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General Information:

• We are currently located in Building 69

Emergency evacuation point

• Food court and bathrooms are located 
in Building 63

• If you are experiencing cold/flu 
symptoms or have had COVID in the 
last 7 days please ensure you are 
wearing a mask for the duration of the 
module



Data Agreement
To maximize your learning experience, we will be working with genuine human 
genetic data, during this module.

Access to this data requires agreement to the following in to comply with human 
genetic data ethics regulations

Please email pctgadmin@imb.uq.edu.au with your name and the below 
statement to confirm that you agree with the following:

“I agree that access to data is provided for educational purposes only and that I 
will not make any copy of the data outside the provided computing accounts.”

mailto:pctgadmin@imb.uq.edu.au


For non-UQ attendees, you are provided with a registration instruction for a guest 

account (A4 paper). 

After you have completed the online registration, use the provided Username and 

the Password that you set to log into the desktop.

Desktop Access



• You have all been provided with login details to computing resources needed for the practical component

• An SSH terminal is needed to connect to the computing:

- Windows:  Install PuTTY

- Hostname: as provided  (203.101.228.xxx)

- User: as provided

- Check Connection > SSH > X11 > Enable X11 forwarding

- Mac/Linux:  Use the terminal

- ssh -X <user>@203.101.228.xxx

• If interactive R plotting does not work on your machine, you can generate plot on the server and then download

• Windows: use WinSCP -> enter login information

• Or use Command Prompt -> sftp <user>@203.101.228.xxx

• get xxx.pdf and the file will be in your user directory

Cluster Access



https://cnsgenomics.com/data/teaching/GNGWS22/

Slides and Practical notes:

Module 5 Cellular Transcriptomics
Room 304, Building 69

Quan Nguyen, Guiyan Ni, Sally Mortlock, Duy Pham, Xiao Tan



Day 1 (June 23rd Thursday): Single cell analysis 

Lecture
(Morning; single cell data and theory for common analyses) 

9-9:20am Introduction to participants and instructors All 

9:30-9:40am Introduction scRNA and spatial transcriptomics data Quan Nguyen

9:40-
10:00am Data exploratory analysis and preprocessing Quan Nguyen

10-10:20am Data normalisation Guiyan Ni
10:20-
10:40am Dimensionality reduction & Clustering Quan Nguyen

10:40-11am Break
11:00-
11:20am Differential expression analysis Guiyan Ni

11:20-11:30 Cell type analysis Sally Mortlock

11:30-11:45 eQTL single cell/tissue/bulk Sally Mortlock

11:50am-
12:00pm Questions and discussions and future perspectives



Scale

Resolution

Single cell informatics

The G&G Cellomics Team

INFORMATICS
Precision Genomics Medicine

Quan Nguyen, Guiyan Ni, Sally Mortlock, Duy Pham, Xiao Tan



General introduction single cell and spatial 
transcriptomics



The single-cell revolution is just starting



2019: Single Cell Multiomics 2020: Spatial Transcriptomics 

Advanced genomics technologies

2018: Single Cell Transcriptomics 



• Single-cell RNA sequencing (scRNA-seq) measures thousands of genes in a separate cell
• How: 3 barcoding steps for sample, cell and RNA molecule
• Scale: bulk RNA-seq (5 samples) vs. scRNA-seq (45 K cells),  a ~900 times bigger gene count matrix

Single cell RNA sequencing



Cancer sample Non-cancer sample
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• Bulk RNA sequencing: no difference in mean expression
• Single-cell sequencing: can detect higher expression in cancer cells



r = 0.93
(p < 1e-9)

r = 0.77
(p < 5e-5)

r = 0.26
(p > 0.1)

r = 0.96
(p < 2.2e-16)

r = 0.07
(p > 0.7)

r = 0.001
(p > 0.9)

• Different results in gene expression patterns when looking at combined or separate 
cell types (cell-type specific signals need scRNAseq data)

Genes correlation detected at cell-type level



(@boxia)

(@LGMartelotto)

Spatial transcriptomics approach

Lego: 

Fruit salad: 

Bulk Single cell Spatial



Cellular ecosystem within a tissue 

• Complex cellular ecosystem: cell-type composition, 
spatial organisation, cell-cell interaction, mechanical 
effect

(Gerdes et al. 2014; Bregenzer et al. 2019)

• How to comprehensively investigate tissue 
ecosystem?

