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General Information:

• We are currently located in Building 69

Emergency evacuation point

• Food court and bathrooms are located 
in Building 63

• If you are experiencing cold/flu 
symptoms or have had COVID in the 
last 7 days please ensure you are 
wearing a mask for the duration of the 
module



Data Agreement
To maximize your learning experience, we will be working with genuine human 
genetic data, during this module.

Access to this data requires agreement to the following in to comply with human 
genetic data ethics regulations

Please email pctgadmin@imb.uq.edu.au with your name and the below 
statement to confirm that you agree with the following:

“I agree that access to data is provided for educational purposes only and that I 
will not make any copy of the data outside the provided computing accounts.”

mailto:pctgadmin@imb.uq.edu.au


For non-UQ attendees, you are provided with a registration instruction for a guest 

account (A4 paper). 

After you have completed the online registration, use the provided Username and 

the Password that you set to log into the desktop.

Desktop Access



• You have all been provided with login details to computing resources needed for the practical component

• An SSH terminal is needed to connect to the computing:

- Windows:  Install PuTTY

- Hostname: as provided  (203.101.228.xxx)

- User: as provided

- Check Connection > SSH > X11 > Enable X11 forwarding

- Mac/Linux:  Use the terminal

- ssh -X <user>@203.101.228.xxx

• If interactive R plotting does not work on your machine, you can generate plot on the server and then download

• Windows: use WinSCP -> enter login information

• Or use Command Prompt -> sftp <user>@203.101.228.xxx

• get xxx.pdf and the file will be in your user directory

Cluster Access



https://cnsgenomics.com/data/teaching/GNGWS22/....TBA.../

Slides and Practical notes:

Module 5 Cellular Transcriptomics
Room 304, Building 69



Day 2 (June 24th Friday): Spatial transcriptomics analysis

Lecture
(Morning; Spatial transcriptomics and machine learning – key concepts)

9:00-9:15am Introduction to spatial technologies and applications Quan Nguyen
9:15-9:30am Data structure Duy Pham

9:30-9:45am
Introduction to machine learning: machine learning vs 
statistical learning vs artificial intelligence in genomics and 
biological imaging

Quan Nguyen

9:45-
10:00am Introduction to machine learning: key concepts Quan Nguyen

10:00-
10:40am Machine learning in single cell data Guiyan Ni

10:40-
11:00pm Break

11-11:10pm Spatial transcriptomics analysis – integrating imaging, 
spatial and gene expression data  Quan Nguyen 

11:10-
11:30pm Predicting gene expression using spatial imaging data Xiao Tan & 

Quan Nguyen 
11:30-
11:50pm Analysis methods to study cell-cell interactions Duy Pham & 

Quan Nguyen 



Spatial transcriptomics and Machine learning

The G&G Cellomics Team
Quan Nguyen, Guiyan Ni, Sally Mortlock, Duy Pham, Xiao Tan



Introduction spatial transcriptomics



Cancer in a native tissue 

• Cell-type composition and organisation and cell-cell interactions are important
• Complex in vivo processes have direct effects on or are the consequences of transcriptional regulation

(Korkaya et al, 2011)
(Bregenzer et al, 2019)



(@boxia)

(@LGMartelotto)

Spatial transcriptomics approach

Lego: 

Fruit salad: 

Bulk Single cell Spatial



Spatial Transcriptomics Data (seqFISH): expression + location

Cell centroids

(2050 cells and ~10,000 genes)

Example of seqFISH RNA in a cell: 3247 genes

Coordinates

Gene ID

Fluorescence single molecule counts



Spatial transcriptomics captures tissue morphology and transcriptome 

Spatial spots on a slide                            
Spatial 
Probe

Spatial Expression

Color image intensity

Imaging

Sequencing

• On-tissue expression profiling (>20,000 genes); each spot contains ~1-9 cells; tissue < 6.5 mm x 6.5 mm
• Other spatial technologies are different (complementary) in resolution, throughput, scale, sensitivity ect.



