-1)+n)
+ y[ind] = mu + ui[i] + eit[ind]
+ y[ind] = mu + ui[i] + eit[ind]
+ }
+ }

create a grouping factor

create a grouping factor

> grp = factor(rep(1:s,each = n))
> grp = factor(rep(1:s,each = n))

create Z

create Z

> Z = matrix(0,nrow=s*n, ncol=s)
> Z = matrix(0,nrow=s*n, ncol=s)
> for(i in 1:s){
> for(i in 1:s){

+ ind = which(grp = = i)
+ ind = which(grp = = i)
+ Z[indic,i] = 1
+ Z[indic,i] = 1
+ }

```
+ }
```


Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model
(3) Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators
(4) Maximum likelihood approaches - ML and REML
- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
© Link to Heritability

Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model
(3) Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators
(4) Maximum likelihood approaches - ML and REML
- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
(6) Link to Heritability

ANOVA table - general framework

Source of variation	df	SS	MS	$\mathrm{E}(\mathrm{MS})$
Mean	$d f_{M}=1$	$S S M$	$S S M / d f_{M}$	$\mathrm{E}\left(S S M / d f_{M}\right)$
Between sires	$d f_{B}=s-1$	$S S B$	$S S B / d f_{S}$	$\mathrm{E}\left(S S B / d f_{S}\right)$
Within sires (residuals)	$d f_{W}=s(n-1)$	$S S W$	$S S W / d f_{W}$	$\mathrm{E}\left(S S W / d f_{W}\right)$
Total	N	$S S T$		

df: degrees of freedom
SS: sum of squares
MS: Mean square (mean of SS)
$\mathrm{E}(\mathrm{MS})$: Expectation of MS

Sums of squares

We decompose SST into a mean, a between and a within family component:

$$
\begin{aligned}
S S T & =\sum_{i} \sum_{t} y_{i t}^{2}=\sum_{i} \sum_{t}\left(y_{i t}-\bar{y}+\bar{y}\right)^{2} \\
& =\sum_{i} \sum_{t}\left(y_{i t}-\bar{y}\right)^{2}+N \bar{y}^{2} \\
& =\sum_{i} \sum_{t}\left[\left(y_{i t}-\bar{y}_{i}\right)+\left(\bar{y}_{i}-\bar{y}\right)\right]^{2}+N \bar{y}^{2} \\
& =\sum_{i} \sum_{t}\left[\left(y_{i t}-\bar{y}_{i}\right)^{2}+2\left(y_{i t}-\bar{y}_{i}\right)\left(\bar{y}_{i}-\bar{y}\right)+\left(\bar{y}_{i}-\bar{y}\right)^{2}\right]+N \bar{y}^{2}
\end{aligned}
$$

\bar{y} is the grand mean, \bar{y}_{i} is the family mean.
The middle term is equal to zero by definition of a mean: $\sum_{t}\left(y_{i t}-\bar{y}_{i}\right)=0$.
The last term is independent of j so $\sum_{i} \sum_{t}\left(\bar{y}_{i}-\bar{y}\right)^{2}=n \sum_{i}\left(\bar{y}_{i}-\bar{y}\right)^{2}$
Decomposition of SS

$$
\begin{aligned}
S S T & =N \bar{y}^{2}+n \sum_{i}\left(\bar{y}_{i}-\bar{y}\right)^{2}+\sum_{i} \sum_{t}\left(y_{i t}-\bar{y}_{i}\right)^{2} \\
& =S S_{M}+S S_{B}+S S_{W}
\end{aligned}
$$

ANOVA table - our sire model

Using

$$
\begin{aligned}
S S M & =\left(\sum_{i} \sum_{t} y_{i t}\right)^{2} /(s n) \\
S S B & =\sum_{i}\left(\sum_{t} y_{i t}\right)^{2} / n-\left(\sum_{i} \sum_{t} y_{i t}\right)^{2} /(s n) \\
S S W & =\sum_{i} \sum_{t} y_{i t}^{2}-S S B-S S M \\
S S T & =\sum_{i} \sum_{t} y_{i t}^{2}
\end{aligned}
$$

