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General Information:

- We are currently located in Building 69

i E £ it
g mergency evacuation poin

 Food court and bathrooms are located ’

In Building 63 "
&.A
 If you are experiencing cold/flu ..
symptoms or have had COVID in the m '
last 7 days please ensure you are . @y

wearing a mask for the duration of the
module




Data Agreement

To maximize your learning experience, we will be working with genuine human
genetic data, during this module.

Access to this data requires agreement to the following in to comply with human
genetic data ethics regulations

Please email pctgadmin@imb.ug.edu.au with your name and the below
statement to confirm that you agree with the following:

‘| agree that access to data is provided for educational purposes only and that |
will not make any copy of the data outside the provided computing accounts.”


mailto:pctgadmin@imb.uq.edu.au

Desktop Access

For non-UQ attendees, you are provided with a registration instruction for a guest

account (A4 paper).

After you have completed the online registration, use the provided Username and

the Password that you set to log into the desktop.



Cluster Access

* You have all been provided with login details to computing resources needed for the practical component

* An SSH terminal is needed to connect to the computing:

- Windows: Install PuTTY

- Hostname: as provided (203.101.228.xxx)
— User: as provided
- Check Connection > SSH > X11 > Enable X11 forwarding
- Mac/Linux: Use the terminal
~- ssh -X <user>@203.101.228.xxx
- If interactive R plotting does not work on your machine, you can generate plot on the server and then download
Windows: use WIinSCP -> enter login information
Or use Command Prompt -> sftp <user>@203.101.228.xxx

get xxx.pdf and the file will be in your user directory



Module 5 Cellular Transcriptomics

Room 304, Building 69

Quan Nguyen, Guiyan Ni, Sally Mortlock, Duy Pham, Xiao Tan

Slides and Practical notes:

https://cnsgenomics.com/data/teaching/ GNGWS22/



Day 1 (June 23 Thursday): Single cell analysis

Lecture

9-9:20am Introduction to participants and instructors

SR ECRCIET I Introduction scRNA and spatial transcriptomics data
L Data exploratory analysis and preprocessing
10:00am

(BT B Data normalisation

10:20- _ _ . _ |
10:40am Dimensionality reduction & Clustering
(B ET I Break

11:00- : : : :
11-20am Differential expression analysis
(NI LAV Cell type analysis
m eQTL single cell/tissue/bulk
USRI Questions and discussions and future perspectives
12:00pm

(Morning; single cell data and theory for common analyses)

All
Quan Nguyen

Quan Nguyen
Guiyan Ni
Quan Nguyen

Guiyan Ni
Sally Mortlock

Sally Mortlock



Single cell informatics

Precision Genomics Medicine

Regenerative Disease
biology mechanisms

Variants
to drugs

Diagnostics

Resolution o

and resistance

The G&G Cellomics Team
Quan Nguyen, Guiyan Ni, Sally Mortlock, Duy Pham, Xiao Tan



General introduction single cell and spatial
transcriptomics



Science | o |
AAARs BREAKTHROUGH  The single-cell revolution is just starting

of the YEAR



Advanced genomics technologies

2018: Single Cell Transcriptomics 2019: Single Cell Multiomics 2020: Spatial Transcriptomics

Jarwsary 2020 Vol 17 No. 1

nature methods

nature methods

Method of the Year 2020
Spatially resolved transcriptomics
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BREAK:TH!)UGEH METHOD OF THE YEAR 2019
‘ S Localization microsco, twice as precise
S of the YEAR icroscopy pre

A cryo-EM-based structural proteomics approach
Time-resolved crystallography at the European XFEL
Magnetic resonance at high speed




Single cell RNA sequencing

Barcoded bead

Collect
Q
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* Single-cell RNA sequencing (scRNA-seq) measures thousands of genes in a separate cell

* How: 3 barcoding steps for sample, cell and RNA molecule

* Scale: bulk RNA-seq (5 samples) vs. scRNA-seq (45 K cells), a ~900 times bigger gene count matrix




Disease at single-cell resolution

Cancer 3ample

‘M»

A

Cancer cells
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Dim X
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« Bulk RNA sequencing: no difference in mean expression
« Single-cell sequencing: can detect higher expression in cancer cells

e Cancer cells
Cell type 1
* Cell type 2



Genes correlation detected at cell-type level

Gene B
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* Different results in gene expression patterns when looking at combined or separate

cell types (cell-type specific signals need scRNAseq data)



Spatial transcriptomics approach

Single cell Spatial

Lego:
(@boxia)

Fruit salad:
(@LGMartelotto)




Cellular ecosystem within a tissue

Cancer cells

e @

Interphase Dividing
cell cell

Cancer

@ stem cell ‘

Apoptotic  Invasive

cell cell
® 0.0
%o
Red blood Platelets
cells
-
Pericyte

Activated Fibroblast
fibroblast
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Perpendicular ~ collagen:
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invasive noninvasive
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endothelial endothelial cells
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Cell.cey Interactio®

T-lymphocytes
© 0 o @

CD4* CD4* CD8* CD4*
Teg Th1 T- Th17
cell cell cell  T-cell

Immune
cell
activation

&0

© &

B-cell NK cell
©)]

M1 M2
macrophage macrophage
N1 N2
neutrophil neutrophil

(Gerdes et al. 2014; Bregenzer et al. 2019)

Single cell

Complex cellular ecosystem: cell-type composition,
spatial organisation, cell-cell interaction, mechanical
effect

How to comprehensively investigate tissue
ecosystem?