Data structure of 
scRNAseq and Spatial transcriptomics



Definition

- Data: Collection of raw facts

- Data structure: specialized format for organizing and 
storing data in memory that contains not only the 
elements stored but also their relationship to each 
other

Data



- Gene expression matrix:
- Row: cells/spots
- Column: genes

- Cells/spots metadata:
- Cell type
- Batch
- Spatial coordinates
- …

- Genes metadata:
- Reference
- Ensembl ID
- …

- Image:
- H&E image

- Embedding
- PCA
- UMAP

scRNAseq or spatial transcriptomics data



Popular data structures

AnnData SeuratObject

Popular data 
structures



AnnData (Annotated data) - Python
Raw counts

Normalized counts

Observations 
(cell/spots) 
metadata

Variables (genes) 
metadata

Image data
Unstructured data

Embedding
Features



SeuratObject - R



Use case: 
Perform K-means clustering and store to AnnData

How?
1. Extract the PCs components from AnnData for every cells/spots
2. Using external scikit-learn package for K-means clustering
3. Get the K-means clustering results
4. Add results to observation annotation of AnnData object



1. Extract the PCs components from AnnData for 
every cells/spots

anndata.obsm[“X_
pca”]

AnnData: 
anndata



anndata.obsm[“X_
pca”]

2.   Using external scikit-learn package for K-means 
clustering

sklearn.clust
er.KMeans



3.   Get the K-means clustering results

anndata.obsm[“X_
pca”]

sklearn.clust
er.KMeans

List clusters of 
every cells/spots



4.   Add results to observation annotation of AnnData 
object

List clusters of 
every cells/spots

AnnData: 
anndata.obs



Use case: 
Plotting Kmeans results for spatial transcriptomics

AnnData: 
anndata

.uns: image

.obs: spatial 
coordinate

.obs: 
kmeans



Introduction machine learning



Take home message: ML and SL are essentially the same; recent trends see the increased used of statistics in ML

Definition of machine learning is an unsettled topic, but is important to know



(Coursera, 2022)



Machine learning, statistical learning, deep learning



Programming Machine learning 

• The training of programs developed by allowing a computer to learn from its experience (rather 
than through manually coding the individual steps)

• A computer program is said to learn from experience E with respect to some task T and some 
performance measure P, if its performance on T, as measured by P, improves with experience E  
(Tom Mitchell, 1997)

Machine learning vs programming



• ML: The training of programs developed by allowing a computer to learn from its experience 
(rather than through manually coding the individual steps)

• Loss function is where ML meets statistical models
• (hyper)Parameters are where machine learning deviate from statistical models

Predictions

Labels

Data input

Parameters

Model

Loss

Update

This is where the machine is learning 

Machine learning – Loss function



Predictions

Labels

Train data

Parameters

Model

Loss

Update

Training

Predictions

Labels

Test data Model

Performance

Testing

Machine learning – Training and testing datasets



Machine learning

Classification Regression Clustering Decision making

Supervised learning

Dimensionality 
reduction

Unsupervised learning Reinforcement learning

Naive Bayes classifier
Decision Trees
Logistic Regression
K-Nearest Neighbours
Support vector machine
Random forest classification
Neural Networks

Simple linear Regression
Multiple linear Regression
polynomial Regression
Decision Tree Regression
Random forest Regression
Ensemble Method
Neural Networks

Clustering
Anomaly detection
Association
Neural Networks

tSNE
UMAP
PCA
Latent variable models
Autoencoders
Neural Networks
GAN

Elements of RL: 
Action (agent)
Environment 
Reward/Penalty
State (agent)
Policy





Deep learning – Neural network

(Source: cs231n, Stanford)



(Towards AI, 2019)

Single neuron in action – activation function



(Source: cs231n, Stanford)



Multilayer perceptrons

(Towards AI, 2019)



Predictions

Labels

Data input

Parameters

Model

Loss

Update

This is where the machine is learning 

Machine learning – Loss function



Pixel-wise loss function 



Introduction to machine learning: 
key concepts and a few classical ML models



General terms exampled by regressions

http://rasbt.github.io/mlxtend/user_guide/regressor/LinearRegression/
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To minimize wrt 𝑤& and 𝑤# by 
gradient descent

= Objective function
= Loss function
= J(𝑤&, 𝑤#)



General terms: Gradient Descent Example for Linear Regression

https://github.com/mattnedrich/GradientDescentExample

Gradient < 0
Gradient 
> 0

Gradient = 0

𝑤' = 𝑤'(# − 𝛼∇𝐽(𝑤'(#)

𝛼 is the learning rate (step length)
Effect of learning rate à

https://www.jeremyjordan.me/nn-learning-rate/



General terms: often used different loss functions

https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23

Regression:

Classification:
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Mean Square Error/Quadratic Loss/L2 Loss: 

Mean Absolute Error/L1 Loss: 

Mean Bias Error: 𝑀𝐵𝐸 =
1
𝑁'

!"#

$

(𝑦! − +𝑦!)