we get

Source of variation	df	SS	MS	$\mathrm{E}(\mathrm{MS})$
Mean	1	$S S M$	$S S M / 1$	$N \mu^{2}+n \sigma_{u}^{2}+\sigma_{e}^{2}$
Between sires	$s-1$	SSB	$B=S S B /(s-1)$	$n \sigma_{u}^{2}+\sigma_{e}^{2}$
Within sires (residuals)	$s(n-1)$	$S S W$	$W=S S W /(s(n-1))$	σ_{e}^{2}
Total	$N=s n$	$S S T$		

cf lecture notes for calculations and proofs

Sum of Squares - Sire model

$$
\begin{aligned}
& S S T=\sum_{i} \sum_{t} y_{i t}^{2} \\
& \text { SSM }=\left(\sum_{i} \sum_{t} y_{i t}\right)^{2} /(s n) \\
& S S B=\sum_{i}\left(\sum_{t} y_{i t}\right)^{2} / n \\
& -\left(\sum_{i} \sum_{t} y_{i t}\right)^{2} /(s n) \\
& >\text { SST }=\operatorname{sum}\left(y^{\wedge} 2\right) \text {; SST } \\
& \text { [1] } 422.0067 \\
& \text { > SSM = sum(y)^2 / (s*n); SSM } \\
& \text { [1] } 279.1494 \\
& \text { > SSB = } 0 \\
& \text { > for(i in 1:s)\{ } \\
& +\quad \text { ind }=(n *(i-1)+1):(n *(i-1)+n) \\
& +\quad \text { yit }=\operatorname{sum}(y[\text { ind }]) \\
& +\quad \text { SSB }=\text { SSB }+ \text { yit^2/n } \\
& \text { + \} } \\
& \text { > SSB = SSB - SSM; SSB } \\
& \text { [1] } 133.8501
\end{aligned}
$$

Estimation of σ_{u}^{2} and σ_{e}^{2}

Principle of ANOVA

"Equate SS of analysis of variance to their expected values, giving a set of equations that are linear in the variance components to be estimated"

For the one-way design: two equations, two unknowns:

$$
\begin{aligned}
& B=n \sigma_{u}^{2}+\sigma_{e}^{2} \\
& W=\sigma_{e}^{2}
\end{aligned}
$$

$$
>B=S S B /(s-1) ; B
$$

$$
\text { [1] } 14.87224
$$

$$
>W=S S W /(S *(n-1)) ; W
$$

Hence,

$$
\text { [1] } 0.04740597
$$

$$
\begin{aligned}
& \widehat{\widehat{\sigma_{e}^{2}}}=W \\
& \widehat{\sigma_{u}^{2}}=(B-W) / n
\end{aligned}
$$

$$
>c(\text { sqrt }(W) \text {, sigmae })
$$

$$
\text { [1] 0.2177291 } 0.2000000
$$

$$
>c(\text { sqrt }((B-W) / n), \text { sigmau })
$$

$$
\text { [1] } 0.86095381 .0000000
$$

Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model
(3) Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators
(4) Maximum likelihood approaches - ML and REML
- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
(6) Link to Heritability

50 repeats - no(?) Bias

```
> u = e = NULL
> for(iter in 1:50){
    ui = rnorm(s,sd=sigmau)
    eit = rnorm(n*s, sd=sigmae)
    y = mu + Z %* % ui + eit
    SST = sum(y^2)
    SSM = t(y) %*% X %*%
        solve(t(X) %*% X) %*%
        t(X) %*% y
    SSB = t(y) %*% Z %*%
        solve(t(Z)%*%Z) %*%
        t(Z) %*% y - SSM
    SSW = sum(y^2) - SSB - SSM
    B = SSB/(s-1); B
    W = SSW/(s*(n-1)); W
    e = c(e, sqrt(W))
    u = c(u, sqrt((B - W)/n))
+ }
```

Properties of estimators
(1) Unbiased

$$
\begin{aligned}
E\left(\widehat{\sigma_{e}^{2}}\right) & =E(W)=\sigma_{e}^{2} \\
E\left(\widehat{\sigma_{u}^{2}}\right) & =E(B-W) / n=E(B) / n-E(W) / n \\
& =\left(\sigma_{u}^{2}+\sigma_{e}^{2} / n\right)-\sigma_{e}^{2} / n \\
& =\sigma_{u}^{2}
\end{aligned}
$$