Bulk Single cell

Spatial



Spatial transcriptomics adds spatial dimension and tissue morphology

Spatial spots on a slide                            
Spatial 
Probe

Spatial Expression

Color image intensity

Imaging

Sequencing

• On-tissue expression profiling (>20,000 genes); each spot contains ~1-9 cells; tissue < 6.5 mm x 6.5 mm
• Other spatial technologies are different (complementary) in resolution, throughput, scale, sensitivity ect.



Software programs 
• scGPS: https://github.com/BiomedicalMachineLearning/scGPS

• ascend: https://github.com/BiomedicalMachineLearning/ascend

• scPred: https://github.com/IMB-Computational-Genomics-Lab/scPred

• CoreNET: https://github.com/BiomedicalMachineLearning/CoreNET

• HEMnet: https://github.com/BiomedicalMachineLearning/HEMnet

• scSplit: https://github.com/jon-xu/scSplit

scRNAseq visualisation
• HiPSC: http://computationalgenomics.com.au/shiny/hipsc

• Hipsc2cm: http://computationalgenomics.com.au/shiny/hipsc2cm

• scIVA: http://computationalgenomics.com.au/shiny/scIVA/

Analysis tools for single cells and spatial data

scPred

CoreNet

Gene x Cell 
Data Matrix Gene-Gene Network

Network Comparison

PC1

argmax(       ,       )

PC1

Differential Gene Ranking

Spatial Transcriptomics 
• SpaCell: https://github.com/BiomedicalMachineLearning/Spacell
• stLearn: https://stlearn.readthedocs.io/en/latest/

https://github.com/BiomedicalMachineLearning/scGPS
https://github.com/BiomedicalMachineLearning/ascend
https://github.com/IMB-Computational-Genomics-Lab/scPred
https://github.com/BiomedicalMachineLearning/CoreNET
https://github.com/BiomedicalMachineLearning/HEMnet
https://github.com/jon-xu/scSplit
http://computationalgenomics.com.au/shiny/hipsc2cm/
http://computationalgenomics.com.au/shiny/hipsc2cm
http://computationalgenomics.com.au/shiny/scIVA/
https://github.com/BiomedicalMachineLearning/Spacell
https://stlearn.readthedocs.io/en/latest/


Data Preprocessing



Single cell data vs. bulk data 

Single cell Bulk

Noisy data Undetected genes (zero 
inflation)

Deep sequencing, most 
genes detected 

Cell-cell variation Measured Not measured

Data size Thousands of cells (1 cell ~ 
1 bulk sample)

10-100 samples

https://github.com/IMB-Computational-Genomics-Lab/scIVA

Bulk

Single cell

https://github.com/IMB-Computational-Genomics-Lab/scIVA


Single cell data analysis



An analysis pipeline 

Three main steps: 
1) Data preprocessing and normalisation
2) Clustering to find subpopulations (a step applied in almost all cases)
3) Downstream analysis at cell-type specific level (genes, pathways, biological processes)



Analysis steps for the differentiation dataset



Data quality control: a range of QC measures

UMI/Cell
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• 16 QC measures 
• 10 scRNA-seq libraries



Data preprocessing: quality control and filtering genes and cells

• Median absolute deviation (MAD) is a simple measure of data dispersion that is more robust to cell outliers 
compared to other measures such as standard deviation

• Using MAD to remove cell outliers: 1) percent mapped reads to mitochondrial/ribosomal genes, 2) number of 
genes detected per cell, 3) total mapped reads per cell 

Remove 𝑋! if   𝑋! > 3 x MAD + median(X)



Single cell data: zero inflation

Noise in scRNA-seq data derives from 
technological limitations:

• Sequencing library amplification bias
• Sequencing depth between cells and samples 
• Low RNA capture rate (genes not detected 

even though they are expressed)
• Variable cell capture rate

(Pierson and Yau, 2015)

p0 = exp(−λ μ 2), where λ is a fitted parameter, μ
non-zero mean expression, p0  gene dropout rate



