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Definition
Heritability (h?):

qguantifies the degree to which inter-individual
differences and resemblance in the population
are due to genetic factors.

Chial, H. (2008) Polygenic inheritance and gene mapping.
Nature Education 1(1):17



Definition

The value of the trait, or phenotype (P), can be
modelled as

P=A + E

(additive) Non-genetic
genetic factors  factors

2
hen h? = 24
t e n o _2 Chial, H. (2008) Polygenic inheritance and gene mapping.
O'P Nature Education 1(1):17

the heritability is the proportion of phenotypic

variance (o5 ) attributable to additive genetic
effects (o)

Heritability ranges between 0 and 1



Definition

* How can we estimate ‘A" when we
can’t observe the true genetic
effects?

RATE OF REGRESSION IN HEREDITARY STATURE.
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What are ‘average’ relationships?

* Animal and plant breeders have used
‘average’ or pedigree relationships
since 1950’s to drive genetic change

* Human geneticists have mostly relied
on comparing MZ and DZ twins

* These approaches rely on the
average genetic relationship
between relatives



What are ‘average’ relationships?
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co-efficient (1)

MZ twins 1.0=0.5°

Parent-child 0.5=0.5!

Full-sibs/DZ twins 0.5 = 2x0.52

Half-sibs 0.25 = 0.5% -

Avuncular 0.25 = 2x0.53

Grandparent-child 0.25 = 0.52

15t cousins 0.125 = 2x0.5* ;
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What are ‘average’ relationships?

Relationship Relationship r_‘
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Definition

We can estimate the heritability of a trait using
average relationships, e.g.

y=0-747x+ 0-107

0-8 1 Pearson & Lee i
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Visscher, McEvoy & Yang (2010) Genet. Res. 92:371-379.
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Twinl

Definition

We can estimate the heritability of a trait using
average relationships, e.g.

Twin-based estimate heritability:
r(M2) = [var(G) + var(E) ]/ var(P)
210 | | | 210 - r(DZ) = [05 Var(G) + Var(E) ] /Var(P)

Identical twins (1170 pairs); r = 0.85 Non-identical twins (850 pairs); r = 0.45

2 [r(MZ)-r(DZ)] =2[0.5.var(G)]/ var(P)
= h2
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Why all the fuss about h??

1) The heritability of a trait gives an upper bound for the accuracy of
genetic predictors of that trait.

2) The heritability predicts the response to (natural/artificial) selection.

3) The heritability predicts an individual’s risk to develop a certain disease
knowing they have affected relatives.

4) The heritability influences the statistical power of genome-wide
association studies (GWAS)



Misconceptions about heritability

Heritability is an estimate, based on many assumptions. Beware.

Heritability is a property of a trait, in a population, at a given time. It is
not fixed.

A low heritability does not necessarily mean the trait is not genetically
determined.

* It suggests that non-genetic factors account for more variation.
* Is there phenotypic variation? (e.g. number of fingers)



Methods to estimate heritability

corr(Y,Y;) = h“m; + residual

Covariance between ‘relatives’ is fundamental to h? estimation.

Methods differ in the approaches to combine corr(Y,Y;) and m;, e.g.
»we can estimation relationships using pedigrees or genetic markers

»Wwe can use a regression, ANOVA or REML framework for parameter
estimates



Relationship matrices

A relationship matrix (of dimension nxn, where n = number of individuals)

is a square symmetrical matrix where each element defines the
relationship between two individuals.

e.g. for pedigree relationships A;; = 0.5 for full-sibs i and j



Relationship matrices — average relationship

A relationship matrix (of dimension nxn, where n = number of individuals)
is a square symmetrical matrix where each element defines the
relationship between two individuals.

“m Lower triangle A matrix:

€.8. 1 i i 1.0
2 0 1.0
3 1 2 05 05 | 1.0
4 1 2 05 05 | 05 1.0
5 1 2 05 05|05 05 1.0
6 o 0 0 0 0 10
7 5 6 025 025 025 025 05 05 1.0
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Relationship matrices

A relationship matrix (of dimension nxn, where n = number of individuals)
is a square symmetrical matrix where each element defines the
relationship between two individuals.

e.g. for pedigree relationships A;; = 0.5 for full-sibs i and j

There are many ways to calculate a relationship matrices when using SNP

data. We will focus on a standard estimator implemented in the software
GCTA.