Spatial transcriptomics adds spatial dimension and tissue morphology

Spatial spots on a slide

- | Spatial
_ 4x26 | 3x26 | ...
22 4 ‘ Fam234 |0 |1
% Nefl |3 |0

Spatial Expression

SemaSa | 0 1

Color image intensity
* On-tissue expression profiling (>20,000 genes); each spot contains ~1-9 cells; tissue < 6.5 mm x 6.5 mm
Other spatial technologies are different (complementary) in resolution, throughput, scale, sensitivity ect.



Analysis tools for single cells and spatial data

Software programs

rse datasets for ~45,000 cells differentiating from human iPSCs

scGPS - #  Reference  Articles ‘.

* SCGPS: https://github.com/BiomedicalMachineLearning/scGPS _
* ascend: https://github.com/BiomedicalMachineLearning/ascend =
* scPred: https://github.com/IMB-Computational-Genomics-Lab/scPred
* CoreNET: nttps://github.com/BiomedicalMachineLearning/CoreNET
* HEMnet: https://github.com/BiomedicalMachineLearning/HEMnet
° SCSpIit: https://github.com/jon-xu/scSplit U&a Cend
scRNAseq visualisation el e J ]‘
*  HiPSC: http://computationalgenomics.com.au/shiny/hipsc ’“ ! fg;:i';lggm 1 r
¢ Hipsc2cm: http://computationalgenomics.com.au/shiny/hipsc2cm TR " ol .. ar:ma:)\m:
* sclVA: http://computationalgenomics.com.au/shiny/sclVA/ p T — e = {AFCW M}
. o scPred & = T S
Spatial Transcriptomics ,
* SpaCell: https://github.com/BiomedicalMachinelLearning/Spacell : P Medetang, —————

stLearn: https://stlearn.readthedocs.io/en/latest/



https://github.com/BiomedicalMachineLearning/scGPS
https://github.com/BiomedicalMachineLearning/ascend
https://github.com/IMB-Computational-Genomics-Lab/scPred
https://github.com/BiomedicalMachineLearning/CoreNET
https://github.com/BiomedicalMachineLearning/HEMnet
https://github.com/jon-xu/scSplit
http://computationalgenomics.com.au/shiny/hipsc2cm/
http://computationalgenomics.com.au/shiny/hipsc2cm
http://computationalgenomics.com.au/shiny/scIVA/
https://github.com/BiomedicalMachineLearning/Spacell
https://stlearn.readthedocs.io/en/latest/

Data Preprocessing



Single cell data vs. bulk data

https://github.com/IMB-Computational-Genomics-Lab/sclVA

Upload Data ‘ Quality Control Single Gene Analysis Gene List Analysis About and Instruction

: ‘ Uploaded Expression Matrix © O
~ Y
Browse... 1_AAACATACAGAATG- 1_AAACATACCTTCTA- 1_AAACATACGCAAGG- 1_AAACATACGGGCAA- 1_AAACATACGTCGAT- o
‘. 1 1 1 1 1 -
(. 0. “Wuoitaicomiete W, . N ] O
FO538757.1_ENSG00000279457 0.00 0.00 0.00 0.00 N 7o) Y
E o.
AP006222.2_ENSG00000228463 0.00 0.00 0.00 0.00 o A .
(2}
RP4- 0.00 0.00 0.00 0.00 S 3. A®
669L17.10_ENSG00000237094 £ .
o To)
RP11- 0.00 0.00 0.00 0.00 = CP e A
206L10.9_ENSG00000237491 o
LINC00115_ENSG00000225880 0.00 0.00 0.00 0.00 ‘T 1= . . . . .
40 05 00 05 10 15
No. of Genes
Dimension 1
16561
No. of Cells .
12679 Single cell

Noisy data Undetected genes (zero Deep sequencing, most - oo

inflation) genes detected 8 . -
Cell-cell variation Measured Not measured Ll 25
Data size Thousands of cells (1 cell ~ 10-100 samples i

1 bulk sample)

T
20



https://github.com/IMB-Computational-Genomics-Lab/scIVA

Single cell data analysis

Platforms

Python
27.2%

C++
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Other
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An analysis pipeline

* Analysis of Smgle Cell Expression, Normalisation and Differential Expression

LEGEND
« Main workflow [
« Optional step ——==)
« Class inheritance —_

DATA INPUT

Cell-gene count matrix
Cell information

Gene information
Controls

SingleCellExperiment

+ assays: Count matrices
+ colData: Cell-related data
+ rowData: Gene-related data

+ reducedDims: t-SNE, PCA and UMAP

BATCH NORMALIZATION

QC MONITORING

« Scale counts to median of median
batch expression

« plotGeneralQC: Single
function for the generation of
QC-metric based plots

CLUSTERING

| « Log: Logs cells and genes
I removed by filtering functions
% A
EMSet FILTERING & QC

+ collnfo: Cell-related metadata

+ rowInfo: Gene-related metadata

+ clusterAnalysis: Clustering-related data
+ log: Record of methods used on EMSet

A

+ counts(self): Raw counts
+ normcounts(self): Normalized counts
+ logcounts(self): Log-normalized counts

+ regcounts(self): Regressed count matrix
+ controls(self): Access defined controls

