We will learn how to compute polygenic scores (PGS) (or polygenic risk scores (PRS) for diseases) using a commonly used simple method, i.e., clumping + P-value thresholding (C+PT) based on GWAS results.
Code modified from https://choishingwan.github.io/PRS-Tutorial/plink/
We will work on a data set based on real genotypes and simulated phenotypes. The entire data set was partitioned into three independent data sets:
The GWAS results were stored in a file named
simu.ma
:
sumstat="/data/module4/prac1/simu.ma"
head $sumstat
## SNP A1 A2 MAF BETA SE P NMISS
## rs1000002 1 2 0.4867 -0.4164 0.6243 0.5048 9989
## rs1000005 2 1 0.41 0.4399 0.6395 0.4916 9961
## rs10000085 1 2 0.1337 -0.5903 0.9221 0.5221 9991
## rs10000091 2 1 0.3619 -0.4232 0.6463 0.5126 9989
## rs10000150 1 2 0.2235 -0.08279 0.7524 0.9124 9959
## rs10000169 2 1 0.2532 -0.9035 0.7158 0.2069 9986
## rs1000017 1 2 0.4545 -0.5301 0.6344 0.4034 9948
## rs10000189 1 2 0.4169 -0.875 0.6356 0.1687 9893
## rs1000019 2 1 0.1914 0.5932 0.7965 0.4564 9907
Select independent SNPs. This step requires individual genotype data for LD computation. Here we use the GWAS sample as LD reference. In practice, the genotype data in GWAS may not be available and you will need to use a reference sample that matches the GWAS sample in genetics.
LDref="/data/module4/prac1/gwas"
sumstat="/data/module4/prac1/simu.ma"
plink \
--bfile $LDref \
--clump-p1 1 \
--clump-r2 0.1 \
--clump-kb 250 \
--clump $sumstat \
--clump-snp-field SNP \
--clump-field P \
--out simu
This will generate simu.clumped, containing the index SNPs after
clumping is performed. We can extract the index SNP ID by performing the
following command ($3
because the third column contains the
SNP ID):
awk 'NR!=1{print $3}' simu.clumped > simu.clumped.snp
plink
provides a convenient function
--score
and --q-score-range
for calculating
polygenic scores given a range of P-value thresholds.
We will need three files:
$1
because SNP ID is located in the first column;
$7
because the P-value is located in the seventh
column).sumstat="/data/module4/prac1/simu.ma"
awk '{print $1,$7}' $sumstat > SNP.pvalue
echo "1e-8 0 1e-8" > range_list
echo "1e-6 0 1e-6" >> range_list
echo "1e-4 0 1e-4" >> range_list
echo "0.01 0 0.01" >> range_list
echo "0.05 0 0.05" >> range_list
echo "0.1 0 0.1" >> range_list
echo "0.5 0 0.5" >> range_list
echo "1 0 1" >> range_list
We can then calculate the PRS with the following plink
command in the testing population
test="/data/module4/prac1/test"
sumstat="/data/module4/prac1/simu.ma"
plink \
--bfile $test \
--score $sumstat 1 2 5 sum header \
--q-score-range range_list SNP.pvalue \
--extract simu.clumped.snp \
--out test
1st
column is the SNP ID;
2nd
column is the effective allele information; the
5th
column is the effect size estimate; the file contains a
header
and we want to calculate the score as the weighted
sum without dividing by the total number of SNPs.range_list
, where the threshold values (P-values) were
stored in SNP.pvalue
.The P-value threshold that provides the “best-fit” PRS under the C+PT method is usually unknown. To approximate the “best-fit” PRS, we can perform a regression between PRS calculated at a range of P-value thresholds and then select the PRS that explains the highest phenotypic variance. This can be achieved using R as follows:
p.threshold = c("1e-8","1e-6","1e-4","0.01","0.05","0.1","0.5","1")
# Read in the phenotype file
phenotype = read.table("/data/module4/prac1/simu.phen", header=F)
colnames(phenotype) <- c("FID", "IID", "Trait")
# Read in the covariates
covariates = read.table("/data/module4/prac1/covariates.cov", header=T)
# Read in the individual list for testing
indlist = read.table("/data/module4/prac1/test.indlist", header=F)
colnames(indlist) <- c("FID", "IID")
# Now merge the files
pheno <- merge(merge(phenotype, covariates, by=c("FID", "IID")), indlist, by=c("FID","IID"))