Standard GRM estimator

Example of GRM between N=3 individuals
(over m=1000 SNPs)

A 1 (xij - 217, )(xik — 2p;)

n-jk = _Zi [Sbash] zless myGRM.grm.gz
m 2p,(1-p;) 111000 0.99

12 1000 -0.01

131000 0.01

221000 1.03

2 31000 0.03

331000 1.01

where, x;; and x;; are the minor allele count (x;;, x;; = 0,1 or 2)

at SNP i for individuals j and k respectively, p; the minor allele frequency
(MAF) of SNP | and m the number of SNPs used to

calculate the GRM.

ANALYSIS

nature
genetlcs

Common SNPs explain a large proportion of the heritability
for human height

Jian Yang!, Beben Benyamin!, Brian P McEvoy’, Scott Gordon!, Anjali K Henders!, Dale R Nyholt!,
Pamela A Madden?, Andrew C Heath?, Nicholas G Martin!, Grant W Montgomery', Michael E Goddard® &
Peter M Visscher!
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SNPs discovered by genome-wide association studies (GWASs)  of variation that their effects do not reach stringent significance
account for only a small fraction of the genetic variation of thresholds and/or the causal variants are not in complete linkage

rved.



Estimating genetic variance

 Haseman-Elston (HE) regression, ‘method of moments’

corr(Y,Y;) = h“m;; + residual

 ANOVA for balanced designs

e REstricted Maximum Likelihood (REML)



Haseman-Elston (HE) regression

Height

HE regression estimates h? by regressing

Z;Zonto iy,

where HF =~ T .

Z; = (Y; —mean(Y))/sd(Y), and b AR

Z, = (Y;, —mean(Y))/sd(Y)

Th u S’ Data from UK Big;nk parficipants

(Application number 12505)

E\Z;Zy] = corr(Y;, Yy)
E[Z;Zy|Rj;] = 0.06 + 0.87 i), => hf;z~0.87.



HE regression with GCTA

Step 1: Calculate the GRM
gctab4 --bfile myDatalnPLINKformat --make-grm-bin --out myData

HE-CP

Coefficient Estimate SE_OLS SE_Jackknife P_OLS
Intercept -9.89933e-05 0.000235661 6.36354e-06 0.674437
V(G)/Vp 0.405919 0.0182643 0.0352467 1.99052e-109

HE-SD

Coefficient Estimate SE_OLS SE_Jackknife P_OLS
Intercept —-0.999932 0.00033015 0.0179081 9

V(G)/Vp 0.40622 0.0255874 0.0371021 9.335e-57

Step 3: Run GCTA to estimate heritability of trait 1 using HE regression
gctab4 --grm myData --pheno phenotype.txt --mpheno 1 --HEreg --out myHE_estimates

[generates 2 files: myHE_estimates.log, myHE_estimates.HEreg]

P_Jackknife
1.44216e-54
1.0898e-30

P_Jackknife
0
6.74268e-28
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REML estimation

* Mixed model: y =X + + e,
« where u~N(0,Ac?) & e~N(0, I,,0%)

* Use REstricted Maximum Likelihood to estimate parameters
* ‘restricted’ in that we also have fixed effects i.e. y~N(XB, 02A + oZ1,)
* REML accounts for df lost due to estimation of fixed effects

* Specifically in human genetics, often called GREML (Genome-based REML)

* Genome-based :-
* using SNPs to determine relationships
e assume that genetic effects are a linear combination of SNP effects
e “big-p little-n” problem (where n = samples & p = predictors)



GREML estimation with GCTA

Run GCTA to estimate heritability of trait 1 using GREML
gctab4 --grm myData --pheno phenotype.txt --mpheno 1 --reml --out myGREML_estimates

[generates 2 files: myGREML_estimates.log, myGREML_estimates.hsq]

Source Variance SE
V(G) 0.398550 0.023990

0.578277 0.019175 The significance of h2p is assessed by
0.976827 0.019107 likelihood ratio test (LRT)

0.408004 0.020539 Ho: h2eyp = O
-2722.000 —> Hy: hZp # 0
-2932.909

421.817 LRT = 2[L(H;) — L(Ho)] is distributed as a half
1 probability of 0 and a half probability of chi-
squared with 1 d.f.