+ calculateQC(self): Calculates QC metrics
count matrix modification

+ convert(self, to): Convert to
SingleCellExperiment, Seurat, SCONE

+ subsetCondition(self): Subsets cells by
condition

« Filter cells by

o Library size

o Gene diversity

o % Control expression
« Filter genes by

o Abundance
« Regress confounding factors

« Clustering at Optimal
REsolution (CORE) algorithm
o Unsupervised
hierarchical clustering
method
« Visualizations
o Cluster-labelled
dendrogram
o Stability line plot
o Stability dendrogram

A

DIMENSIONALITY REDUCTION

v

CELL-CELL NORMALIZATION

« Normalization by Relative Log
Expression (RLE) adapted for
zero-inflated values

« Monitor via plotNormQC

Three main steps:

1) Data preprocessing and normalisation
2) Clustering to find subpopulations (a step applied in almost all cases)
3) Downstream analysis at cell-type specific level (genes, pathways, biological processes)

« Principal Component Analysis
(PCA)

« Multi-Dimensional Scaling
(MDS)

« t-Distributed Stochastic
Neighbour Embedding (t-SNE)

« Uniform Manifold
Approximation and Projection
(UMAP)

WRAPPERS

« scran
o Normalization via
deconvolution method
o Cell cycle analysis
* DESeq/DESeq2
o Differential expression

DIFFERENTIAL EXPRESSION

« Combined Likelihood Ratio
Test (LRT) adapted for sScRNA-
seq data

« Visualization via volcanic
scatter plot.

VISUALIZATION

Rt

« PCA scree plot
« Scatter plots for PCA, MDS, t-
SNE and UMAP




Analysis steps for the differentiation dataset

Sequenced 44,123 cells at 5 time points (10 samples)

¢ QC and normalisation

1. Data merging and normalising by batches (samples)

2. Data preprocessing (removing outlier cells and genes due to technical bias)
3. Cell-to-cell normalisation

204

¢ Dimensionality reduction

2. Functionally evaluated scRNA data based on expression of known pluripotency and

Time
Day0
Day2
Day5
Day15
Day30

. Dimensionality reduction (PCA, t-SNE, MDS, CIDR) and visualisation

tSNE2

differentiation markers

¢ Clustering

-20 4

N =

Developed a novel clustering method (CORE - Clustering at Optimal REsolution)
. Implemented CORE to identify subpopulations within each time point

. Validated CORE results by comparing with other methods and by functional
analysis of each subpopulation




Data quality control: a range of QC measures

16 QC measures
10 scRNA-seq libraries

CellNumber Reads/Cell Genes/Cell TotalReads
3000 -
7500 - 60000 - 3e+08 -
2000 -
5000 - 40000 - 2e+08 -
| Wl |I ||||I o J ol ln
0e+00 - .
ReadsMapped ReadsExon ReadsIntron ReadslIntergeneic
75+ 60 - 60 - 10-
50- 40 - 40 -
O 25- 20- 20 - 5-
=
g ° o
Q30Sample Q30Barcode Q30Read Q30Index
737 60 60 - 60 -
- x -I IIIIII 2 2
25- 20 - I 20 - 20 -

Q30UMI

60 -
40 -
20-

UMI/Cell

FractionReads TotalGenes

20000 -
15000 -
10000 -

5000 -

80 -

10000 - 60 -
40 -
5000 -
20-

1 1 1
A~~~ Al AlmAl— Al — QN ~AlmAlm Al — A~ QA —AI-—A—-—A—A— A
rFrrCrcrcocococo o oo i i i asasyasia i i i asasasasya
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PN e o 1) A ST OO NN e e ) SN e o Y )
EIEREror  A8i858x%es  A85858%%es  SAS385%Ree
DOQDDDODDD [alalala) [alalala] (alalalal



Data preprocessing: quality control and filtering genes and cells

3
= [ ] % ®
& [ . S
375:‘ 0 5 50000
= = ® — ° PY
TS 260 o =
s Ef ' o 3
£ Fe 8 2 40000
E® { o 213
-‘g = i Count Mt reads 2 o = -+
€ _‘ ° -0 o Count Rb reads -3 8
Q 50 - 1000 _“5 40 - 4000 8 Genes per cell
- 2000 o) = 8000 = 2000
8 3000 & 12000 8 4000
S & 4000 o 16000 a 6000
g ® 1S &
»
2 1S
@ 5 820 8
S o g
2 £ i
5 o :
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© ®© A T @ © 8T T > > > >
235 3 T 38 8 8 8 8 > > > > 235 5
O0000QFZRE OC0000QZIRES o000 ARARAS
X X+2s
MAD = median(|X; — X|)
00
00
0000 . .
500000 © o 0 Remove X; if X; >3 x MAD + median(X)
[ [ I I 1
0 20 40 60 80

Median absolute deviation (MAD) is a simple measure of data dispersion that is more robust to cell outliers
compared to other measures such as standard deviation

Using MAD to remove cell outliers: 1) percent mapped reads to mitochondrial/ribosomal genes, 2) number of
genes detected per cell, 3) total mapped reads per cell



Single cell data: zero inflation

Proportion of cells

Dropout Rate

= o S
» o ’ -

BBS10

e e

SERPINE1

Clorf86

4 G 8 10
Exprassion Level

Trapnell

10 15 O

Mean Exprassion

0

. |
2 s b 5 10

Expression Level

Pollen

J s
Mean Expression

(Pierson and Yau, 2015)

l;l A HT T

Expression Level

8 10

Shalek

S 0 5 10

Mean Expression

Po = exp(-A u 2), where A is a fitted parameter, u
non-zero mean expression, p, gene dropout rate