(2) Minimum Variance: Estimates have minimum variance among all possible unbiased estimators. True for normal and non-normal data
(3) Distribution: Under normality, only the estimate of the residual variance has a χ^{2} distribution

- Sampling variances

Using that $S S W \sim \sigma_{e}^{2} \chi^{2}\left(d f_{W}\right)$, and $\operatorname{Var}(S S W)=2 \sigma_{e}^{4} d f_{W}$, we have

$$
\begin{aligned}
& \operatorname{Var}\left(\widehat{\sigma_{e}^{2}}\right)=\operatorname{Var}(W)=\operatorname{Var}(S S W) / d f_{w}^{2} \\
&=d f_{w} 2 \sigma_{e}^{4} / d f_{W}^{2} \\
&=2 \sigma_{e}^{4} / d f_{W} \\
& \operatorname{Var}\left(\widehat{\sigma_{u}^{2}}\right)=\operatorname{Var}((B-W) / n) \\
&=[\operatorname{Var}(B)+\operatorname{Var}(W)] / n^{2} \\
&=\left[2 E(B)^{2} / d f_{B}+2 E(W)^{2} / d f_{W}\right] / n^{2} \\
&=\left[2\left(n \sigma_{u}^{2}+\sigma_{e}^{2}\right)^{2} / d f_{B}+2 \sigma_{e}^{4} / d f_{w}\right] / n^{2} \\
&=\left(2 / n^{2}\right)\left[\left(n \sigma_{u}^{2}+\sigma_{e}^{2}\right)^{2} /(s-1)+\sigma_{e}^{4} /(s(n-1))\right] \\
& \operatorname{Var}(\hat{t})=\operatorname{Var}((B-W) /(B+(n-1) W))
\end{aligned}
$$

```
> var(e^2)
[1] 1.728204e-05
> 2*sigmae^4/(s*(n-1))
[1] 1.684211e-05
> var(u^2)
[1] 0.2296663
> 2/n^2 * ( (n*sigmau^2+sigmae^2)^2/(s-1) + sigmae^4/(s*(n-1)) )
[1] 0.223112
```


Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model
(3) Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators
(4) Maximum likelihood approaches - ML and REML
- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
(6) Link to Heritability

Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model
(3) Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators
(4) Maximum likelihood approaches - ML and REML
- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
(6) Link to Heritability

Problems with Unbalanced Designs

- SS can be partitioned in many ways
- fit effect α before β
- fit effect β before α
- no obvious SS (or other quadratic form) to estimate variance components from
- SS (MS) are not orthogonal (independent)
- using an ANOVA approach gives biased estimates of variance components for a mixed model

Methods proposed for unbalanced designs

- Henderson's (1953) methods I, II, and III
- Essentially Least Squares methods
- Problems with mixed models
- Maximum Likelihood (ML)
- Unified procedure for estimating fixed effects and variance components
- Desirable asymptotic properties
- Bias in variance components
- Residual (restricted) Maximum Likelihood (REML)
- Similar to ANOVA for balanced designs
- No bias due to loss in degrees of freedom for fitting fixed effects

Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model
(3) Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators

4 Maximum likelihood approaches - ML and REML

- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
© Link to Heritability

Log-likelihood - general case
Our model $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z u}+\boldsymbol{e}$ can also be written as a generalised linear model (GLM)

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}, \text { where } \boldsymbol{e} \sim \mathcal{N}_{n}(0, \boldsymbol{V})
$$

with $\boldsymbol{V}=\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{\top}+\boldsymbol{R}$, where usually $\boldsymbol{G}=\sigma_{u}^{2} \boldsymbol{I}$ and $\boldsymbol{R}=\sigma_{e}^{2} \boldsymbol{I}$.
The likelihood of such model is

$$
L\left(\boldsymbol{\beta}, \sigma_{u}^{2}, \sigma_{e}^{2}\right)=\left(\frac{1}{2 \pi}\right)^{N / 2}|\boldsymbol{V}|^{-1 / 2} \exp \left(\frac{1}{2}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\top} \boldsymbol{V}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})\right)
$$

