Estimation & interpretation of genetic variance

UQ Winter School, June 2022

Dr Kathryn Kemper

(with thanks to Loic, JZ and Jian Yang)

Pruned and modified version of 5-part workshop given by Dr Loic Yengo@ISGW "Heritability of individual level data"

e.g. <u>https://www.youtube.com/watch?v=Cjn5AtNPjzE</u>

Outline

- Definition of heritability
- Estimation
 - Relationship matrices
 - HE regression
 - REML
- Interpreting h² estimates

Heritability (h^2) :

quantifies the degree to which inter-individual differences and resemblance in the population are due to genetic factors.

Chial, H. (2008) Polygenic inheritance and gene mapping. Nature Education 1(1):17

The value of the trait, or phenotype (P), can be modelled as

P = A + E (additive) Non-genetic genetic factors factors

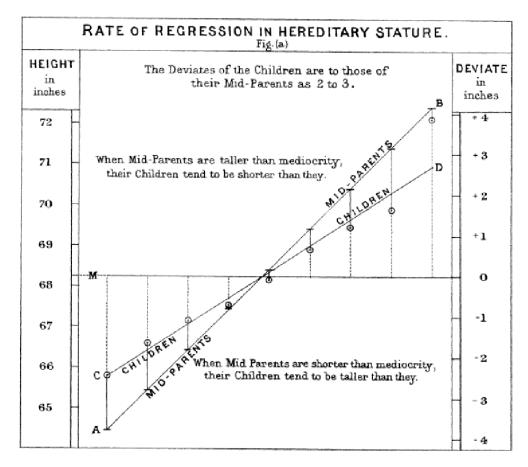
then
$$h^2 = \frac{\sigma_A^2}{\sigma_B^2}$$

Chial, H. (2008) Polygenic inheritance and gene mapping. Nature Education 1(1):17

the heritability is the proportion of phenotypic variance (σ_P^2) attributable to additive genetic effects (σ_A^2)

Heritability ranges between 0 and 1

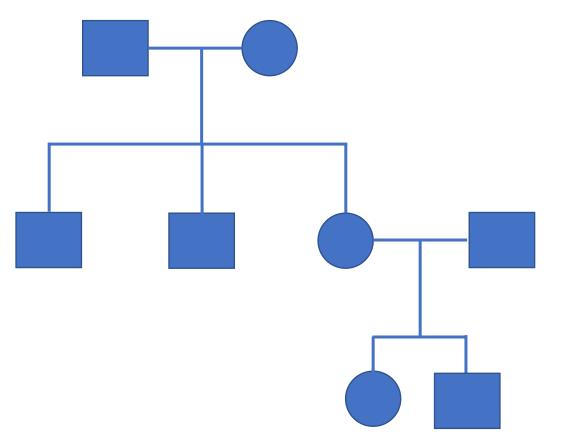
 How can we estimate 'A' when we can't observe the true genetic effects?



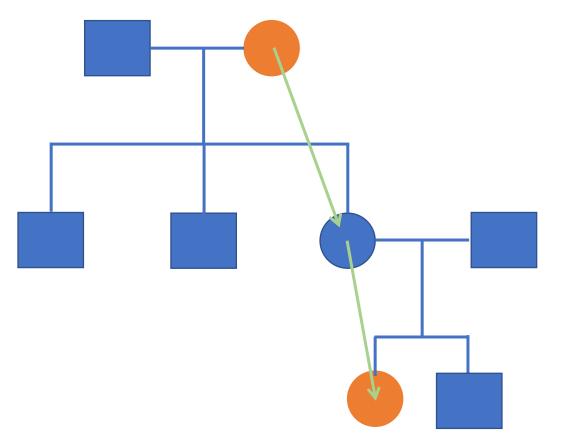
Galton (1886)

- Animal and plant breeders have used 'average' or pedigree relationships since 1950's to drive genetic change
- Human geneticists have mostly relied on comparing MZ and DZ twins
- These approaches rely on the average genetic relationship between relatives

