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Definition

Heritability (ℎ!):

quantifies the degree to which inter-individual 
differences and resemblance in the population 
are due to genetic factors.

Chial, H. (2008) Polygenic inheritance and gene mapping.
Nature Education 1(1):17
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Definition
The value of the trait, or phenotype (P), can be 
modelled as

P =  A +    E

then ℎ! = "!
"

"#
"

the heritability is the proportion of phenotypic 
variance (𝜎#!) attributable to additive genetic 
effects (𝜎$!)
Heritability ranges between 0 and 1

(additive)
genetic factors

Non-genetic 
factors

Chial, H. (2008) Polygenic inheritance and gene mapping.
Nature Education 1(1):17
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Definition

• How can we estimate ‘A’ when we 
can’t observe the true genetic 
effects?

Galton (1886)



What are ‘average’ relationships?

• Animal and plant breeders have used 
‘average’ or pedigree relationships 
since 1950’s to drive genetic change

• Human geneticists have mostly relied 
on comparing MZ and DZ twins

• These approaches rely on the 
average genetic relationship 
between relatives



What are ‘average’ relationships?

Relationship Relationship 
co-efficient (𝝅)

MZ twins 1.0 = 0.5!

Parent-child 0.5 = 0.5"

Full-sibs/DZ twins 0.5 = 2𝑥0.5#

Half-sibs 0.25 = 0.5#

Avuncular 0.25 = 2𝑥0.5$

Grandparent-child 0.25 = 0.5#

1st cousins 0.125 = 2𝑥0.5%
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Definition
We can estimate the heritability of a trait using 
average relationships, e.g.

corr(Yi,Yj) = h2𝝅ij + residual

12
Visscher, McEvoy & Yang (2010) Genet. Res. 92:371-379.



Definition
We can estimate the heritability of a trait using 
average relationships, e.g.

Twin-based estimate heritability:
r(MZ) = [var(G) + var(E) ]/ var(P)
r(DZ) = [0.5 var(G) + var(E) ] / var(P)

2 [ r(MZ) – r(DZ) ] = 2[ 0.5.var(G)] / var(P)
= h2



Why all the fuss about h2?

1) The heritability of a trait gives an upper bound for the accuracy of 
genetic predictors of that trait.

2) The heritability predicts the response to (natural/artificial) selection.

3) The heritability predicts an individual’s risk to develop a certain disease 
knowing they have affected relatives.

4) The heritability influences the statistical power of genome-wide 
association studies (GWAS)
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Misconceptions about heritability

Heritability is an estimate, based on many assumptions. Beware.

Heritability is a property of a trait, in a population, at a given time. It is 
not fixed.

A low heritability does not necessarily mean the trait is not genetically 
determined. 
• It suggests that non-genetic factors account for more variation.
• Is there phenotypic variation? (e.g. number of fingers)
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Methods to estimate heritability

Covariance between ‘relatives’ is fundamental to h2 estimation.

Methods differ in the approaches to combine corr(Yi,Yj) and 𝝅ij, e.g.
Øwe can estimation relationships using pedigrees or genetic markers
Øwe can use a regression, ANOVA or REML framework for parameter 

estimates

corr(Yi,Yj) = h2𝝅ij + residual



Relationship matrices

A relationship matrix (of dimension nxn, where n = number of individuals) 
is a square symmetrical matrix where each element defines the 
relationship between two individuals.

e.g. for pedigree relationships 𝐴%& = 0.5 for full-sibs i and j

17



Relationship matrices – average relationship

A relationship matrix (of dimension nxn, where n = number of individuals) 
is a square symmetrical matrix where each element defines the 
relationship between two individuals.

e.g. 

18

1.0

0 1.0

0.5 0.5 1.0

0.5 0.5 0.5 1.0

0.5 0.5 0.5 0.5 1.0

0 0 0 0 0 1.0

0.25 0.25 0.25 0.25 0.5 0.5 1.0

ID Mother Father

1 - -

2 - -

3 1 2

4 1 2

5 1 2

6 - -

7 5 6

Lower triangle A matrix:



Relationship matrices

A relationship matrix (of dimension nxn, where n = number of individuals) 
is a square symmetrical matrix where each element defines the 
relationship between two individuals.

e.g. for pedigree relationships 𝐴%& = 0.5 for full-sibs i and j

There are many ways to calculate a relationship matrices when using SNP 
data. We will focus on a standard estimator implemented in the software 
GCTA.
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Standard GRM estimator
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where, 𝑥&' and 𝑥&( are the minor allele count (𝑥&', 𝑥&( = 0,1 or 2) 
at SNP i for individuals j and k respectively, 𝑝& the minor allele frequency 
(MAF) of SNP I and 𝑚 the number of SNPs used to 
calculate the GRM.