The log-likelihood in the general case is

$$
\ell\left(\boldsymbol{\beta}, \sigma_{u}^{2}, \sigma_{e}^{2}\right)=-\frac{1}{2}\left[\log (|\boldsymbol{V}|)+(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\top} \boldsymbol{V}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})\right]
$$

The log-likelihood for the sire model is

$$
\ell\left(\boldsymbol{\beta}, \sigma_{u}^{2}, \sigma_{e}^{2}\right)=-\frac{1}{2}\left[\log (|\boldsymbol{V}|)+(\boldsymbol{y}-1 \boldsymbol{\mu})^{\top} \boldsymbol{V}^{-1}(\boldsymbol{y}-1 \boldsymbol{\mu})\right],
$$

and $\boldsymbol{V}=\boldsymbol{Z G Z} \boldsymbol{Z}^{\top}+\boldsymbol{R}=\boldsymbol{Z Z} \boldsymbol{Z}^{\top} \sigma_{\mu}^{2}+\boldsymbol{I} \sigma_{e}^{2}$.

Maximum Likelihood approach - one-way model It follows (Searle, Linear Models, page 418) that,

$$
\begin{aligned}
\ell\left(\boldsymbol{\beta}, \sigma_{u}^{2}, \sigma_{e}^{2}\right)= & -\frac{1}{2}\left[s \log \left(n \sigma_{u}^{2}+\sigma_{e}^{2}\right)+s(n-1) \log \left(\sigma_{e}^{2}\right)+S S W / \sigma_{e}^{2}+S S B /\left(n \sigma_{u}^{2}+\sigma_{e}^{2}\right)\right. \\
& \left.+s n(\bar{y}-\mu)^{2} /\left(n \sigma_{u}^{2}+\sigma_{e}^{2}\right)\right]
\end{aligned}
$$

Maximum Likelihood Estimation (MLE)

Taking differentials with respect to μ, σ_{u}^{2} and σ_{e}^{2}, we obtain

$$
\begin{aligned}
\widehat{\mu} & =\bar{y} \\
\widehat{\sigma}_{u}^{2} & =\left(\left(\frac{s-1}{s}\right) B-W\right) / n \\
\widehat{\sigma}_{e}^{2} & =W
\end{aligned}
$$

$>c(((s-1) / s * B-W) / n$, sigmau)
[1] 0.79889361 .0000000
> c(sqrt(W), sigmae)
[1] 0.19231420 .2000000
with the condition that $((s-1) / s) B \geq W$
$=>$ classic estimate of the mean, same estimate for σ_{e}^{2} as ANOVA, but biased estimate of $\sigma_{u}^{2}((\mathrm{~B}-\mathrm{W}) / \mathrm{n}$ for anova)

Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model
(3) Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators

4 Maximum likelihood approaches - ML and REML

- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
(6) Link to Heritability

ML vs REML

Maximum Likelihood (ML)

$$
\ell=-\left[\left(\log (|\boldsymbol{V}|)+(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})^{\top} \boldsymbol{v}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})\right] / 2\right.
$$

'Determinant of a variance matrix, plus a weighted sum of squares of residuals'

Residual (or restricted) Maximum Likelihood (REML)

$$
\ell_{R}=-\left[\left(\log (|\boldsymbol{V}|)-\log \left(\left|\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{X}\right|^{-1}\right)+(\boldsymbol{y}-\boldsymbol{x} \widehat{\boldsymbol{\beta}})^{\top} \boldsymbol{V}^{-1}(\boldsymbol{y}-\boldsymbol{x} \widehat{\boldsymbol{\beta}})\right] / 2\right.
$$

$-\log \left(\left|\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{X}\right|^{-1}\right)$: variance term associated with the estimation of $\widehat{\boldsymbol{\beta}}$ "penalty term"

Where does that come from?