MAGIC: Markov Affinity-based Graph Imputation of Cells 
weights cells by Markov transition matrix (van Dijk et al., 
2018) 

Single cell data: impute zero expression values

scImpute: fits a mixture model to learn gene’s dropout 
probability and borrows information of the same gene in 
other similar cells based on gene set Bj (Li & Li, 2018)



Data Normalisation



Batch effects

• Batch effects: technical differences 
induced by the operator or other 
experimental artifacts

• A balanced experimental design 
allocates samples evenly between 
batches, so that the effect can be easily 
regressed out in a linear model by 
setting appropriate covariates 

• Assumption of orthogonality between 
the batch effect and the biological 
subspace

(Buttner et al, 2019)



Representation of biological and technical variation

𝑅𝑎𝑡𝑒! = 𝑚𝑖𝑛 𝑀𝑀𝑅" × 𝑁! ×
𝑅𝐹!
𝑇𝑀𝑅!

Batch normalisation by sequencing depth:
𝑅𝑎𝑡𝑒! is the binomial rate parameter for sampling reads in sample i
MMRj ratio sequencing depth to mean depth 
Ni is the number of cells in sample i
RFi is the fraction of mapped reads; TMRi is the total mapped reads 

Representation of biological variation Representation of technical variation 



Three levels of single cell data normalization

Three levels of technical variation in 
scRNA-seq data:

• Gene-specific effects within a cell: GC 
content, gene length 

• Cell specific effects within a sample: 
each cell is amplified separately, causing 
amplification bias among cells 

• Batch effects within a study: sample 
preparation or technology-specific 
effects 



Cell to cell normalisation: a pooling strategy to solve zero inflation 

• Each cell is considered as a sequencing library, so the total reads per cell need to be normalised
• Pool cells to reduce the number of zeros 
• Estimate the size factors for the pool 
• Repeat many time and use deconvolution to estimate each cell size factor 𝜃"

𝐸 𝑉!# = 𝜆!$3
%&'!

𝜃" × 𝑡"() 𝑉!# is the sum of adjusted expression value across all cells in pool 𝑉
!

for gene i
𝜆!$ is the expected transcript count and 𝜃" is the cell specific bias
𝑆
!

is a pool of cell; 𝜃" × 𝑡"() is size factor for cell j

(Lun et al, 2016)



• CCA finds projection vectors u and v such 
that the correlation between the two 
datasets uTX and vTY is maximized

• CCA vectors capture sources of variance 
that are shared between data sets.

• CC vectors are correlated, but not 
necessarily aligned between data sets

• Alignment finds cell in the other dataset 
with the most similar metagene 
expression while maintaining the relative 
ordering of cells within each data set

Batch normalisation: Canonical correlation analysis (CCA) 

(Butler et al, 2018)



Three assumptions in MNN 
normalisation: 

(i) there is at least one cell 
population that is present in 
both batches, 

(ii) the batch effect is almost 
orthogonal to the biological 
subspace, and

(iii) the batch-effect variation is 
much smaller than the 
biological-effect variation 
between different cell types

Batch normalisation: Mutual nearest neighbour (MNN)

(Haghverdi et al, 2018)



Batch normalisation: Mutual Nearest Neighbour (MNN)



Dimensionality Reduction



Dimensionality reduction: linear techniques 

Why dimensionality reduction: 
• Filters out noise
• Minimises curse of dimensionality 
• Allows visualization with more separation of points
• Reduces computational load 

Linear approaches: 
• PCA (Principal Component Analysis)
• ICA (Independent Component Analysis)
• NMF (Non-negative Matrix Factorization)

Linear approaches:
• Capture the dimensions with higher variance
• Quantitative way to assess the amount of retained 

dimensions 
• Preserve both long-range and short-range distance 

(i.e. cells that are very different or very similar) 
• Different to bulk RNAseq data,  the first few 

dimensions are not enough to capture scRNAseq
data structure well

Bulk Single cell
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Dimensionality reduction: nonlinear techniques
• MDS (Multidimensional Scaling)

• Uniform manifold approximation and projection 
(UMAP) 

• t-distributed Stochastic Neighbour Embedding (t-SNE)