Example of GRM between N=3 individuals
(over m=1000 SNPs)

[$bash] zless myGRM.grm.gz
1 1 1000  0.99
1 2 1000 -0.01
1 3 1000  0.01
2 2 1000  1.03
2 3 1000  0.03
3 3 1000  1.01



Estimating genetic variance

• Haseman-Elston (HE) regression, ‘method of moments’

• ANOVA for balanced designs

• REstricted Maximum Likelihood (REML)

21

corr(Yi,Yj) = h2𝝅ij + residual



Haseman-Elston (HE) regression

HE regression estimates h2 by regressing 
𝑍&𝑍'onto *𝜋&', 

where
𝑍& = (𝑌& −mean 𝑌 )/sd(𝑌), and 
𝑍' = (𝑌' −mean 𝑌 )/sd(𝑌)

Thus,
𝐸[𝑍&𝑍'] = corr(𝑌& , 𝑌')
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*𝜋'(

𝑍 '
𝑍 (

Data from UK Biobank participants
(Application number 12505)

𝐸[𝑍-𝑍.| &𝜋-.] = 0.06 + 0.87 &𝜋-. => *ℎ/01 ~0.87.



HE regression with GCTA

Step 1: Calculate the GRM
gcta64 --bfile myDataInPLINKformat --make-grm-bin --out myData
[generates 3 files: myData.grm.id, myData.grm.bin, myData.grm.N.bin]

Step 2: Prepare phenotype file (e.g., “phenotype.txt”) with two phenotypes (headers are not necessary)
FAMILY  INDIV    Y1    Y2
FAMID1 INDID1  123   0.1
FAMID1 INDID2  236   0.0
FAMID2 INDID1  393   0.5
FAMID2 INDID2  210   1.1
FAMID3 INDID1  122   -1.

Step 3: Run GCTA to estimate heritability of trait 1 using HE regression
gcta64 --grm myData --pheno phenotype.txt --mpheno 1 --HEreg --out myHE_estimates
[generates 2 files: myHE_estimates.log, myHE_estimates.HEreg]
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REML estimation
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• Mixed model: 𝒚 = 𝑿𝜷 + 𝐙𝐮 + 𝐞, 
• where 𝐮~𝐍(𝟎, 𝐀𝜎!") & 𝐞~𝐍(𝟎, 𝐼#𝜎$")

• Use REstricted Maximum Likelihood to estimate parameters
• ‘restricted’ in that we also have fixed effects i.e. 𝐲~𝑁(𝑿𝜷, 𝜎!"𝑨 + 𝜎$"𝐼#)
• REML accounts for df lost due to estimation of fixed effects

• Specifically in human genetics, often called GREML (Genome-based REML)

• Genome-based :-
• using SNPs to determine relationships
• assume that genetic effects are a linear combination of SNP effects
• “big-p little-n” problem (where n = samples & p = predictors)



GREML estimation with GCTA
Run GCTA to estimate heritability of trait 1 using GREML

gcta64 --grm myData --pheno phenotype.txt --mpheno 1 --reml --out myGREML_estimates

[generates 2 files: myGREML_estimates.log, myGREML_estimates.hsq]

25

The significance of h2
SNP is assessed by 

likelihood ratio test (LRT)
H0:  h2

SNP = 0
H1:  h2

SNP ≠ 0

LRT = 2[L(H1) – L(H0)] is distributed as a half 
probability of 0 and a half probability of chi-
squared with 1 d.f.