Penalty term

Marginal model

- $E(y)=X \beta$

$$
y=X \beta+e
$$

- $\operatorname{Var}(\boldsymbol{y})=\boldsymbol{V}=\boldsymbol{Z G Z} \boldsymbol{Z}^{\top} \sigma_{u}^{2}+\boldsymbol{R} \sigma_{e}^{2}$
- $\boldsymbol{y} \sim \mathcal{N}\left(\boldsymbol{X} \boldsymbol{\beta}, \boldsymbol{Z G Z} \boldsymbol{Z}^{\top} \sigma_{u}^{2}+\boldsymbol{R} \sigma_{e}^{2}\right)$

Linear combinations of \boldsymbol{y} have a non-negative variance (\boldsymbol{V} is 'non-negative definite')

If we knew the matrix V, then
$\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{y}$ (weighted least squares)
$\operatorname{Var}(\widehat{\boldsymbol{\beta}})=\left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1}$

Side note: the model $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{u}+\boldsymbol{e}$ is more restrictive than the marginal model: variances of both \boldsymbol{e} and \boldsymbol{u} are non-negative.

Estimation/computation

How to maximise the likelihood?

- Maximise likelihood = maximise log-likelihood
- Many methods, e.g.,
- Derivative free
- E(xpectation)M(aximisation)
- Using second differentials

Fixed effects and REML

Usual estimates are,

$$
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \widehat{\boldsymbol{V}}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \widehat{\boldsymbol{V}}^{-1} \boldsymbol{y}
$$

These estimates of fixed effects are not maximum likelihood estimates!!!

- The likelihood was optimised independent of the fixed effects
- ML properties for the estimates of fixed effects do not apply $->$ no LRT, e.g. use Wald test

REML for balanced one-way model
$\ell_{R}=-\frac{1}{2}\left[(s-1) \log \left(n \sigma_{u}^{2}+\sigma_{e}^{2}\right)+s(n-1) \log \left(\sigma_{e}^{2}\right)+S S W / \sigma_{e}^{2}+S S B /\left(n \sigma_{u}^{2}+\sigma_{e}^{2}\right)\right]$

We solve the partial derivatives $\frac{\partial \ell_{R}}{\partial \sigma_{e}^{2}}$ and $\frac{\partial \ell_{R}}{\partial \sigma_{u}^{2}}$ and obtain

REML estimates

$$
\begin{aligned}
\widehat{\sigma_{e}^{2}} & =W \\
\widehat{\sigma_{u}^{2}} & =(B-W) / n
\end{aligned}
$$

Same as ANOVA estimates (balanced, one way)!

Estimates

- If $B>W$, then the maximum likelihood estimates are identical to the ANOVA estimates
- If $B<W$ (negative ANOVA estimates), then

$$
\begin{aligned}
\widehat{\sigma_{u}^{2}} & =0 \\
\widehat{\sigma_{e}^{2}} & =\left(w_{1} W+w_{2} B\right) /\left(w_{1}+w_{2}\right) \\
& =(S S B+S S W) /(n s-1) \\
& =T S S /(N-1)
\end{aligned}
$$

where the weights $w_{i}=1 /$ variance.

$$
\begin{aligned}
& w_{1}=1 /\left(2 \sigma_{e}^{2} /(s(n-1))\right) \\
& w_{2}=1 /\left(2 \sigma_{e}^{4} /(s-1)\right)
\end{aligned}
$$

Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model

3 Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators
(4) Maximum likelihood approaches - ML and REML
- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
(6) Link to Heritability

Balanced designs; on-way models $\widehat{\mu}=\bar{y}$
$\widehat{\sigma}_{u}^{2}=\left(\left(\frac{s-1}{s}\right) B-W\right) / n$
$\widehat{\sigma}_{e}^{2}=W$
$>\mathrm{c}($ sum $(\mathrm{y}) /(\mathrm{n} * \mathrm{~s}), \mathrm{mu})$
[1] 1.2752781 .200000
$>\mathrm{c}(((\mathrm{s}-1) / \mathrm{s} * \mathrm{~B}-\mathrm{W}) / \mathrm{n}$, sigmau)
[1] 0.79889361 .0000000
> c(sqrt(W), sigmae)
[1] 0.19231420 .2000000

$$
\begin{aligned}
\widehat{\sigma_{e}^{2}} & =W \\
\widehat{\sigma_{u}^{2}} & =(B-W) / n
\end{aligned}
$$