Noise in scRNA-seq data derives from
technological limitations:

* Sequencing library amplification bias

* Sequencing depth between cells and samples

* Low RNA capture rate (genes not detected
even though they are expressed)

e Variable cell capture rate



Single cell data: impute zero expression values

N;
MAGIC Cell j ‘ Selected cells Other cells k Cell j
Before MAGIC Diffusion: After MAGIC ] [] (] Expression
RSN : . t=1 t=3 t=5 I Gene set A; .‘ Hiah
S . .. . _ . Imputation . .‘ °
0 . 5 ’ . ..-. | . . with selected cells . []
5 b e Imputation: []
O S g Gene set Bj . . .. .. . .
genes @ @ ] ] Y Zero
MAGIC: Markov Affinity—basegl Qraph In?putatior.].of Cells sclmpute: fits a mixture model to learn gene’s dropout
weights cells by Markov transition matrix (van Dijk et al., probability and borrows information of the same gene in

2018) other similar cells based on gene set B;(Li & Li, 2018)



Data Normalisation



Batch effects

)]
o

 Batch effects: technical differences Design

induced by the operator or other Biological replicates Technical replicates Balanced Confounded

experimental artifacts /_\ A EE HENE
* A balanced experimental design ‘/©
allocates samples evenly between

EEE HEEE
EEE HEEE
batches, so that the effect can be easily
regressed out in a linear model by
setting appropriate covariates

(o]

Well-normalized data

* Assumption of orthogonality between
the batch effect and the biological
subspace

Cells
OoON OO
.‘
v ©
Cells
OoON O

Global1 2 3 Globalt 2 3
Distribution Distribution

(Buttner et al, 2019)



Representation of biological and technical variation

Representation of biological variation Representation of technical variation

204

Batches
® DOR1
* DOR2
* D2R1
* DzRz
© DsR1

D5R2
* DisRi

D1SR2

D30R1
* D30R2

Time
Day0
Day2
Day5
Day15
Day30

tSNE2
tSNE2
#
]
L 3

-204 =20

Batch normalisation by sequencing depth:
_ Rate; is the binomial rate parameter for sampling reads in sample i
RF; . .
TMR MMR;ratio sequencing depth to mean depth
L N; is the number of cells in sample i

RF;is the fraction of mapped reads; TMR; is the total mapped reads

Rate; = min(MMRj) X N; X



Three levels of single cell data normalization

Original Corrected

Three levels of technical variation in
scCRNA-seq data:
* Gene-specific effects within a cell: GC
content, gene length

batch

GSE81076
GSE85241

batch

GSE81076
GSE85241

* Cell specific effects within a sample:
each cell is amplified separately, causing
amplification bias among cells

Dimension 2
==}

Dimension 2
o

* Batch effects within a study: sample |
preparation or technology-specific

effects

-20 0 20 -20 0 20 40
Dimension 1 Dimension 1



Cell to cell normalisation: a pooling strategy to solve zero inflation

¢ ° o
0

69
0 o

0 O

O 0

O
O

O

®

®
@

(Lun et al, 2016)

E(Vik) = Aio Z 0; X t;
jeSk

* Each cell is considered as a sequencing library, so the total reads per cell need to be normalised

Vik is the sum of adjusted expression value across all cells in pool V_for gene i

O

—Cell pool B:

93+0.+97+8.-9,

O(—Single cell

OOQ

-€—All cells {averaged to make
a reference pseudo-cell)

Cell pool A:
81+92+03+9‘=8A

11110000... G4
c0001111.. 8y
10101010.. 6

01101100...

Ajp is the expected transcript count and 6; is the cell specific bias
S, is a pool of cell; 6; X tj'l is size factor for cell j

* Pool cells to reduce the number of zeros
* Estimate the size factors for the pool
* Repeat many time and use deconvolution to estimate each cell size factor 6;



Batch normalisation: Canonical correlation analysis (CCA)

CCA finds projection vectors u and v such a scn~q T Unaligned dataset
that the correlation between the two b g .—> HHHHH
T TY i imi "O.Q | L Combine data 4
datasets u’X and v'Y is maximized o ® - >
. @ W@ %
CCA vectors capture sources of variance * E—»
that are shared between data sets. hENE A
b ci'r\rael;zgé::at:i?cr;ﬁ?e Dynamic time warping Aligned dataset
CC vectors are correlated, but not CRHH \
necessarily aligned between data sets HEEHEEH N\, coneiaton A A\ %
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(Butler et al, 2018)



Batch normalisation: Mutual nearest neighbour (MNN)

d C
&5 &
X ‘ Batch 2 X oy
. . : ‘y Correction y
Three assumptions in MNN iBatch vectors &
ieffect W
isation: 4 : ¥
normalisation: x% ; %
% saon 1+ 588y 25,
(i) thereis at least one cell w @w
population that is present in b
both batches,
(“) the batch effect is almost X ¢ the cosine normalization
. . )
orthogonal to the biological iim\gs | Nearest e Yooy

subspace, and

(iii) the batch-effect variation is
much smaller than the
biological-effect variation
between different cell types

(Haghverdi et al, 2018)




Batch normalisation: Mutual Nearest Neighbour (MNN)
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Dimensionality Reduction