Interpreting h2 estimates
• h2 estimates are based on many assumptions, depending on your approach

Øe.g. h2-SNP depends on the SNP you use!
Ømost models assume random mating

• Bias from shared environment
Øcan be model explicitly, e.g. twin analysis (still biased?)
Øuse only unrelated individuals (𝝅ij < 0.05)
Øwithin-family estimates

• G-E confounding – population stratification or parental effects
ØFit PCs as covariates
ØWithin-family analyses



Missing heritability

ℎ!"#$
% ≤ ℎ$&'% ≤ ℎ'()%

ℎ#()! -ℎ*+,-
! is often denoted the “missing” heritability (e.g., 5% vs 80%).

ℎ-./! -ℎ*+,-
! is often denoted the “hidden/hiding” heritability.

ℎ/01! -ℎ-./! is denoted the (still) missing heritability.

27

Manolio et al. 2009 Nature



Genomic relationship matrix
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‘close relatives’
𝜋 > 0.05

‘unrelated’
𝜋 < 0.02

• 1.1M HapMap3 SNPs with MAF > 0.01 for 450K individuals

• constructed using GCTA (Yang et al. 2010)

• allocated pairs into 54 relationship ‘bins’ or groups
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corr(Yi,Yj) = h2𝝅ij + residual



Practical – estimation of h2 using GCTA
We will loosely follow a practical developed for STAT 3306-7306
• grm is located in /data/module4/prac8/QIMRX_no_twin.grm.gz
• Made with the following code in GCTA, e.g.

Øgcta --bfile <plinkSNPFile> --make-grm.gz --out QIMRX_no_twin

• Look at the ‘gzip’ version of the grm using ‘zcat <file>.grm.gz | head` 
at the command line



Practical – estimation of h2 using GCTA
• Use GCTA to estimate the SNP-heritability for height, e.g.
gcta --grm /data/module4/prac8/QIMRX_no_twin \

--pheno /data/module4/prac8/HT_T_X.pheno \
--mpheno 1 --reml --out QIMRX_1

• View the resulting file at the command line using ‘more’



Practical – closer look @ the GRM

• Open R & use 
Øx = read.table(“<file>.grm.gz”) to load the data into R
Ølower triangle GRM; columns are row #, column #, # SNPs, relationship value

• Make a true/false vector if the relationship value is a diagonal
ØdiagElement = x[,1] == x[,2]
Øsum(diagElement) ; head(diagElement)

• Plot results
Øhist(x[diagElement,4], breaks=2500, xlab=“GRM diagonals”)
Øhist(x[!diagElement,4], breaks=2500, xlab=“GRM off-diagonals”)



Practical – removing relatives

• In the off-diagonal plot there were some large relationships
• In R use “sum(x[!diagElement,4]>0.05)” to find out how many pairs

• Now we are going to use GCTA to remove one member of the close relative 
pairs
Øgcta --grm /data/module4/prac8/QIMRX_no_twin \

--grm-cutoff 0.05 --make-grm --out QIMRX_nr

• Re-run SNP-heritability estimate with your new pruned matrix
Øgcta --grm QIMRX_nr --pheno /data/module4/prac8/HT_T_X.pheno \

--mpheno 1 --reml --out QIMRX_nr_1



Practical – Haseman-Elston regression

• He regression can be run in GCTA using --Hereg, e.g.
Ø gcta --grm QIMRX_nr --pheno /data/module4/prac8/HT_T_X.pheno --mpheno 1 \

--HEreg --out QIMRX_nr_1b 
• However today we’re going to to it by-hand, in R!

• Open R:
ØHereg = read.table("/data/module4/prac8/he.grm.txt")
Ønames(HEreg) <- c("ID1", "ID2", "SNPs", "REL","PROD")

• Do the regression and plot:
Ø lm1 = lm(HEreg$PROD~HEreg$REL)
Øpng(file="HEreg_all.png")
Øplot(HEreg$PROD~HEreg$REL,pch=".")
Ø abline(lm1,col="orange",lwd=1.5)
Ødev.off()

corr(Yi,Yj) = h2𝝅ij + residual



Practical – Haseman-Elston regression

• Now let’s remove the relatives & retry

ØHEreg$unrel = HEreg$REL<0.05 #make a T/F vector on the relationship value
Ølm2 = lm(HEreg$PROD[HEreg$unrel]~HEreg$REL[HEreg$unrel])

Øplot(HEreg$PROD[HEreg$unrel]~HEreg$REL[HEreg$unrel],pch=".")
Øabline(lm2,col="orange",lwd=1.5)
Ødev.off()