• UMAP and tSNE: nonlinear embedding (mapping) of 
data points from high dimensional space to low 
dimensional space, so that the probability distance 
between these two space (KL divergence or cross 
entropy) is minimised

• Both methods: class of k-neighbour based graph 
learning algorithms, strong influence of 
hyperparameters, non-deterministic (stochastic)

• Nonlinear techniques solve the overcrowding 
representation, which is often seen in linear 
approaches for large scRNA-seq data

• UMAP preserves local & more of the global data 
structure than t-SNE

Overcrowding



Global vs local distance in low dimensional space 

(Oskolkov N, 2019)



tSNE

tSNE does not preserve long distance - KL divergence

(Oskolkov N, 2019)
• The embedding minimizes the Kullback-Leiber divergence of the 

distribution from Q to P calculated as: 𝐾𝐿(𝑋, 𝑌) =
∑!*" 𝑝!" log

+"#
,"#

≈ 

• The probability distance between two neighbouring cells is the 
joint probabilities 𝑝!" =

+#|" - +"|#
./

• Conditional probability of cell 𝐶
"

given cell 𝐶
#

is calculated as: 

𝑝"|! =
12+

%& '",'#
)

)*"
)

3+," 12+
%& '",'+

)

)*"
)

• For large distances X in high dimensions, the exponential term 
approaching 0, so Y can be basically any value from 0 to ∞ and 
KL remains small

• For small X, to minimise KL (cost/penalty), Y is small 

• Pairwise similarity in t-SNE space: 𝑞!" =
)- 4"( 4#

) %-

∑+,. )- 4+( 4. ) %- , 

𝑦
#

and 𝑦" are corresponding mapped points of cells 𝐶
#

and 𝐶
"
to

t-SNE space, and  𝒒𝒊𝒋 𝐟𝐨𝐥𝐥𝐨𝐰𝐬 𝒕 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧 to avoid 
crowding

tSNE minimises Kullback-Leiber divergence KL(X,Y)



UMAP

UMAP preserves long distance - cross entropy

When X small, Y is also approaching 0 to minimize CE

UMAP minimises cross entropy CE(X,Y)

When X large, Y is also large to minimize CE

(Oskolkov N, 2019)

tSNE:



More about UMAP vs tSNE 

• To learn low-dimensional embeddings, UMAP assigns 
initial low-dimensional coordinates using Graph 
Laplacian (force directed graph layout algorithm) in 
contrast to random normal initialization used by 
tSNE. Therefore, UMAP is less dependent on random 
state (not changing from run to run)

• UMAP proceeds by iteratively applying attractive 
(among edges) and repulsive forces (among vertices) 
at each edge or vertex. Convergence is guaranteed 
by slowly decreasing the attractive and repulsive 
forces of the neighbour graph.

• UMAP has no computational restrictions on 
embedding dimension, making it viable as a general-
purpose dimension reduction technique for machine 
learning (tSNE can only embed to 2-3 dimensions) (Oskolkov N, 2019)



scRNAseq Data Clustering



Single Cell Clustering Analysis

Clustering in scRNAseq is a data-driven way to find cell (sub)types at single-cell resolution 
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An example iPSC scRNA dataset: 
Ø Sequenced > 18,000 cells (10x Genomics)
Ø Detected > 16,000 genes
Ø We proved that a seemingly homogeneous hiPSC 

population contains 4 subpopulations 

Why study heterogeneity in development and diseases? 
Ø More heterogeneous than expected
Ø Specific biological processes masked by mixed population-

averaging effect
Ø Early disease diagnosis, specific markers 
Ø Targeted drug discovery, treatment, and monitoring
Ø Personalised medicine
…..

Proliferative

Core pluripotent

Early primed

Late primed

Clustering to assess subpopulation heterogeneity



+CHIR +XAV
+ AA +BSA + B27 + Ins

Question: differential responses 
at the subpopulation levels? 