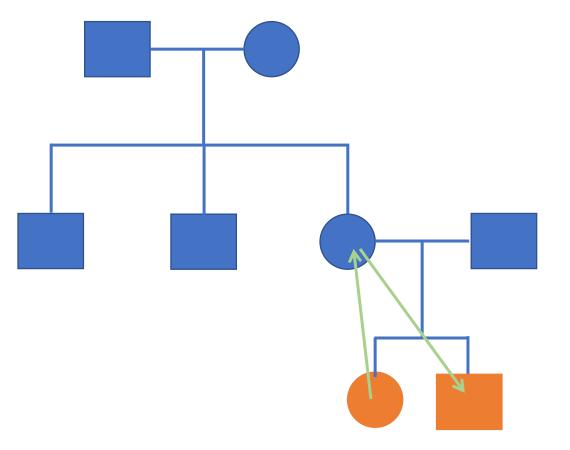
Relationship	Relationship co-efficient (π)
MZ twins	$1.0 = 0.5^{0}$
Parent-child	$0.5 = 0.5^1$
Full-sibs/DZ twins	$0.5 = 2x0.5^2$
Half-sibs	$0.25 = 0.5^2$
Avuncular	$0.25 = 2x0.5^3$
Grandparent-child	$0.25 = 0.5^2$
1 st cousins	$0.125 = 2x0.5^4$



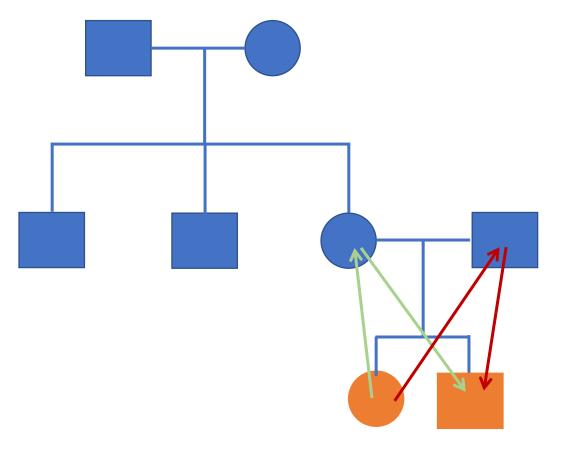
Relationship	Relationship co-efficient (π)
MZ twins	$1.0 = 0.5^{0}$
Parent-child	$0.5 = 0.5^1$
Full-sibs/DZ twins	$0.5 = 2x0.5^2$
Half-sibs	$0.25 = 0.5^2$
Avuncular	$0.25 = 2x0.5^3$
Grandparent-child	$0.25 = 0.5^2$
1 st cousins	$0.125 = 2x0.5^4$



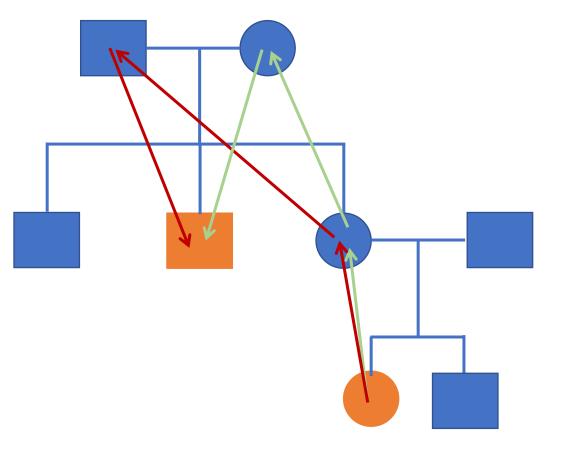
Relationship	Relationship co-efficient (π)
MZ twins	$1.0 = 0.5^{0}$
Parent-child	$0.5 = 0.5^1$
Full-sibs/DZ twins	$0.5 = 2x0.5^2$
Half-sibs	$0.25 = 0.5^2$
Avuncular	$0.25 = 2x0.5^3$
Grandparent-child	$0.25 = 0.5^2$
1 st cousins	$0.125 = 2x0.5^4$