0.0000e+00
6000
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Interpreting h? estimates

* h? estimates are based on many assumptions, depending on your approach

»e.g. h’>-SNP depends on the SNP you use!
» most models assume random mating

* Bias from shared environment
» can be model explicitly, e.g. twin analysis (still biased?)
» use only unrelated individuals (1r; < 0.05)
» within-family estimates

* G-E confounding — population stratification or parental effects
» Fit PCs as covariates
» Within-family analyses



Missing heritability

The case of the missing heritability )

Manolio et al. 2009 Nature

hGWAS hSNP hPED

h2pp-héwas is often denoted the “missing” heritability (e.g., 5% vs 80%).
hénp-héwas is often denoted the “hidden/hiding” heritability.
hézp-héyp is denoted the (still) missing heritability.
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Practical — estimation of h% using GCTA

We will loosely follow a practical developed for STAT 3306-7306
* grm is located in /data/module4/prac8/QIMRX_no_twin.grm.gz

* Made with the following code in GCTA, e.g.
»gcta --bfile <plinkSNPFile> --make-grm.gz --out QIMRX_no_twin

* Look at the ‘gzip’ version of the grm using ‘zcat <file>.grm.gz | head’
at the command line

[ec2-user@analysisl ugkkempel]$ zcat /data/moduled4/prac8/QIMRX_no_twin.grm.gz | head

1

1
2 1
2 2
3 1
3 2
3 3
4 1
4 2
4 3
4 4

2.658050e+05
2.657710e+05
2.657910e+05
2.615040e+05
2.614920e+05
2.615290e+05
2.657180e+05
2.657040e+05
2.614420e+05
2.657430e+05

9.824743e-01
4.307623e-01
9.971558e-01
1.788882e-03
1.014439%e-03
1.000038e+00
-1.286868e-03
-2.567511e-04
-3.715489%e-03
1.001568e+00




Practical — estimation of h% using GCTA

* Use GCTA to estimate the SNP-heritability for height, e.g.

gcta --grm /data/module4/prac8/QIMRX_no_twin \
--pheno /data/module4/prac8/HT T _X.pheno \
--mpheno 1 --reml --out QIMRX_1

* View the resulting file at the command line using ‘more’

[ec2-user@analysisl ugkkempe]$ more QIMRX_1.hsq
Source Variance SE

V(G) 0.637715 0.110157

V(e) 0.384206 0.104987

Vp 1.021921 0.027815

V(G)/Vp 0.624036 0.103832

loglL -1400.300
logld -1418.770
LRT 36.939

df 1

Pval 6.0953e-10
n 2768




Practical — closer look @ the GRM

* Open R & use
»x = read.table(“<file>.grm.gz”) to load the data into R
»lower triangle GRM; columns are row #, column #, # SNPs, relationship value

* Make a true/false vector if the relationship value is a diagonal
»diagElement = x[,1] == x[,2]
»sum(diagElement) ; head(diagElement)

* Plot results
» hist(x[diagElement,4], breaks=2500, xlab=“GRM diagonals”)
> hist(x[!diagElement,4], breaks=2500, xlab="GRM off-diagonals”)



Practical — removing relatives

* |In the off-diagonal plot there were some large relationships
* In R use “sum(x[!diagElement,4]>0.05)” to find out how many pairs

* Now we are going to use GCTA to remove one member of the close relative
pairs
»gcta --grm /data/module4/prac8/QIMRX_no_twin \
--grm-cutoff 0.05 --make-grm --out QIMRX_nr

* Re-run SNP-heritability estimate with your new pruned matrix
»gcta --grm QIMRX_nr --pheno /data/module4/prac8/HT_T_X.pheno \
--mpheno 1 --reml --out QIMRX _nr_1



Practical — Haseman-Elston regression

He regression can be run in GCTA using --Hereg, e.g.

» gcta --grm QIMRX_nr --pheno /data/module4/prac8/HT_T X.pheno --mpheno 1\

--HEreg --out QIMRX_nr_1b
However today we’re going to to it by-hand, in R!

Open R:
» Hereg = read.table("/data/module4/prac8/he.grm.txt")
> names(HEreg) <- ¢("ID1", "ID2", "SNPs", "REL","PROD")

Do the regression and plot:
» Im1 = Im(HEregSPROD~HEregSREL)
» png(file="HEreg_all.png")
» plot(HEregSPROD~HEregSREL,pch=".")
» abline(lIm1,col="orange",lwd=1.5)
» dev.off()

corr(Y,Y;) = h“m;; + residual




Practical — Haseman-Elston regression

* Now let’s remove the relatives & retry

»HEregSunrel = HEregSREL<0.05 #make a T/F vector on the relationship value
»Im2 = Im(HEregSPROD[HEregSunrel]~*HEregSREL[HEregSunrel])

»plot(HEregSPROD[HEregSunrel]~HEregSREL[HEregSunrel],pch=".")
»abline(lIm2,col="orange",Iwd=1.5)
» dev.off()