(Fei Pei et al., 2017)

• 5 time points: days 0, 2, 5, 15 and 30

• Sequenced > 43,000 single-cell 
transcriptomes (10x Genomics)

• Detected > 17,000 genes at each time 
point

• Aim: to identify gene regulation changes 
at single-cell and subpopulation levels 
within and between time points

Clustering to assess cell-type specific responses



Euclidean distance

Manhattan distance

Maximum  distance

• Clustering starts with computing a distance matrix between cells
• Distance between two cells i and j, 𝑥

#$
is the expression of the gene g in the cell 𝐶

#

Cluster cells in expression space - Distance measures

dij =
GX

g=1

| xig � xjg |
<latexit sha1_base64="CLZ2vDHNiCy+XNt4nvT5CPU3zQo="></latexit>

dij = max
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| xig � xjg |
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<latexit sha1_base64="e7gSNQVeV6Zy9U2i6dHeT1sZosI="></latexit>

cells in gene expression space



Correlation-based and cosine distance metrics are scale invariant: they consider relative differences 
in values, making them more robust to library or cell size differences.

1-Pearson’s correlation 
coefficient (𝑥

#$
is the expression)

1-Spearman’s correlation 
coefficient (𝑟!8 expression rank)

Cosine distance  
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PG
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�
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2
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�2
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Cluster cells in expression space - Distance measures

dij = 1� xxxi · xxxj

||xxxi|| · ||xxxj ||
<latexit sha1_base64="Mm9ZJ9y8/8usnz8n+ECR4J17Nco="></latexit>



• Two examples of simple cases for K-mean and Hierarchical clustering techniques
• K-mean clustering:

• Initialisation: given an initial set of K random centres and a distance matrix, finds the closest
cluster centres for each of all cells, then updates the centres (average of all cells in a cluster).

• Repeat the EM procedure till no more change in the centroids
• K-mean requires a prior decision on the number of cell types

• Hierarchical clustering (Agglomerative/bottom-up approach):
• Initialisation: HC begins with n clusters of size one
• Merging (Ward’s variance): the two clusters with the minimal increase in the distance 𝑑9: =

𝑆𝑆𝐸9: − (𝑆𝑆𝐸9 + 𝑆𝑆𝐸:) are merged. The next decision to merge a subsequent cluster (C) to a
{A, B} branch requires C to satisfy that the distance between C and {A, B} is minimised

𝑆𝑆𝐸9 = ∑!;)
</ 𝑎! − W𝑎 ´(𝑎! − W𝑎), where W𝑎 is the centroid cell of the cluster A

𝑑= 9: =
(𝑛9+𝑛=)

𝑛9 + 𝑛: + 𝑛=
𝑑=9 +

(𝑛:+𝑛=)
𝑛9 + 𝑛: + 𝑛=

𝑑=: −
(𝑛=)

𝑛9 + 𝑛: + 𝑛=
𝑑9:

• A dendrogram tree is formed after the merging 

Classical clustering techniques



We improved HC clustering by first selecting for an optimal cluster resolution
by implementing the following algorithm:

1. Apply cutreeDynamic 40 times to merge branches in 40 different height
windows (defined the dendrogram area to be merged) from bottom (𝑊) =
[0.025, 1]) to the top (𝑊) = [1, 1]).

2. Compute pairwise adjusted Rand index (𝐴𝑅!) for every 2 consecutive
windows (𝑊! and 𝑊!-) for integers 𝑖 𝜖 [1, 39])

3. Compute stability index 𝑆 spanning the 40 iterations. 𝑆 is the set of count
values 𝐶> for unique Rand index values 𝐴𝑅! that remain the same between
consecutive 𝑊!.

4. Determine the most stable clustering result 𝐶>, where s is selected by the
following criteria:
• 𝐴𝑅? = max(𝑆) and max(S) is different to 𝐴𝑅) or 𝐴𝑅@$
• s = 1 or 40 if 𝐴𝑅) or 𝐴𝑅@$ = max(S) and 𝐶>/40 >0.5 (i.e. stable in

more than 50% of all iterations)

SCORE (Stable Clustering at Optimal REsolution):



Cell-cell distance 
matrix

Bootstrap 
Sample 1

Bootstrap 
Sample 2

Bootstrap 
Sample n-1

Bootstrap 
Sample n

……………..

Decision 
tree 1

Decision 
tree 2

Decision 
tree n-1

Decision 
tree n

Bagging tree

……………..