Relationship	Relationship co-efficient (π)
MZ twins	$1.0 = 0.5^{0}$
Parent-child	$0.5 = 0.5^1$
Full-sibs/DZ twins	$0.5 = 2x0.5^2$
Half-sibs	$0.25 = 0.5^2$
Avuncular	$0.25 = 2x0.5^3$
Grandparent-child	$0.25 = 0.5^2$
1 st cousins	$0.125 = 2x0.5^4$

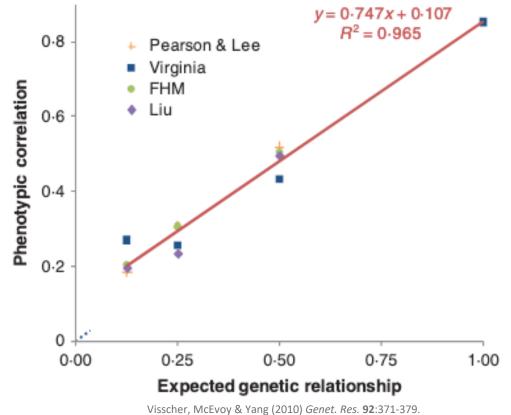


Relationship	Relationship co-efficient (π)
MZ twins	$1.0 = 0.5^{0}$
Parent-child	$0.5 = 0.5^1$
Full-sibs/DZ twins	$0.5 = 2x0.5^2$
Half-sibs	$0.25 = 0.5^2$
Avuncular	$0.25 = 2x0.5^3$
Grandparent-child	$0.25 = 0.5^2$
1 st cousins	$0.125 = 2x0.5^4$

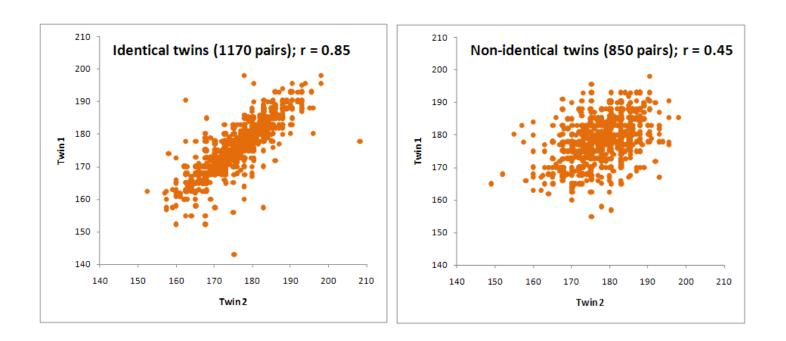


We can estimate the heritability of a trait using average relationships, e.g.

 $corr(Y_i, Y_i) = h^2 \pi_{ii} + residual$



We can estimate the heritability of a trait using average relationships, e.g.



<u>Twin-ba</u>	<u>sed estimate heritability</u>	<u>/:</u>
r(MZ)	= [var(G) + var(E)]/ va	ar(P)
r(DZ)	= [0.5 var(G) + var(E)]	/ var(P)
2 [r(MZ	:) — r(DZ)] = 2[0.5.var(= h ²	G)] / var(P)

Why all the fuss about h²?

1) The heritability of a trait gives an upper bound for the accuracy of genetic predictors of that trait.

2) The heritability predicts the response to (natural/artificial) selection.

3) The heritability predicts an individual's risk to develop a certain disease knowing they have affected relatives.

4) The heritability influences the statistical power of genome-wide association studies (GWAS)

Misconceptions about heritability

Heritability is an estimate, based on many assumptions. Beware.

Heritability is a property of a trait, in a population, at a given time. It is not fixed.

A low heritability does not necessarily mean the trait is not genetically determined.

- It suggests that non-genetic factors account for more variation.
- Is there phenotypic variation? (e.g. number of fingers)

Methods to estimate heritability

 $corr(Y_i, Y_j) = h^2 \pi_{ij} + residual$

Covariance between 'relatives' is fundamental to h^2 estimation.