Dimensionality reduction: linear techniques

: . : . Single cell
Why dimensionality reduction: = Bulk
* Filters out noise < Y
« Minimises curse of dimensionality =0
. . . . . . N w0 Y o
* Allows visualization with more separation of points 5§ =- " o >
. 2] o
* Reduces computational load 5 S- A®
a8 =» ®
S A
Q_

Linear approaches:

* PCA (Principal Component Analysis) 10 05 00 05 10 18 PC 1
* ICA (Independent Component Analysis) Dimension 1

 NMF (Non-negative Matrix Factorization)
10.04

. Variance explained
Linear approaches:

e Capture the dimensions with higher variance

* Quantitative way to assess the amount of retained
dimensions

* Preserve both long-range and short-range distance
(i.e. cells that are very different or very similar)

e Different to bulk RNAseq data, the first few
dimensions are not enough to capture scRNAseq 25 .
data structure well | | e -'

7.5

5.0+

Percent variance explained




Dimensionality reduction: nonlinear techniques

MDS (Multidimensional Scaling)

Uniform manifold approximation and projection
(UMAP)

t-distributed Stochastic Neighbour Embedding (t-SNE)

UMAP and tSNE: nonlinear embedding (mapping) of
data points from high dimensional space to low
dimensional space, so that the probability distance
between these two space (KL divergence or cross
entropy) is minimised

Both methods: class of k-neighbour based graph
learning algorithms, strong influence of
hyperparameters, non-deterministic (stochastic)

Nonlinear techniques solve the overcrowding
representation, which is often seen in linear
approaches for large scRNA-seq data

UMAP preserves local & more of the global data
structure than t-SNE

UMAP2

10 -

| mbes

Overcrowding

tSNE 2

tSNE 1
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Plasma cells
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Global vs local distance in low dimensional space

tSNE2

40

20

-20

-40

tSNE MNIST

Points within '
clusters
are similar

_ Hard to say if these
clusters
are less similar...

...than these clusters

(Oskolkov N, 2019)



tSNE does not preserve long distance - KL divergence

(Oskolkov N, 2019)

tSNE

i

tSNE minimises Kullback-Leiber divergence KL(X,Y)
2
KL(X,Y) ~ —P(X)log Q(Y) = e~ X log(1+Y?)

The embedding minimizes the Kullback-Leiber divergence of the
distribution from Q to P calculated as: KL(X,Y) =
p.. == 2
Ziijpij logq—l']_ ~ e X log(1+Y?)
lj
The probability distance between two neighbouring cells is the
Pjli * Pijj
2N
Conditional probability of cell C] given cell C is calculated as:

exp (—_d(ci'zc . )2>

joint probabilities Dij =

—d(Ci'Ck)2>
207
For large distances X in high dimensions, the exponential term
approaching 0, so Y can be basically any value from 0 to e= and
KL remains small

For small X, to minimise KL (cost/penalty), Y is small

oy —1

o (v

Pairwise similarity in t-SNE space: q;; = 5 A+Y =yl -1
k+zm k= Ym

y, and y; are corresponding mapped points of cells . and C] to
t-SNE space, and q;; follows t distribution to avoid
crowding

Pjii =
)y, exp<




UMAP preserves long distance - cross entropy

(Oskolkov N, 2019) UMAP

35
F30
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F20

r1s
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UMAP minimises cross entropy CE(X,Y)

CE(X,Y) = P(X) log(%) + (1 - P(X)) log( i — g((’;f;)

—X? _x? 1+Y?
~e X log(l+Y2)+(l—e - )log( = )

X - 0:CE(X,Y) ~log(1+Y?)
When X small, Y is also approaching 0 to minimize CE

1+Y2)

X 5> 00:CEX,)Y)~ log( v

When X large, Y is also large to minimize CE

: : 2
tSNE: KL(X,Y) ~ —P(X)log Q(Y) = e~ X log(1 + Y?)




More about UMAP vs tSNE

To learn low-dimensional embeddings, UMAP assigns
initial low-dimensional coordinates using Graph
Laplacian (force directed graph layout algorithm) in
contrast to random normal initialization used by
tSNE. Therefore, UMAP is less dependent on random
state (not changing from run to run)

UMAP proceeds by iteratively applying attractive
(among edges) and repulsive forces (among vertices)
at each edge or vertex. Convergence is guaranteed
by slowly decreasing the attractive and repulsive
forces of the neighbour graph.

UMAP has no computational restrictions on
embedding dimension, making it viable as a general-
purpose dimension reduction technique for machine
learning (tSNE can only embed to 2-3 dimensions)

UMAP on Cancer Associated Fibroblasts (CAFs): Programmed from Scratch

UMAP2

..: o ®

o {58

‘.t. o %

. o soie PP

001
UMAP1

(Oskolkov N, 2019)




scRNAseq Data Clustering



Single Cell Clustering Analysis

Clustering in scRNAseq is a data-driven way to find cell (sub)types at single-cell resolution



Clustering to assess subpopulation heterogeneity

An example iPSC scRNA dataset:
» Sequenced > 18,000 cells (10x Genomics)
» Detected > 16,000 genes
» We proved that a seemingly homogeneous hiPSC
population contains 4 subpopulations

Why study heterogeneity in development and diseases?
» More heterogeneous than expected
» Specific biological processes masked by mixed population-
averaging effect
» Early disease diagnosis, specific markers
» Targeted drug discovery, treatment, and monitoring
» Personalised medicine -
e

..... 20!
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Single-cell RNA-seq of human induced pluripotent
stem cells reveals cellular heterogeneity
and cell state transitions between subpopulations