# We can then calculate the null model (model with PRS) using a linear regression
null.model <- lm(Trait~., data=pheno[,!colnames(pheno)%in%c("FID","IID")])
# And the R2 of the null model is
null.r2 <- summary(null.model)$r.squared
prs.result <- NULL
for(i in p.threshold){
# Go through each p-value threshold
prs <- read.table(paste0("test.",i,".profile"), header=T)
# Merge the prs with the phenotype matrix
# We only want the FID, IID and PRS from the PRS file, therefore we only select the
# relevant columns
pheno.prs <- merge(pheno, prs[,c("FID","IID", "SCORESUM")], by=c("FID", "IID"))
# Now perform a linear regression on trait with PRS and the covariates
# ignoring the FID and IID from our model
model <- lm(Trait~., data=pheno.prs[,!colnames(pheno.prs)%in%c("FID","IID")])
# model R2 is obtained as
model.r2 <- summary(model)$r.squared
# R2 of PRS is simply calculated as the model R2 minus the null R2
prs.r2 <- model.r2-null.r2
# We can also obtain the coeffcient and p-value of association of PRS as follow
prs.coef <- summary(model)$coeff["SCORESUM",]
prs.beta <- as.numeric(prs.coef[1])
prs.se <- as.numeric(prs.coef[2])
prs.p <- as.numeric(prs.coef[4])
# We can then store the results
prs.result <- rbind(prs.result, data.frame(Threshold=i,
R2=prs.r2,
P=prs.p,
BETA=prs.beta,
SE=prs.se))
}
# Best result is:
prs.result[which.max(prs.result$R2),]
PT = prs.result[which.max(prs.result$R2),1]
write.table(t(c(PT, 0, PT)), "selected_range", quote=F, row.names=F, col.names=F)
# ggplot2 is a handy package for plotting
library(ggplot2)
# generate a pretty format for p-value output
prs.result$print.p <- round(prs.result$P, digits = 3)
prs.result$print.p[!is.na(prs.result$print.p) &
prs.result$print.p == 0] <-
format(prs.result$P[!is.na(prs.result$print.p) &
prs.result$print.p == 0], digits = 2)
prs.result$print.p <- sub("e", "*x*10^", prs.result$print.p)
# Initialize ggplot, requiring the threshold as the x-axis
# (use factor so that it is uniformly distributed)
p = ggplot(data = prs.result, aes(x = factor(Threshold, levels = p.threshold), y = R2)) +
# Specify that we want to print p-value on top of the bars
geom_text(
aes(label = paste(print.p)),
vjust = -1.5,
hjust = 0,
angle = 45,
cex = 4,
parse = T
) +
# Specify the range of the plot, *1.25 to provide enough space for the p-values
scale_y_continuous(limits = c(0, max(prs.result$R2) * 1.25)) +
# Specify the axis labels
xlab(expression(italic(P) - value ~ threshold ~ (italic(P)[T]))) +
ylab(expression(paste("PRS model fit: ", R ^ 2))) +
# Draw a bar plot
geom_bar(aes(fill = -log10(P)), stat = "identity") +
# Specify the colors
scale_fill_gradient2(
low = "dodgerblue",
high = "firebrick",
mid = "dodgerblue",
midpoint = 1e-4,
name = bquote(atop(-log[10] ~ model, italic(P) - value),)
) +
# Some beautification of the plot
theme_classic() + theme(
axis.title = element_text(face = "bold", size = 18),
axis.text = element_text(size = 14),
legend.title = element_text(face = "bold", size =
18),
legend.text = element_text(size = 14),
axis.text.x = element_text(angle = 45, hjust =
1)
)
# save the plot
ggsave("Pred_R2_barplot.png", p, height = 7, width = 7)
Questions
Which P-value threshold generates the “best-fit” PRS?
How much phenotypic variation does the “best-fit” PRS explain?
Generate PRS for the target population based on the selected selected P-value threshold.
target="/data/module4/prac1/target"
sumstat="/data/module4/prac1/simu.ma"
plink \
--bfile $target \
--score $sumstat 1 2 5 sum header \
--q-score-range selected_range SNP.pvalue \
--extract simu.clumped.snp \
--out target
Evaluate the prediction accuracy in the target individuals using R script.
phenFile="/data/module4/prac1/simu.phen"
covFile="/data/module4/prac1/covariates.cov"
indlistFile="/data/module4/prac1/target.indlist"
prsFile="target.1e-4.profile"
Rscript /data/module4/prac1/get_pred_r2.R $phenFile $covFile $indlistFile $prsFile
Is the prediction accuracy expected?