Methods differ in the approaches to combine corr(Y_i,Y_j) and *π*_{ij}, e.g.
 ➤ we can estimation relationships using pedigrees or genetic markers
 ➤ we can use a regression, ANOVA or REML framework for parameter estimates

Relationship matrices

A relationship matrix (of dimension nxn, where n = number of individuals) is a square symmetrical matrix where each element defines the relationship between two individuals.

e.g. for pedigree relationships $A_{ij} = 0.5$ for full-sibs i and j

Relationship matrices – average relationship

A relationship matrix (of dimension nxn, where n = number of individuals) is a square symmetrical matrix where each element defines the relationship between two individuals.

e.g.

ID	Mother	Father
1	-	-
2	-	-
3	1	2
4	1	2
5	1	2
6	-	-
7	5	6

Lower triangle A matrix:

1.0						
0	1.0					
0.5	0.5	1.0				
0.5	0.5	0.5	1.0			
0.5	0.5	0.5	0.5	1.0		
0	0	0	0	0	1.0	
0.25	0.25	0.25	0.25	0.5	0.5	1.0

Relationship matrices

A relationship matrix (of dimension nxn, where n = number of individuals) is a square symmetrical matrix where each element defines the relationship between two individuals.

e.g. for pedigree relationships $A_{ij} = 0.5$ for full-sibs i and j

There are many ways to calculate a relationship matrices when using SNP data. We will focus on a standard estimator implemented in the software **GCTA**.

Standard GRM estimator

$$\hat{\pi}_{jk} = \frac{1}{m} \sum_{i} \frac{(x_{ij} - 2p_i)(x_{ik} - 2p_i)}{2p_i(1 - p_i)}$$

where, x_{ij} and x_{ik} are the minor allele count (x_{ij} , $x_{ik} = 0,1$ or 2) at SNP i for individuals j and k respectively, p_i the minor allele frequency (MAF) of SNP I and m the number of SNPs used to calculate the GRM.

genetics

Common SNPs explain a large proportion of the heritability for human height

Jian Yang¹, Beben Benyamin¹, Brian P McEvoy¹, Scott Gordon¹, Anjali K Henders¹, Dale R Nyholt¹, Pamela A Madden², Andrew C Heath², Nicholas G Martin¹, Grant W Montgomery¹, Michael E Goddard³ & Peter M Visscher¹

SNPs discovered by genome-wide association studies (GWASs) account for only a small fraction of the genetic variation of thresholds and/or the causal variants are not in complete linkage Example of GRM between N=3 individuals (over m=1000 SNPs)

[\$bash] zless myGRM.grm.gz 1 1 1000 0.99 1 2 1000 -0.01 1 3 1000 0.01 2 2 1000 1.03 2 3 1000 0.03 3 3 1000 1.01

Estimating genetic variance

• Haseman-Elston (HE) regression, 'method of moments'

 $corr(Y_i, Y_j) = h^2 \pi_{ij} + residual$

- ANOVA for balanced designs
- <u>RE</u>stricted <u>Maximum Likelihood</u> (REML)

Haseman-Elston (HE) regression

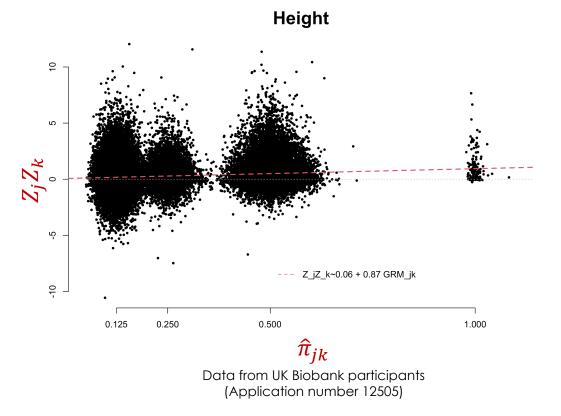
HE regression estimates h^2 by regressing $Z_j Z_k$ onto $\hat{\pi}_{jk}$,

where

$$Z_j = (Y_j - \text{mean}(Y))/\text{sd}(Y), \text{ and}$$
$$Z_k = (Y_k - \text{mean}(Y))/\text{sd}(Y)$$