Cross Entropy Loss/Negative Log Likelihood: 

Negative Log Likelihood

−(𝑦! log +𝑦! + (1 − 𝑦! ) log ;1− 𝑦! )



General terms : Overfitting and how to reduce 



Neural network methods

Inspired by Neurons

(lots) Inputs Process the signal from inputs Output results

https://www.ibm.com/cloud/learn/neural-networks



Multilayer perceptron – foundation of other neural networks

x1

x2

x3

x4

x5

w11

w12

w15

W1x1+W2x2 +W2x2 +Wnxn=z

𝜎 𝑧 = 𝑎

a

Next layer

https://www.v7labs.com/blog/neural-networks-activation-functions
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0

Often used activation functions

forward propagation 

https://www.v7labs.com/blog/neural-networks-activation-functions


Multilayer perceptron – backward propagation

Chain rule



CNN: convolutional neural network

https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-network-an-overview/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/

Convolution

https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-network-an-overview/


More networks 

Autoencoder

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

Input is the same as the output
compress the input into a lower-
dimensional code (latent-space 
representation)

The latent space is determinate

Loss function: KL divergence



More networks 

Variational autoencoder

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

autoencoder

Laten space becomes distributions



More networks 

Graph convolutional network

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Convolution

Cell

Cell – cell 
interaction



Machine learning in single cell data



ML in gene expression imputation

The	architecture	of	scGNN
Wang	et	al	2021	NC



ML in gene expression imputation
The	architecture	of	scGNN
Wang	et	al	2021	NC



ML in cell classification

Functions:

Tool kit for modelling single-cell-like data using  neural networks+probabilistic models 

scVI (Lopez et al., 2018)

https://www.nature.com/articles/s41592-018-0229-2


scLVM



stLVM



Machine Learning for Spatial 
Transcriptomics



Cell type 1
Cell type 2

Cell type n

Convolutional Neural Network

Autoencoder
Two neural network (NN) architectures 

• Convolutional Neural Network (CNN) for feature 
extraction

- Designed for spatial imaging data

• Autoencoder (AE) for combining data

- Find informative shared latent space

New analysis: Neural Network for Spatial Transcriptomics 



Neural Network Utilizing Molecular Labels

H& E images

Spatial omics data

Deep neural network (e.g. inception net)

Gene expression/tissue 
pathological annotation 

Predicted 
phenotypes

Validation

Test
Model

Train

• Traditional NN methods using histopathological images rely on tissue-region annotation defined by trained pathologists
• The regional annotation is not accurate at single-cell or pixel levels 



Neural networks to analyse spatial transcriptomics data

Spot

Gene

2) Gene Expression

20 Latent 
Variables

Tiling
0.1

2.1

4.2

…...

1.5… …

Pre-trained ResNet50
1)

Tile Feature Vector

H&E Image
Autoencoder

Emelie et al., Nature 2018 

2048 Features

~12,000 Genes



Spatial transcriptomics allows for the integration of imaging and sequencing data 
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Spatial Transcriptomics Data (Slide-seq): expression + location

Image mode=RGB, size=32768x28672, (28672, 32768, 3) 

Imaging pixel intensity is NOT
used:

for i in range(img.size[0]):
for j in range(img.size[1]):

r, g, b = pixels[i,j]

(Berglund et al, 2018)



Existing analysis methods

• Preprocessing: genes excluded if not in 10 
cells and cells excluded if not having above 
10 genes detected

• Normalisation: TMM or RLE method (as in 
EdgeR), deconvolution by pooling (as in 
scran), library sizes followed by log 
transformation, size factors as in DESeq, 
regress out covariates

• Feature (gene) selection: e.g. highly 
variable genes

• Dimensionality reduction: PCA followed by 
UMAP and tSNE

• Clustering and differential expression 
analysis: similar to single cell data

(Navarro et al, 2017)



Actb

Hoxd8            

Clustering cell-spots Clustering cell-spots on tissueH&E image

Example of data preprocessing:
• Total number of spots 242
• Total number of genes 16,251
• Dropped 3 spots (too few genes)
• Dropped 1233 genes (detected in too few spots)

Existing analysis methods



New analysis: Normalisation between images 

Before After Before After 

H&E image

Preprocessing ● Remove low quality 
images (tissue artifacts)

● Tiling 
● Random rotation of 

tiles: to increase model 
generalizability

Normalization ● Color cast removal
● Vahadane stain 

normalization
● Standardization



New analysis: Tiling images to increase sample size

• Each Slide-seq spot corresponds to one tile, which contains both gene expression and H&E image pixel data
• Size of a spot is 299x299 pixels, and thus is represented by a  (299, 299, 3) array
• From 12 images, generate 5910 tiles for training data



● Combining gene expression and image information is 
better than using gene expression or image alone

● Typical pathological annotation by drawing regions on 
images is not as accurate as computational annotation at 
pixel level