Quan H. Nguyen,1'4 Samuel W. Lukowski,'* Han Sheng Chiu," Anne Senabouth,’

Timothy J.C. Bruxner," Angelika N. Christ," Nathan J. Palpant, '

and Joseph E. Powell'-%34
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Clustering to assess cell-type specific responses

Py
Vi

: Cardiac  Committed Mature
IPSCs Mesoderm progenitor cardiomyocytes cardiomyocytes

Cardiomy Oy | ———>
differentiation

Day0 Day?2 Day 5 Day 15 Day 30 (Fei Pei et al., 2017)
IECHIREE +XAV
14.013 6.297 10.037 6.440 7233 Question: differential responses
scRNA-seq cells  cells cells cells cells at the subpopulation levels?
f Y () SR ) . 5 time points: days 0, 2, 5, 15 and 30
>‘ e Sequenced > 43,000 single-cell
transcriptomes (10x Genomics)
Heterogeneity _
and trajectory >‘ Dsitr?tcted > 17,000 genes at each time
analysis P
* Aim: to identify gene regulation changes
at single-cell and subpopulation levels
within and between time points




Cluster cells in expression space - Distance measures

Clustering starts with computing a distance matrix between cells
Distance between two cells / and j, X, is the expression of the gene g in the cell C,

Euclidean distance G
2 A
d;; = E Tig — Tj )
() ( tg ]g) % wi T
g=1 = s o
foo soe
Manhattan distance G e
__ v %
dz‘j—E:‘xig_xjg‘ > >
gZ]_ gene1
Maximum distance dij — mgaX ‘ Lig — Ljg ’ cells in gene expression space




Cluster cells in expression space - Distance measures

1-Pearson’s correlation
« . . . G . _
coefficient (xl_gls the expression) d B Zg ) (ng xz) (Cng . xj)
2 G _\2
\/Zg 1 (Tig — ) \/Zgzl (zjg — ;)

1-Spearman’s correlation

coefficient (r;, expression rank) Z? 1 (ng Fi) (Tjg — Fj)
2 G —\2
\/Zg 1 (Tig — T4) \/Zg:l (rjg - Tj)
Cosine distance
xr; - IEj
d..- =1 —
N lzil] - [l

Correlation-based and cosine distance metrics are scale invariant: they consider relative differences
in values, making them more robust to library or cell size differences.




Classical clustering techniques

« Two examples of simple cases for K-mean and Hierarchical clustering techniques
« K-mean clustering:
* Initialisation: given an initial set of K random centres and a distance matrix, finds the closest
cluster centres for each of all cells, then updates the centres (average of all cells in a cluster).
« Repeat the EM procedure till no more change in the centroids
« K-mean requires a prior decision on the number of cell types
« Hierarchical clustering (Agglomerative/bottom-up approach):
« Initialisation: HC begins with n clusters of size one
* Merging (Ward’s variance): the two clusters with the minimal increase in the distance d gz =
SSE,z — (SSE, + SSER) are merged. The next decision to merge a subsequent cluster (C) to a
{A, B} branch requires C to satisfy that the distance between C and {A, B} is minimised

SSE, = ¥4 (a; — @)’ (a; — @), where a is the centroid cell of the cluster A

(nat+nc) (nptnc) B (nc)
(nyg + ng +ng¢) “47 (g +ng + n¢) B (g +ng+ nc) 4B

dC(AB) =

« A dendrogram tree is formed after the merging



SCORE (Stable Clustering at Optimal REsolution):

We improved HC clustering by first selecting for an optimal cluster resolution
by implementing the following algorithm:

l.

Apply cutreeDynamic 40 times to merge branches in 40 different height
windows (defined the dendrogram area to be merged) from bottom (W; =
[0.025, 1]) to the top (W; = [1,1]).

Compute pairwise adjusted Rand index (AR;) for every 2 consecutive
windows (W; and W;, 4 for integers i € [1, 39])

Compute stability index S spanning the 40 iterations. S is the set of count
values C, for unique Rand index values AR; that remain the same between
consecutive W;.

Determine the most stable clustering result C;, where s is selected by the
following criteria:
* AR5 = max(S) and max(S) is different to AR, or AR,
e s=1or40if ARy or AR,y = max(S) and (/40 >0.5 (i.e. stable in
more than 50% of all iterations)

uolnn|osay

Clusters

1.00 i
ConsecutiveRl

3
Q0.50
& RandIndex
0.25
_\I"\J Stability
0.00
0.00 0.25 0.50 0.75 1.00

Stability Parameter from 0.025 to 1

. .
)
g
g(D
C
=
o
3

Cluster merging



Bootstrap and bagging strategies to select stable clusters

Cell-cell distance

matrix

Bootstrap SlelolSiic-Tol ................. Bootstrap Bootstrap
Sample 1 Sample 2 Sample n-1 Sample n
core core core @ corRe
Decision Decision | Decision Decision
tree 1 tree 2 tree n-1 tree n
| J

Bagging tree m) SCORE
Clustering stability results from:

* Iterative grouping of cells in different search space of the clustering tree
* Bootstrap aggregating (bagging) ensemble algorithm




Bootstrap and bagging strategy to select stable clusters

1. Bagging strategies are used for re-clusteing random sub-sets of cells from the population to generate
additional dendrogram trees.

2. For each bagging run, choose a vector b, (k= 1,2,...,m) of length p*xdim(C) (p<1) containing a sample, with
replacement, from set C and create a new matrix N,, of Euclidean distances for the cells in by.