Thus,

$$E[Z_j Z_k] = \operatorname{corr}(Y_j, Y_k)$$



 $E[Z_j Z_k | \hat{\pi}_{jk}] = 0.06 + 0.87 \, \hat{\pi}_{jk} \Rightarrow \hat{h}_{HE}^2 \sim 0.87.$

HE regression with GCTA

Step 1: Calculate the GRM

gcta64 --bfile myDataInPLINKformat --make-grm-bin --out myData

HE-CP Coefficient Intercept V(G)/Vp	Estimate —9.89933e—05 0.405919	SE_OLS 0.000235661 0.0182643	SE_Jackknife 6.36354e-06 0.0352467	P_OLS 0.674437 1.99052e-109	P_Jackknife 1.44216e-54 1.0898e-30
HE-SD Coefficient Intercept V(G)/Vp	Estimate -0.999932 0.40622	SE_OLS 0.00033015 0.0255874	SE_Jackknife 0.0179081 0.0371021	P_OLS 0 9.335e-57	P_Jackknife 0 6.74268e–28

Step 3: Run GCTA to estimate heritability of trait 1 using HE regression

gcta64 --grm myData --pheno phenotype.txt --mpheno 1 --HEreg --out myHE_estimates

[generates 2 files: myHE_estimates.log, myHE_estimates.HEreg]

REML estimation

- Mixed model: $y = X\beta + Zu + e$,
 - where $\mathbf{u} \sim \mathbf{N}(\mathbf{0}, \mathbf{A}\sigma_a^2) \& \mathbf{e} \sim \mathbf{N}(\mathbf{0}, I_n \sigma_e^2)$
- Use <u>RE</u>stricted <u>Maximum Likelihood</u> to estimate parameters
 - 'restricted' in that we also have fixed effects i.e. $\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma_a^2 \mathbf{A} + \sigma_e^2 I_n)$
 - REML accounts for df lost due to estimation of fixed effects
- Specifically in human genetics, often called GREML (Genome-based REML)
- <u>Genome-based</u> :-
 - using SNPs to determine relationships
 - assume that genetic effects are a linear combination of SNP effects
 - "big-p little-n" problem (where n = samples & p = predictors)

GREML estimation with GCTA

Run GCTA to estimate heritability of trait 1 using GREML

gcta64 --grm myData --pheno phenotype.txt --mpheno 1 --reml --out myGREML_estimates

[generates 2 files: myGREML_estimates.log, myGREML_estimates.hsq]

Source	Variance	SE	
V(G)	0.398550	0.023990	
V(e)	0.578277	0.019175	
Vp	0.976827	0.019107	
V(G)/Vp	0.408004	0.020539	
logL	-2722.000		\rightarrow
logL0	-2932.909		
LRT	421.817		
df	1		
Pval	0.0000e+00		
n	6000		

The significance of h_{SNP}^2 is assessed by likelihood ratio test (LRT) $H_0: h_{SNP}^2 = 0$ $H_1: h_{SNP}^2 \neq 0$ LRT = 2[L(H₁) – L(H₀)] is distributed as a half

probability of 0 and a half probability of chisquared with 1 d.f.

Interpreting h² estimates

- h² estimates are based on many assumptions, depending on your approach
 ▶ e.g. h²-SNP depends on the SNP you use!
 ▶ most models assume random mating
- Bias from shared environment

➤ can be model explicitly, e.g. twin analysis (still biased?)
➤ use only unrelated individuals ($\pi_{ij} < 0.05$)
➤ within-family estimates

- G-E confounding population stratification or parental effects
 - Fit PCs as covariates
 - ➤Within-family analyses