Clustering stability results from: 
• Iterative grouping of cells in different search space of the clustering tree
• Bootstrap aggregating (bagging) ensemble algorithm

Bootstrap and bagging strategies to select stable clusters

CORE CORECORE CORE

SCORE



1. Bagging strategies are used for re-clusteing random sub-sets of cells from the population to generate 
additional dendrogram trees. 

2. For each bagging run, choose a vector bk(k= 1,2,...,m) of length p∗dim(C) (p≤1) containing a sample, with 
replacement, from set C and create a new matrix Nk, of Euclidean distances for the cells in bk.

3. For each Nk, a new dendrogram tree is generated and clustered, then an optimal stability is computed.

4. The most stable clustering result is then chosen from the original tree. By default the most commonly occur-
ring stability from the bagging results and use it as the cluster count for the original dendrogram.

Bootstrap and bagging strategy to select stable clusters



Bootstrap and bagging strategy to select stable clusters



Subpopulations identified by CORE are distinguishable 

• From a mixed population at each time point, CORE 
identified 2 to 4 homogenous clusters

• The identified subpopulations were confirmed by 
independent methods: PCA, MDS, tSNE, CIDR

• The subpopulations are biologically distinct

Day 2 Day 5Day 0 Day 15 Day 30



Graph-based Clustering

Two main steps: 

1) Embed cells in a graph structure: 
• K-nearest neighbour (KNN) graph (cells with similar  

expression patterns identified by Euclidean 
distance in PCA space)

• Edge weights between any two cells based on the 
shared overlap in their local neighbourhoods
(Jaccard similarity)

2) Community detection to partition cells in graph into 
groups of cells 
• Modularity optimization techniques such as the 

Louvain algorithm
• Modularity: measures the density of edges inside 

communities to edges outside communities
• Louvain iteratively groups cells together, with the 

goal of optimizing the standard modularity 
function
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Graph-based Clustering

Nature Reviews Genetics, 20, (2019)

• Build shared-nearest-neighbour graph connecting the cells 
and finds tightly connected communities

• Increasing the number of neighbours when constructing 
the cell–cell graph indirectly decreases the resolution of 
graph-based clustering

K=5 K=10



Visualise clustering results



Adjusted Rand index (ARI)

Jaccard index

Fowlkes–Mallows index (FM)

Statistical evaluation of clustering results 

a: the number of pairs of cells correctly partitioned into the same cluster
b: the number of pairs of cells wrongly partitioned into the same cluster
c: the number of pairs of cells wrongly partitioned into different clusters
d:  the number of pairs of cells correctly partitioned into different clusters
-> higher index scores (max = 1) mean more accurate clustering results  

ARI =
2 (ad� bc)

(a+ b) (b+ d) + (a+ c) (c+ d)
<latexit sha1_base64="fTY1QTkFK2nIXvSKKXBCJhQiiGc="></latexit>

FM =

s✓
a

a+ b

◆✓
a

a+ c

◆

<latexit sha1_base64="QzWglvnzfTYYiv8oMqg+imir4EI="></latexit>

Jaccard =
a

a+ b+ c
<latexit sha1_base64="TbMY1wWTU8fMAKX3QvDVxRDzuyw=">AAACDXicbVDLSsNAFJ3UV62vqEs3waoIlZJUQTdC0Y24qmAf0IRyM520QycPZiZCCfkBN/6KGxeKuHXvzr9x0mahrQcuHM65l3vvcSNGhTTNb62wsLi0vFJcLa2tb2xu6ds7LRHGHJMmDlnIOy4IwmhAmpJKRjoRJ+C7jLTd0XXmtx8IFzQM7uU4Io4Pg4B6FINUUk8/sH2QQ+4nt4Ax8H56eWSf2B4HnECaQMWt4LTU08tm1ZzAmCdWTsooR6Onf9n9EMc+CSRmIETXMiPpJMAlxYykJTsWJAI8ggHpKhqAT4STTL5JjUOl9A0v5KoCaUzU3xMJ+EKMfVd1ZreLWS8T//O6sfQunIQGUSxJgKeLvJgZMjSyaIw+5QRLNlYEMKfqVgMPQUUhVYBZCNbsy/OkVatap9Xa3Vm5fpXHUUR7aB8dIwudozq6QQ3URBg9omf0it60J+1Fe9c+pq0FLZ/ZRX+gff4AwySbVg==</latexit>