> c(sqrt(W), sigmae)
[1] 0.21772910 .2000000
> c(sqrt((B - W)/n), sigmau)
[1] 0.86095381 .0000000

random effects

Balanced designs; on-way models; fixed effects
residuals
ui $=$ rnorm($s, s d=s i g m a u)$
$\begin{array}{ll}+ & \text { ui }=\operatorname{rnorm}(s, s d=s i g m a u) \\ + & \text { eit }=\operatorname{rnorm}(n * s, s d=s i g m a e)\end{array}$
$y=m u+X \% * \%$ beta $+Z \% * \%$ ui + eit
$a=\operatorname{lmer}(y \sim X+(1 \mid g r p), R E M L=F A L S E)$ \# ML
b = lmer(y~ X+ (1|grp), REML=TRUE) \# REML
ML.u[iter] = as.data.frame(VarCorr(a)) $[1,5]$
ML.e[iter] = as.data.frame(VarCorr(a)) [2,5]

REML.u[iter] = as.data.frame(VarCorr(b)) $[1,5]$
$+\quad$ REML.e[iter] = as.data.frame(VarCorr(b)) $[2,5]$ + \}
> library (lme4)
$>p=20$
$>X=$ matrix $($ rnorm $(s * n * p)$, nrow=s*n)
$>X=\operatorname{scale}(X)$
> beta $=$ rnorm($\mathrm{p}, \mathrm{sd}=0.1$)
> ML.u=ML.e=

+ REML.u=REML.e= vector("numeric", length=50)
> for(iter in 1:50)\{
$+$
$+$
$+$
$+$
$+$
$+$
$+$
$+$
random effects

Unbalanced designs; one-way models; fixed effects.
residuals

random effects

$a=\operatorname{lmer}(y \sim X+(1 \mid g r p), ~ R E M L=F A L S E) ~ \# ~ M L$
$\mathrm{b}=\operatorname{lmer}(\mathrm{y} \sim \mathrm{X}+(1 \mid \mathrm{grp})$, REML=TRUE) \# REML
ML.u[iter] = as.data.frame(VarCorr(a)) $[1,5]$
ML.e[iter] = as.data.frame(VarCorr(a)) $[2,5]$ REML.u[iter] = as.data.frame(VarCorr(b)) $[1,5]$ REML.e[iter] = as.data.frame(VarCorr(b)) $[2,5]$
$>n=$ sample(5:20,s, replace=TRUE)
$>\operatorname{grp}=f a c t o r(\operatorname{rep}(1: s, n))$

+ REML. u=REML.e= vector("numeric", length=50)
> for(iter in 1:50)\{
ui $=$ rnorm(s,sd=sigmau)
eit $=$ rnorm(n*s, sd=sigmae)
$y=m u+X \% * \%$ beta $+Z \% * \% u i+e i t$
> ML. $u=M L \cdot e=$
\}

Outline

(1) Reminder Linear models
(2) Balanced designs; one-way models; the sire model

3 Balanced designs; one-way models; ANOVA

- ANOVA: ANalysis Of VAriance
- Properties of estimators
(4) Maximum likelihood approaches - ML and REML
- Why can't we focus only on ANOVA approaches?
- Maximum likelihood
- Residual maximum likelihood (REML)
(5) ML vs REML
(6) Link to Heritability

Genome-Wide Complex Trait Analysis (GCTA)

$$
\begin{equation*}
\boldsymbol{y}=1_{\boldsymbol{n}} \mu+\boldsymbol{g}+\boldsymbol{e} \tag{1}
\end{equation*}
$$

$\operatorname{Var}(\boldsymbol{g})=\boldsymbol{G} \sigma_{a}^{2}$ with \boldsymbol{G} the relatedness (GRM) matrix; $\boldsymbol{V}=\operatorname{Var}(\boldsymbol{y})=\boldsymbol{G} \sigma_{g}^{2}+\boldsymbol{I} \sigma_{e}^{2}$.
σ_{g}^{2} and σ_{e}^{2} estimated by REML; $h^{2}=\frac{\sigma_{g}^{2}}{\operatorname{Var}(\boldsymbol{y})}$.
limitation of R : lmer: random effects are assumed independent; you cannot input the GRM. lmer4qtl seems to be a recent alternative.
In any case, R is not advised for ML/REML analysis with big datasets (too slow)

We use GCTA