Missing heritability

The case of the missing heritability

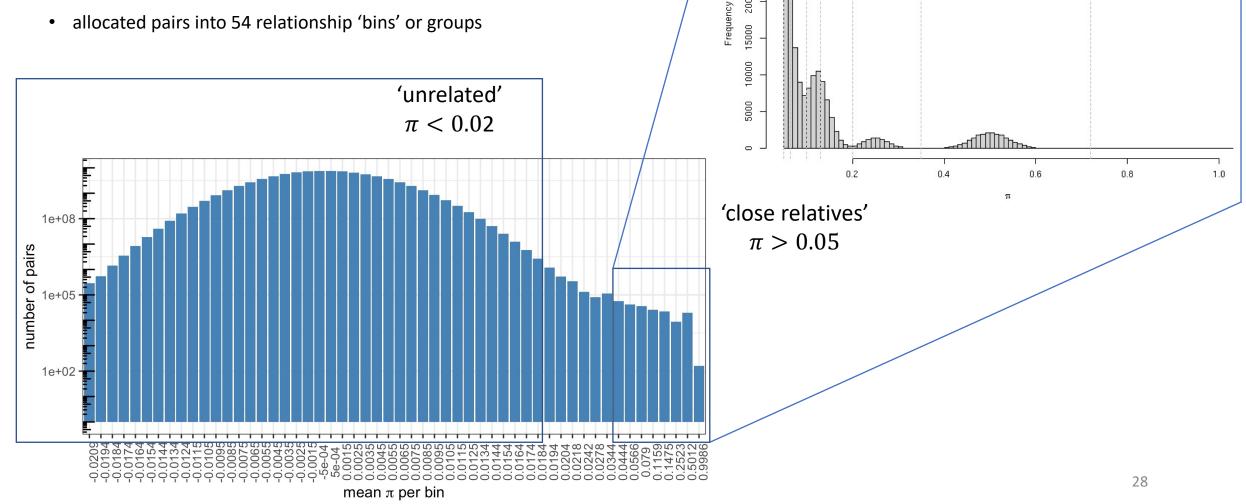
Manolio et al. 2009 Nature

 $h_{\rm GWAS}^2 \leq h_{\rm SNP}^2 \leq h_{\rm PED}^2$

 $h_{PED}^2 - h_{GWAS}^2$ is often denoted the "missing" heritability (e.g., 5% vs 80%). $h_{SNP}^2 - h_{GWAS}^2$ is often denoted the "hidden/hiding" heritability. $h_{PED}^2 - h_{SNP}^2$ is denoted the (still) missing heritability.

Genomic relationship matrix

- 1.1M HapMap3 SNPs with MAF > 0.01 for 450K individuals
- constructed using GCTA (Yang et al. 2010) •
- allocated pairs into 54 relationship 'bins' or groups •



