Practical 4 Bayesian methods for genomic prediction

Winter School 2022 Module 4 Quantitative Genetics

2022-06-23

In this practical you will perform genomic prediction using Bayesian methods. We will use the same data
sets in the BLUP session, i.e., a small data set with 10 SNPs and simulated phenotypes for 325 bulls , and a
larger data set of 10,000 GWAS individuals and 277,719 SNPs. We will use R script and GCTB to do these
analyses.

Analysis of the small data set using R script
Read the data in R.

nmarkers <- 10 #number of markers

nrecords <- 325 #number of records

x <- matrix(scan("/data/moduled4/prac4/xmat.inp"), nmarkers, TRUE)

y <- matrix(scan("/data/module4/prac4/yvec.inp"), TRUE)

x_prog <- matrix(scan("/data/module4/prac4d/xmat_prog.inp"), nmarkers, TRUE)
y_prog <- matrix(scan("/data/module4/prac4d/yvec_prog.inp"), TRUE)

SNP-BLUP as benchmark

The code for running BLUP is shown here. You can run BLUP and use the prediction accuracy from BLUP
as benchmark to compare those from the Bayesian methods below.

set value for lambda
lambda <- 10

need a vector of ones and a identity matriz with the size of the number of SNPs
ones <- array(l,c(nrecords))
ident_mat <-diag(nmarkers)

build the left hand side of the mized model equations

coeff <- array(0,c(nmarkers+1,nmarkers+1))

coeff[1:1, 1:1] <- t(ones)Y*%ones

coeff[1:1,2: (nmarkers+1)] <- t(ones)%*%x

coeff[2: (nmarkers+1), 2:(nmarkers+1)] <- t(x)%*%x + ident_mat*lambda
coeff[2: (nmarkers+1), 1:1] <- t(coeff[1:1,2: (nmarkers+1)])

build the right hand side of the mized model equations
rhs <- array(0, c(nmarkers+1,1))

rhs[1,1]=t (ones) %*%y

rhs[2: (nmarkers+1),1]1=t (x) %*%y

get BLUP solution
solution_vec <- solve(coeff,rhs)

get the predicted genetic wvalue (GEBV)
ghat_blup=x_progl*/solution_vec[-1]

prediction R-square
summary (1m(y_prog~ghat_blup))$r.squared

[1] 0.5049367

A Bayesian model with point-normal prior (BayesCr)

For the first exercise, we will analyse this small data set using BayesCrr.

~ N(0, O’%) with probability 7
B
=0 with probability 1 — 7

where parameter 7 is estimated from the data. It can be seen that when m = 0, the prior collapses to a
normal distribution, i.e., 5; ~ N (0, 0/23), which is the assumption in BLUP.

We will analyse the data with a script written in R language, BayesR.R. Let us load it in R.
source("/data/module4/prac4d/bayesr.R")

The script includes a function called bayesr. BayesR is a general model where each SNP effects is assumed
to follow a mixture distribution of normal distributions. BayesCr is a special case of BayesR. The input
parameters are

Input parameters for bayesr. Do mot run this.
bayesr = function(X, y, niter, gamma, startPi, startH2)

where niter is the number of iterations for MCMC sampling, X is the genotype matrix, y is the vector of
phenotypes, gamma is a vector of scaling factor for the variance of a mixture distribution, startPi is a vector
of starting values for the 7 parameter, startH2 is the starting value of SNP-based heritability. Note that the
number of elements in gamma and startPi define the number of mixture components, and therefore need to
be matched.

We can use this program to run BayesCrn by specifying the mixture model as
gamma = c(0, 1)
startPi = c(0.8, 0.2)

This means the SNP effects are assumed to be normally distributed with a probability of 0.2 and have a
point mass at zero with a probability of 0.8. Now we can run the analysis using command

bayesc.res = bayesr(X, Y, gamma, startPi)

#i#

iter 100, nnz = 2, sigmaSq = 1.171, h2 = 0.406, vare = 3.181, varg = 2.177
##

iter 200, nnz = 4, sigmaSq = 0.531, h2 = 0.429, vare = 3.172, varg = 2.380
##

iter 300, nnz = 4, sigmaSq = 1.036, h2 = 0.502, vare = 2.851, varg = 2.874
##

iter 400, nnz = 9, sigmaSq = 0.448, h2 = 0.440, vare = 2.985, varg = 2.350
##

iter 500, nnz = 3, sigmaSq = 0.681, h2 = 0.373, vare = 3.282, varg = 1.949
##

iter 600, nnz = 4, sigmaSq = 1.379, h2 = 0.469, vare = 2.748, varg = 2.429

##

diter 700, nnz = 4, sigmaSq = 0.634, h2 = 0.393, vare = 3.345, varg = 2.167
#it

iter 800, nnz = 5, sigmaSq = 0.599, h2 = 0.422, vare = 2.835, varg = 2.071
##

iter 900, nnz = 4, sigmaSq = 1.716, h2 = 0.476, vare = 2.511, varg = 2.278
#it

iter 1000, nnz = 7, sigmaSq = 0.446, h2 = 0.450, vare = 2.799, varg = 2.291
##

Posterior mean:

Pi1 Pi2 Nnz SigmaSq h2 Vare Varg

0.4827754 0.5172246 5.1970000 1.0861824 0.4543008 2.8317909 2.3654357

After the script has run, you can find the sampled values for the model parameters and SNP effects for each
iteration in the result list. For example, you can look at the posterior mean and standard deviation for each
parameter by

colMeans (bayesc.res$par)

Pi1l Pi2 Nnz SigmaSq h2 Vare Varg
0.4827754 0.5172246 5.1970000 1.0861824 0.4543008 2.8317909 2.3654357

apply(bayesc.res$par, 2, sd)
Pi1 Pi2 Nnz SigmaSq h2 Vare Varg
0.23031299 0.23031299 2.28810542 0.86292603 0.03698011 0.22289594 0.28890306

You can use the plotting facilities in R to investigate changes in the parameters over iterations. For example,
to look at the effect of the first marker across iterations, you would enter the command

#png ("betal_vs_iter.png")

plot(1:nrow(bayesc.res$beta), bayesc.res$betal,1], "Iteration", "betal,1]")
abline(2, "red")
—
=
()
o]
[[[[[[
0 200 400 600 800 1000
Iteration
#dev.off()

Question 1: Use this command to investigate each of the parameters in turn. Do they appear to be
fluctuating about the correct values?

#png ("beta2_vs_iter.png")
plot(1:nrow(bayesc.res$beta), bayesc.res$betal,2],

"Iteration", "betal,1]")
abline(1, "red")
N
~— H
H—
T
+—
()
o]
o
—
|
[[[[[[
0 200 400 600 800 1000
Iteration
#dev.off ()
#png ("beta5_vs_iter.png")
plot(1:nrow(bayesc.res$beta), bayesc.res$betal,5], "Iteration", "betal,1]")
abline(0, "red")

beta[,1]

Iteration

#dev.off()

We can also plot the posterior distribution, for example for the effect of the third SNP. We would discard the
first 100 iterations of the program as “burn in”:

#png ("dist_betal.png")
plot(density(bayesc.res$beta[100:1000,1]))

density.default(x = bayesc.res$beta[100:1000, 1])

Lo
2
2 o
2 —
(]
a
LD —
o
o |
© I I I I
1.0 15 2.0 25
N =901 Bandwidth =0.04721
#dev.off()

Question 2: Does the distribution appear to be normal? What about the distributions of the other
parameters?

#png("dist_betal.png")
plot(density(bayesc.res$betal[100:1000,2]))

density.default(x = bayesc.res$beta[100:1000, 2])

N
N
o
S
(o0}
2 o
5
(o]
A oS 7
<
3
N
g
o | _ _
e I I I I I
-1 0 1 2 3
N =901 Bandwidth =0.1244
#dev.off ()

To get the SNP effect estimates, we would calculate the posterior mean of SNP effects:

betaMean = colMeans(bayesc.res$beta)

Question 3: What’s the prediction accuracy using BayesCn? How does it compare to that from BLUP?
What causes the difference?

ghat_bayesc=x_prog %*}, betaMean
summary (1m(y_prog ~ ghat_bayesc))$r.squared

[1] 0.5524594

Bayesian approach using multi-component mixture prior (BayesR)

BayesR prior assumes that some SNPs have zero effect, some have small effects, and some have large effects,
by assuming a mixture of multiple normal distributions, including a point mass at zero.

Bi ~ Y meN(0,7x03)
k

For example, we can set a 4-component mixture model:

gamma = c(0, 0.01, 0.1, 1)
startPi = ¢(0.5, 0.3, 0.15, 0.05)

bayesr.res = bayesr(X, v, gamma, startPi)

##

iter 100, nnz = 6, sigmaSq = 1.806, h2 = 0.430, vare = 3.498, varg = 2.639
##

iter 200, nnz = 7, sigmaSq = 0.979, h2 = 0.387, vare = 3.099, varg = 1.953

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

0.2409412 0.2631374 0.2468867 0.

iter 300, nnz =
iter 400, nnz =
iter 500, nnz =
iter 600, nnz =
iter 700, nnz =
iter 800, nnz =
iter 900, nnz =
iter 1000, nnz =
Posterior mean:
Pi1l P
Varg
2.3978588

i2

sigmaSq
sigmaSq
sigmaSq
sigmaSq
sigmaSq
sigmaSq
sigmaSq

sigmaSq

Pi3

= 1.453,

= 2.859,

= 0.954,

= 3.609,

= 2.199,

= 1.540,

= 2.487,

= 4.430,

Pid
2490347 7.

h2 = 0
h2 = 0
h2 = 0
h2 = 0
h2 = 0
h2 = 0
h2 = 0
h2 = 0

Nnz
6720000

.497, vare
.460, vare
.442, vare
.448, vare
.505, vare
.476, vare
.434, vare
.429, vare

SigmaSq
2.5676517

0

2.657,

2.919,

2.843,

2.817,

2.655,

2.956,

2.767,

2.788,

h2
.4594356

Question 4: Is the prediction accuracy further improved? Why or why not?

betaMean

= colMeans(bayesr.res$beta)
ghat_bayesr=x_prog %*/ betaMean
summary (1m(y_prog ~ ghat_bayesr))$r.squared

[1] 0.5466322

varg = 2.
varg = 2
varg = 2.
varg = 2.
varg = 2.
varg = 2.
varg = 2.
varg = 2.