Differential expression analysis



Why DE



Three main categories

• Non-parametric tests
• Wilcoxon rank-sum test, Kolmogorov–Smirnov (KS) test
• Convert observed expression to ranks, then test whether the distribution of 

ranks for one group is significantly different from the other group

• Bulk RNA-seq based method
• e.g edgeR DEseq2

• scRNA-seq specific methods
• e.g MAST, SCDE
• Large number of samples (ie. cells)à whole distribution of expression values 

in each group



Non-parametric tests

Wilcoxon rank-sum test KS test



Linear model for differential expression 
LIMMA
• Generalized linear model
• 𝑙𝑜𝑔 𝑦!"# = 𝜇$ + 𝛼!" + 𝑒𝑟𝑟𝑜𝑟!"#

• Separate model for each gene g
• K is a specific sample 
• 𝜇i is mean expression for gene g over all samples
• 𝛼ji is deviation of the mean of the ith condition form the overall mean

• H0: 𝛼%&'(%,"'*'" = 𝛼+,*%&,-,"'*'" no difference in treatment and 
control group

Assumption using log as link function: 𝑦!8#~ Poisson à mean= variance
However,  often observe mean < variance à thus, Log-normal over correct data 
dispersion à 𝑦!"#~ negative binomial distribution



edgeR

• Generalized linear model

𝑦ij~𝑁𝐵(𝜇ij, 𝜑i) = 𝑁𝐵(𝑀ij𝜆ij, 𝜑i)

𝑉𝑎𝑟 𝑦ij = 𝜇ij + 𝜑i𝜇ijk if 𝜑i=0 à NB becomes Poisson
Gamma-Poisson mixture
Biological variance ~ Gamma
Measurement error ~ Poisson
H0:𝜆ij = 𝜆il

Raw count for gene g, sample i Normalization factor

Expression level of interest

Dispersion for gene g



MAST

Hurdle model
• a two-part generalized linear model 

• models the rate of expression over the background of various transcripts 
• the positive expression mean.

From Xiaole Liu 2020 STAT115



Comparison between different methods

Squair et al, NC, 2021



Cell Type Analysis



Cell Type Analysis

What is a cell type?
Cells can be organized into groups based on shared, quantifiable, 
features (lineage, location, morphology, activity, cell interactions, 
epigenetic state, cellular response, and molecular composition (mRNA 
and protein levels)).

scRNA-seq-based cell classification:
Partition cells into “clusters” based on expression signatures 
representing a “putative cell type”. This may not correspond to all 
features above and is also sensitive to cell state.



Cell Type Classification

Unsupervised
• Clustering algorithms - cluster cells into groups 

based on the similarities of the gene expression 
profiles.

• Use known cell type marker gene lists. 
• Cell type labels are assigned to each cluster by 

manual inspection of gene expression profile of a 
cluster or by computational tools.

• Can be challenging to specify biologically 
appropriate number of clusters.

• Relies on expert curated known marker gene lists.
• Seurat v3 clustering, raceID3, LIGER, SC3, 

Monocle3, TSCAN, pcaReduce and CIDR, SAME-
clustering and SHARP.

Supervised
• Require a reference dataset with known cell type 

annotations. 
• They train a classifying model on the reference 

data, and then apply the trained model to predict 
the cell types in an unannotated dataset.

• Restricted to the cell types included in the 
reference data.

• Can be challenging to obtain a suitable reference 
dataset, especially for novel tissue types.

• scPred, CellAssign, Seurat v3 mapping, scmap-
cluster, scmap-cell, singleR, CHETAH, Garnett and 
SingleCellNet.