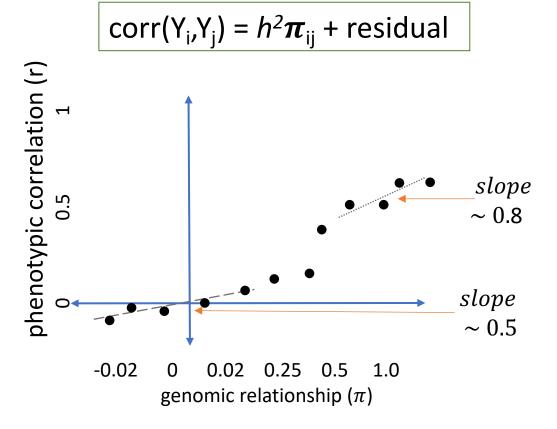
35000

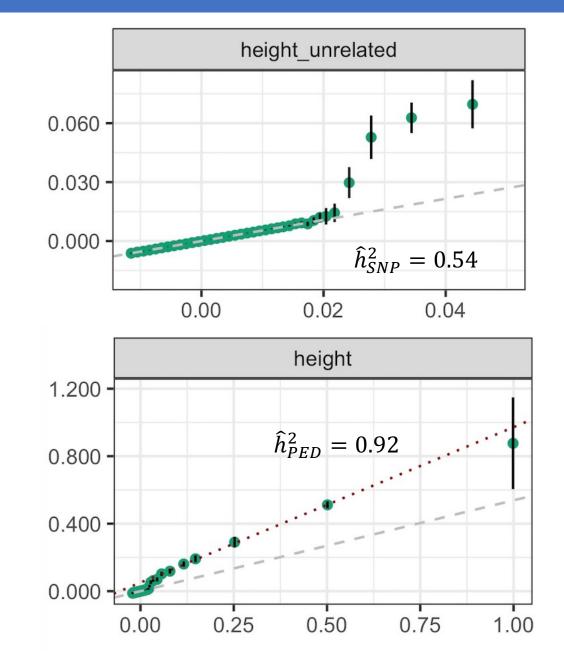
30000

25000

20000

Missing heritability? – human height





Practical – estimation of h² using GCTA

We will loosely follow a practical developed for STAT 3306-7306

- grm is located in /data/module4/prac8/QIMRX_no_twin.grm.gz
- Made with the following code in GCTA, e.g.
 > gcta --bfile <plinkSNPFile> --make-grm.gz --out QIMRX_no_twin
- Look at the 'gzip' version of the grm using 'zcat <file>.grm.gz | head` at the command line

[ec	2-user@ana	lysis1 uqkkempe]\$	zcat /data/module4/prac8/QIMRX_no_twin.grm.gz head
1	1	2.658050e+05	9.824743e-01
2	1	2.657710e+05	4.307623e-01
2	2	2.657910e+05	9.971558e-01
3	1	2.615040e+05	1.788882e-03
3	2	2.614920e+05	1.014439e-03
3	3	2.615290e+05	1.000038e+00
4	1	2.657180e+05	-1.286868e-03
4	2	2.657040e+05	-2.567511e-04
4	3	2.614420e+05	-3.715489e-03
4	4	2.657430e+05	1.001568e+00

Practical – estimation of h² using GCTA

- Use GCTA to estimate the SNP-heritability for height, e.g.
- gcta --grm /data/module4/prac8/QIMRX_no_twin \
 - --pheno /data/module4/prac8/HT_T_X.pheno \

--mpheno 1 --reml --out QIMRX_1

• View the resulting file at the command line using 'more'

[ec2-use	er@analysis1	uqkkempe]\$	more	QIMRX_	1.hsq
Source	Variance	SE			
V(G)	0.637715	0.11015	7		
V(e)	0.384206	0.10498	7		
Vp	1.021921	0.02781	5		
V(G)/Vp	0.624036	0.10383	2		
logL	-1400.300				
logL0	-1418.770				
LRT	36.939				
df	1				
Pval	6.0953e-10				
n	2768				

Practical – closer look @ the GRM

• Open R & use

x = read.table("<file>.grm.gz") to load the data into R

Iower triangle GRM; columns are row #, column #, # SNPs, relationship value

- Make a true/false vector if the relationship value is a diagonal
 >diagElement = x[,1] == x[,2]
 >sum(diagElement) ; head(diagElement)
- Plot results

hist(x[diagElement,4], breaks=2500, xlab="GRM diagonals")
 hist(x[!diagElement,4], breaks=2500, xlab="GRM off-diagonals")

Practical – removing relatives

- In the off-diagonal plot there were some large relationships
- In R use "sum(x[!diagElement,4]>0.05)" to find out how many pairs
- Now we are going to use GCTA to remove one member of the close relative pairs

Practical – Haseman-Elston regression

- However today we're going to to it by-hand, in R!
- Open R:

Hereg = read.table("/data/module4/prac8/he.grm.txt")
 names(HEreg) <- c("ID1", "ID2", "SNPs", "REL", "PROD")

• Do the regression and plot:

Im1 = Im(HEreg\$PROD~HEreg\$REL)
 png(file="HEreg_all.png")
 plot(HEreg\$PROD~HEreg\$REL,pch=".")
 abline(Im1,col="orange",lwd=1.5)

> dev.off()

 $corr(Y_i, Y_i) = h^2 \pi_{ii} + residual$

Practical – Haseman-Elston regression

• Now let's remove the relatives & retry

HEreg\$unrel = HEreg\$REL<0.05 #make a T/F vector on the relationship value</p>
Im2 = Im(HEreg\$PROD[HEreg\$unrel]~HEreg\$REL[HEreg\$unrel])

plot(HEreg\$PROD[HEreg\$unrel]~HEreg\$REL[HEreg\$unrel],pch=".")
 abline(Im2,col="orange",lwd=1.5)
 dev.off()