Vare
2.8126619

622

.490

255

290

708

683

123

096

You can also play around with the number of mixture components and see how sensitive the results are.

Analysis of a larger data set using GCTB

GCTB (https://cnsgenomics.com/software/getb/#0verview) is a c++ software for performing Bayesian
analysis of large-scale genomic data. It takes the PLINK bed file as input and generate estimates for model
parameters and SNP effects for polygenic prediction. You can use the following code to run BayesR analysis.
However, it will take about 10 mins to finish the genome-wide analysis. You can add --chr 1 to just run the

analysis using SNPs on chromosome 1, which should take about 1 min to finish.

bfile="/data/module4/pracd/gwas"
pheno="/data/module4/prac4/simu.phen"

covar="/data/module4/prac4/covariates.cov"
gctb

Result file bayesr.parRes shows the estimates of model parameters. Result file bayesr.snpRes shows the
estimates of SNP effects. We have generated the results from the genome-wide analysis, which can be found

at

R\

$bfile \
$pheno \
$covar \

100 \
bayesr

\
1000 \

https://cnsgenomics.com/software/gctb/#Overview

cat /data/moduled/pracéd/bayesr.parRes

Posterior statistics from MCMC samples:

##
##
##
##
##
##
##
##
##
##
##
##
##
##

NumSnp1
NumSnp?2
NumSnp3
NumSnp4
Vgl

Vg2

Vg3

Vg4
SigmaSq
ResVar
GenVar
hsq

Mean
275748.812500
1152.233276
808.711121
9.288889
0.000000
0.112438
0.841062
0.046500
10.039310
957 .568726
977.727234
0.505170

SD
555.326721
620.240845
82.797646
.821933
.000000
.060669
.069600
.032679
.587386
47.679611
50.605698
0.024771

6
0
0
0
0
0

NumSnp1-NumSnp4 are the numbers of SNPs in the mixture components 1 to 4 (component 1: zero effect;
component 2: small effects that explain 0.01% heritability; component 3: medium effects that explain 0.1%
heritability; component 4: large effects that explain 1% heritability). Vg1-Vg4 are the proportions of variance
explained by the SNPs in each component. hsq is the SNP-based heritability estimate. We set chain length
to be 1000 here for demonstration purpose. In practice, we recommend to run at least 5,000 iterations. It is
common to discard the first 20% of the samples as burn in (i.e., 1,000 if chain length is set to be 5,000).

Question 5: Are the estimates from the genome-wide BayesR analysis consistent with the true values in
simulation? Note that we simulated 1,000 causal variants with a trait heritability of 0.5.

Let’s also have a look at the SNP effect results:

head /data/module4/prac4/bayesr.snpRes

##
##
##
##
##
##
##
##
##
##

P
Q.

O 00 ~NO O W N -

Name
rs12562034
rs4040617
rs4970383
rs950122
rs6657440
rs13303101
rs1110052
rs3748592
rs3748593

Chrom Position

[N e e e

We then use PLINK to perform prediction:

target="/data/module4/prac4/target"
snpRes="/data/module4/prac4/bayesr.snpRes"

plink

$target

Use R to evaluate the prediction accuracy

phenFile="/data/module4/prac4/simu.phen"

covFile="/data/module4/prac4/covariates.cov"

768448
779322
838555
846864
850780
862124
873558
880238
880390

indlistFile="/data/module4/prac4/target.indlist"
prsFile="simu.bayesr.profile"
Rscript /data/module4/prac4/get_pred_r2.R $phenFile $covFile $indlistFile $prsFile

=
[N

L CHal C S

$snpRes 2 5 8 header sum center

=
N

NNENELEDNDNNERLDN

O OO O OO O O o

AlFrq

.102253
.128397
.247147
.197399
.392077
.019920
.274854
.052766
.026616

simu.bayesr

Question 6: How does the prediction accuracy from BayesR compare to that from C+PT?

AlEffect

.004296
.000000
.000746
.010847
.000000
.012047
.000000
.000000
.001978

O O O OO OO OO

SE

.040525
.000000
.007038
.102333
.000000
.113647
.000000
.000000
.018656

	Analysis of the small data set using R script
	SNP-BLUP as benchmark
	A Bayesian model with point-normal prior (BayesC\pi)
	Bayesian approach using multi-component mixture prior (BayesR)

	Analysis of a larger data set using GCTB