Finding cancer cells by integrating count matrix and imaging data 

Pathological Annotation

Cancer

Cancer 
Non-cancer

P3.3

Path. Acc. = 70% Path. Acc. = 56% Path. Acc. = 61%

TP
R

FPR

Combine Model
Gene Model
Image ModelCombined Model Gene Count Model Image Model



Pathological Annotation

Inflamed stromal cells

Finding inflamed stromal cells by integrating count matrix and imaging data 

• The Tissue image + Gene count combination resulted in 
lower false positive spots

• Sensitive to detect a small inflamed stromal cell region

P4.2

Combined Model Gene Count Model Image Model

Inflamed stromal
Normal 

Combine Model
Gene Model
Image Model

TP
R

FPR



Pathological Annotation (PA) Whole Slide Image (WSI)

Contour mapped on WSI 

Registration 

+
Quantitative
Performance  
Metrics

Spot cluster + contour mapped on WSI 

Annotation Scale Factor 

Pi
xe

l C
or

re
la

tio
n 

Co
ef

fic
ie

nt
 

PA mapped on WSI 

Quantitative Validation



Anatomy
Combined model

Combining count data and imaging 
data increases the accuracy of 
grey and white matter classification

Cluster 1

Cluster 2

Grey Matter White Matter

Gene count model Imaging model

Classification of Anatomical Spatial Regions

Silas et al., Science 2019
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H&E Stained Tissue Section

Gene Expression Data

0.1

2.1

4.2

…...

1.5

2.6

0.5
… …

Spot Tile

ResNet50
Spot Tile Feature Vector

0

1

2

…...

3

1

0

Input 
Layer

Spot Gene Count

Hidden 
Layer

Merge 
Layer

1024

512

512

~12,000 Genes

2048 Features

Hidden Layers

Spot Classes 

128
512

Pre.

Onset

Symp.

Late

Silas et al., Science 2019

Disease Stage Classification Model
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Test accuracy: ~84% Test accuracy: ~40%

FPR

TP
R

FPR
TP

R

Combined model

Test accuracy : ~92.75%

FPR

TP
R

P30: pre-symptomatic
P70: onset
P100: symptomatic
P120: end-stage

Gene count model Image model

Disease Stage Classification - Performance



Can we predict gene expression data from H&E image?

Spatial transcriptomics data

Clinical tissue slide without RNA measurement 

Can we predict gene expression data from H&E image?



(He, et al., 2020)

STNet model



His2genes model

(Li, et al., 2021)

His2genes model

Image X coor Y coor

2D positional embedding 



Latent Features

Loss: Negative log likelihood

STimage: convolutional regression model



STimage: model interpretation

STimage: gene expression predictionSTimage: gene expression prediction



STimage: gene expression prediction on external dataset

Observed COX6C Predicted COX6C

FF
PE

9 breast cancer markers

STimage: gene expression prediction on external dataset



Benchmarking with existing softwareBenchmarking with existing software



Interpretability Machine Learning (Deep learning)

Why
1) Bug fixing and model optimization 
2) From model extracts useful information for discovery rather than performance (accuracy vs interpretability 

tradeoff)
3) Credibility/reliability of the model

How
1) Interpreting outputs: with saliency maps, with occlusion sensitivity, and with class activation maps (Global 

Average Pooling)
2) Visualisation of the model training steps: with gradient ascent (class model visualization), with dataset 

search, and deconvolution
3) Deep dream (going deeper in NNs) or LIME (Local interpretable model-agnostic explanations)

e.g. Saliency map compute the gradient of output category with respect to input image:



LIME uses perturbations to find those 
segments of the image which are more 
predictive of high or low expression across 
an image.

Interpretability Machine Learning (Deep learning)



Analysis of Cell-Cell Interactions



Cell-to-cell interaction/communication concept

Juxtacrine signalling



Application of cell-cell interaction (CCI) analysis

Cell development:
Revealed ligand–receptor interactions that initiate self-
renewal and differentiation

Tissue homeostasis:
Intercellular communication contributes to organ function

Immune interaction in disease:
Studying CCI within these communities can reveal how cells 
communicate in these ecosystems and help guide the 
development of effective cancer immunotherapies

Examples of application:



Basic workflow of CCI analysis with transcriptomics data



General method



Main scoring functions with gene expression data



Toy example



Expression thresholding



Expression product



Expression correlation



Differential combinations



Spatial context in CCI analysis

Clarity

- Cell localization can help elucidate interactions between 
spatially proximal regions.

False positive CCI

scRNAseq

Spatial 
transcriptomics

- Missing spatial contact information
- High false-positive CCI prediction



Expression product with neighborhood score 

Between 
mode Within 

mode



Spatial CCI with significant testing



Example: Immune interaction Breast cancer



Discussion and Future Perspectives