3. For each N,, a new dendrogram tree is generated and clustered, then an optimal stability is computed.

4. The most stable clustering result is then chosen from the original tree. By default the most commonly occur-
ring stability from the bagging results and use it as the cluster count for the original dendrogram.



Bootstrap and bagging strategy to select stable clusters
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Subpopulations identified by CORE are distinguishable

Stabity

Day 0 Day 15 Day 30
o e <4 bl oo ’
:/: e 7 g e :j: ol e o .>< 33
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MDS 1 CIDR 1 PC 1 CIDR 1

*CM = Cardiomyocyte

From a mixed population at each time point, CORE

Day0 [Day?2 Day 5 Day 15 [Day 30
DO0:S1 D2:S1 D5:S1 D15:S1 D30:S1
Core Definitive CM precursor| Non- Non-
pluripotent |endoderm contractile |contractile
D0:S2 D2:S2 D5:S2 D15:S2 D30:S2
Proliferative [Mesoderm Definitive Commited |Definitive
endoderm CM CM
D0:S3 D2:S3 D5:S3
Early-primedMesendoderm | Cardiovascular
progenitor
DO0:S4 D5:54
Late-primed Intermediate

identified 2 to 4 homogenous clusters

The identified subpopulations were confirmed by
independent methods: PCA, MDS, tSNE, CIDR
The subpopulations are biologically distinct




Graph-based Clustering

Two main steps:

1) Embed cells in a graph structure:
* K-nearest neighbour (KNN) graph (cells with similar
expression patterns identified by Euclidean

distance in PCA space)
* Edge weights between any two cells based on the

shared overlap in their local neighbourhoods
(Jaccard similarity)

301 o P
2) Community detection to partition cells in graph into i—éﬁ%
groups of cells ) w

* Modularity optimization techniques such as the

Louvain algorithm ' 20]

 Modularity: measures the density of edges inside 3 T R
communities to edges outside communities EIIR (7. 2A e oo f’*

« Louvain iteratively groups cells together, with the mj‘t FOGRGAFeno
goal of optimizing the standard modularity 101 ,,..g;g; Platelet
function 0 5 %0 % 30



a b

Graph-based Clustering  » & 09 o
0| L
v 3‘ “ A
§ [ l'. . § S A
* Build shared-nearest-neighbour graph connecting the cells 07 . 07
and finds tightly connected communities . .
10 '@ 10 A
* Increasing the number of neighbours when constructing S0 20 -0 0 10 30 0 4o 0 10
PC1 PC1

the cell-cell graph indirectly decreases the resolution of
graph-based clustering

(2]

fora 0..
S - g o
Nature Reviews Genetics, 20, (2019)



Visualise clustering results

) n
33333



Statistical evaluation of clustering results

Adjusted Rand index (ARI)

2 (ad — bc)
ARI =
(a+b)(b+d)+ (a+c)(c+d)
Jaccard index a
Jaccard =
a+b+c

Fowlkes—Mallows index (FM)

a: the number of pairs of cells correctly partitioned into the same cluster
b: the number of pairs of cells wrongly partitioned into the same cluster
c: the number of pairs of cells wrongly partitioned into different clusters
d: the number of pairs of cells correctly partitioned into different clusters
-> higher index scores (max = 1) mean more accurate clustering results




Differential expression analysis



Why DE

OQQ)O
o &P
(@)
Ry
qOOU

Individual cell type

Single-cell
RNA sequencing

Bulk
RNA sequencing



Three main categories

* Non-parametric tests
* Wilcoxon rank-sum test, Kolmogorov—Smirnov (KS) test

e Convert observed expression to ranks, then test whether the distribution of
ranks for one group is significantly different from the other group

* Bulk RNA-seq based method
* e.g edgeR DEseq?2

* sScRNA-seq specific methods
* e.g MAST, SCDE

* Large number of samples (ie. cells)=> whole distribution of expression values
in each group



Non-parametric tests

Wilcoxon rank-sum test

KS test

1.00 -
(a) HO:A=B (b) HI:A>B

0.75 1

distribution A = distribution B distribution B distribution A W

8 050
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0.00
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Linear model for differential expression
[IMMA

* Generalized linear model

. log(yigk) = Uj + a;y +error;g
* Separate model for each gene g
* K is a specific sample
* Ug is mean expression for gene g over all samples

* a4 is deviation of the mean of the ith condition form the overall mean

* Ho: Xtreat,geneg = Acontrol,geneg NO difference in treatment and
control group

Assumption using log as link function: y; .~ Poisson = mean= variance
However, often observe mean < variance = thus, Log-normal over correct data
dispersion =2 y; .~ negative binomial distribution



edgeR

* Generalized linear model

Expression level of interest

Vgi~NB (.ugi: QDg) =NB (Mgiagi: ‘Pg)

Raw count for gene g, sample i Normalization factor Dispersion for gene g

Var(ygl) Hgi T Qgllg; it =0 = NB becomes Poisson
Gamma-Poisson mixture

Biological variance ~ Gamma

Measurement error ~ Poisson

Hoidgi = 4gj



MAST

Hurdle model
* a two-part generalized linear model

* models the rate of expression over the background of various transcripts

* the positive expression mean.

Difference in
number of
zeroes

De

Density

Log Expression

0

Difference in
distributions

AA

Log Expression

Difference in
distributions

..