Unsupervised example

https://hbctraining.github.io/In-depth-NGS-Data-Analysis-Course/sessionIV/lessons/SC_clustering_analysis.html



Supervised example - SingleR

Aran, D., Looney, A.P., Liu, L. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20, 163–172 (2019). https://doi.org/10.1038/s41590-018-0276-y



Single-cell eQTL



Integration with genomics

Expression Quantitative Trait Loci (eQTL)

eQTL model: linear regression

𝛾 = 𝑥𝛽 + 𝐶𝛼 + 𝜖

Phenotype

Genotype

Effect size
Covariates: PCs, 
batches, age, sex

residual error

SNP Gene



Cell-type specific eQTLs

Maria et al. 2022



Multiplexing - labeling

10X Genomics



Multiplexing - genetic

Demuxlet - Kang et al. 2017



eQTL Analysis

geneid chr start stop
Gene1 19 58345178 58353499
Gene2 19 58347751 58355183
Gene3 12 9067664 9116229
GeneM 12 53307456 53324864

SNP_ID chr pos
SNP1 19 58345167
SNP2 19 58347850
SNP3 12 9067300
… . .

SNPM 12 53304902

S1 S2 S3 … SN
gender 0 1 0 . 1
age 45 40 43 . 30

S1 S2 ... SN

Gene1 3 2 . 13

Gene2 2 3 . 1

Gene3 1 14 . 18

… . . . .

GeneM 25 0 . 0

S1 S2 ... SN

SNP1 2 0 . 1

SNP2 1 1 . 1

SNP3 0 2 . 1

… . . . .

… . . . .

SNPM 0 1 . 2

S1 S2 ... SN

Gene1 30 45 . 42

Gene2 10 12 . 5

Gene3 1 4 . 8

… . . . .

GeneM 5 0 . 0

snps gene statistic pvalue FDR beta
rs62512654 ADHFE1 32.64 1.30E-14 2.06E-07 0.47

rs145660663 ELP5 22.91 1.69E-12 9.24E-07 0.82
rs222843 ELP5 22.91 1.69E-12 9.24E-07 0.82
rs34926505 ELP5 22.91 1.69E-12 9.24E-07 0.82
rs2074217 ELP5 22.91 1.69E-12 9.24E-07 0.82
rs62377782 ERAP2 20.05 1.04E-11 1.12E-06 0.23
rs1559359 ERAP2 20.05 1.04E-11 1.12E-06 0.23
rs2549783 ERAP2 20.05 1.04E-11 1.12E-06 0.23

Ce
ll 

ty
pe

 1
Ce

ll 
ty

pe
 2

Output

snps gene statistic pvalue FDR beta

rs145660663 ELP5 22.91 1.69E-12 9.24E-07 0.82
rs222843 ELP5 22.91 1.69E-12 9.24E-07 0.82
rs1559359 ERAP2 20.05 1.04E-11 1.12E-06 0.23
rs2549783 ERAP2 20.05 1.04E-11 1.12E-06 0.23
rs199529 FAM215B 13.01 3.29E-09 3.01E-04 0.32
rs199528 FAM215B 13.01 3.29E-09 3.01E-04 0.32
rs11143240 LINC01504 12.48 5.65E-09 4.10E-04 0.03
rs7874628 LINC01504 12.48 5.65E-09 4.10E-04 0.03

𝛾 = 𝑥𝛽 + 𝐶𝛼 + 𝜖

Cis vs Trans



Example – OneK1K

S. Yazar, et al. Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science Vol. 376 Issue 6589 Pages eabf3041



Example - Single-Cell Endometrial eQTLs

No. 
Samples

No. Genes No. SNPs eQTLs
Unique 
eGenes

Fibroblast 19 14,431 4,279,467 746 26

MSC 19 12,183 4,279,467 675 24

ESC 59 14,308 5,411,984 8,050 283

Endometrium 206 17,022 6,230,993 207,071 3,726

McKinnon et al. 2022



Integrating GWAS Data

Zhu et. al 2016
Giambartolomei et.al. 2014

Summary-data-based Mendelian Randomisation (SMR)

Bayesian colocalization method (coloc)



Multiple sclerosis example

• Identified overlapping 
cis-eQTL for 108 risk 
genes using coloc.

• Of the 108 genes, 69 
show eQTL overlap in 
just a single cell type.

• 39 genes identified using 
SMR.

S. Yazar, et al. Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science Vol. 376 Issue 6589 Pages eabf3041



Discussion and Future perspectives