Log Expression




Comparison between different methods

Wilcoxon rank—-sum test
DESeq2

MAST

edgeR

Linear model

limma

t-test

Monocle

) Likelihood ratio test
Negative binomial
Linear mixed model
Other

86.1%

O'D--D-D...

25 50 75 100
# of studies

£ pseudobulk [ single-cell = mixed model
c edgeR-LRT 4 0.38 ° cwo—fTPpoo
edgeR-QLF 4 0.35 ° ¥ F—=— o
DESeq2-LRT  0.35 ° Y25 o
limma-trend | 0.32 ° %
DESeq2-Wald 4 0.28 . —I3 0® ©
limma-voom 4 0.27 & % Yfpo—=e °
Logistic regression || 0.24
t—test 4 0.24
Wilcoxon rank-sum test | 0.23
Linear mixed model 5 0.22
MAST -« 0.20
Likelihood ratio test || 0.20
Negative binomial 4 0.16
Poisson - 0.13
| | | | | |
0.0 0.2 0.4 0.6
AUCC

Squair et al, NC, 2021



Cell Type Analysis



Cell Type Analysis

What is a cell type?

Cells can be organized into groups based on shared, quantifiable,
features (lineage, location, morphology, activity, cell interactions,
epigenetic state, cellular response, and molecular composition (MRNA
and protein levels)).

scRNA-seq-based cell classification:

Partition cells into “clusters” based on expression signatures
representing a “putative cell type”. This may not correspond to all
features above and is also sensitive to cell state.



Cell Type Classification

Unsupervised

Clustering algorithms - cluster cells into groups
based on the similarities of the gene expression

profiles.
Use known cell type marker gene lists.

Cell type labels are assigned to each cluster by
manual inspection of gene expression profile of a
cluster or by computational tools.

Can be challenging to specify biologically
appropriate number of clusters.

Relies on expert curated known marker gene lists.

Seurat v3 clustering, racelD3, LIGER, SC3,
Monocle3, TSCAN, pcaReduce and CIDR, SAME-
clustering and SHARP.

Supervised

Require a reference dataset with known cell type
annotations.

They train a classifying model on the reference
data, and then apply the trained model to predict
the cell types in an unannotated dataset.

Restricted to the cell types included in the
reference data.

Can be challenging to obtain a suitable reference
dataset, especially for novel tissue types.

scPred, CellAssign, Seurat v3 mapping, scmap-
cluster, scmap-cell, singleR, CHETAH, Garnett and
SingleCellNet.



Unsupervised example
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https://hbctraining.github.io/In-depth-NGS-Data-Analysis-Course/sessionlV/lessons/SC_clustering_analysis.html

Cluster Marker Cell Type
0-1 IL7R CD4T cells
2 CD14, LYZ CD14+ Monocytes
3 MS4A1 B cells
4 CD8A CD8 T cells
5 FCGR3A, MS4A7  FCGR3A+ Monocytes
6 GNLY, NKG7 NK cells
Unidentified FCER1A, CST3 Dendritic Cells
Unidentified PPBP Megakaryocytes



Supervised example - SingleR

Input:

Unannotated
scRNA-seq data

Step 1:
Identifying variable

genes among cell types
in the reference set

Step 2:
Correlating each
single-cell transcriptome
with each sample in the
reference set

b Original identities
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Aran, D., Looney, A.P,, Liu, L. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage.

.

Reference sample

Reference
transcriptomes of
pure cell types

—

Output:

Annotated
single cells

Step3: lterative fine-tuning—reducing the
reference set to only top cell types
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Single-cell eQTL



Integration with genomics
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Cell-type specific eQTLs
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Multiplexing - labeling
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Multiplexing - genetic
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Genotype-free demultiplexing of w@
pooled single-cell RNA-seq

updates |
Jun Xu', Caitlin Falconer?, Quan Nguyen?, Joanna Crawford?, Brett D. McKinnon??, Sally Mortlock?,
Anne Senabouth?, Stacey Andersen'~, Han Sheng Chiu?, Longda Jiang?, Nathan J. Palpant'2,
Jian Yang®'?, Michael D. Mueller®, Alex W. Hewitt’ 2, Alice Pébay®’#, Grant W. Montgomery'?,
Joseph E. Powell** and Lachlan J.M Coin'2'"1213* ®

Abstract

A variety of methods have been developed to demultiplex pooled samples in a single cell RNA sequencing
{scRNA-seq) experiment which either require hashtag barcodes or sample genotypes prior to pooling. We introduce
scSplit which utilizes genetic differences inferred from scRNA-seq data alone to demultiplex pooled samples. scSplit
also enables mapping clusters to original samples. Using simulated, merged, and pooled multi-individual datasets,
we show that scSplit prediction is highly concordant with demuxlet predictions and is highly consistent with the
known truth in cell-hashing dataset. scSplit is ideally suited to samples without external genotype information and is
available at: https://github.com/jon-xu/scSplit

Keywords: scSplit, scRNA-seq, Demultiplexing, Machine learning, Unsupervised, Hidden Markov Model,
Expectation-maximization, Genotype-free, Allele fraction, Doublets



eQTL Analysis
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Example - Single-Cell Endometrial eQTLs
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Integrating GWAS Data

Zhu et. al 2016
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Multiple sclerosis example

* |dentified overlapping
cis-eQTL for 108 risk
genes using coloc.

e Of the 108 genes, 69
show eQTL overlap in
just a single cell type.

* 39 genes identified using
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Discussion and Future perspectives



