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What is fine-mapping?

An approach to identify and prioritise SNPs driving GWAS association signals
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Why don’t we take the top associated SNP?

What about when there is = 1 causal variant
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Simplistic fine-mapping example
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Many fine-mapping methods True effects

Majority of methods follow a Bayesian framework

« prior x data = posterior
E.g. Prior knowledge of distribution of true SNP effects
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Methods i

- BIMBAM (Servin and Stephens, 2007) | ——
« CAVIAR (Hormozdiari, 2014) 0 200 400 600 800 1000
« CAVIARBF  (Chen, 2015)

 FINEMAP (Benner, 2016)

 PAINTOR (Kichaev, 2014)

« SuSiE (Wang 2020)
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How does this work?

Each SNP has equal probability of being causal
Joint SNP effects are sparse

Significance of association (-log,, P)
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Posterior inclusion probability (PIP)
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Probability (according to the model) the variant is
casual

PIP, = Pr(b; # 0 |X,Y)

{1 PIP = more confidence
{ PIP = less likely to be driving signal

Maller et al. Nature Genetics (2012) 7
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Credible Sets (CS)

A set of putative causal variants for further

investigation.
1.00

» Sorting PIP for each SNPs in descending order

0.75 « Cumulatively sum until reach the threshold

Credible set 1

PIP

0.5

0.25 Formal Definition

Smallest set of SNPs with >95% probability of
containing a single causal variant

Threshold 0.95

Size 0.97



THE UNIVERSITY
OF QUEENSLAND

Multiple causal variants
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« Smallest set of SNPs with >95% probability of
containing a single causal variant

Credible Set 1

In general, the more independent signals, the less
statistical power to detect credible sets

Credible Set 2

Specify minimum correlation between SNPs
allowed within a credible set 0.25 _
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Factors influence fine-mapping performance
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* The local LD structure y
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Example:
« 20 SNPs

« All SNPs have equal LD (x-axis)
* One causal SNP (R? 1%)
* PIP of causal SNP on yaxis

Schaid, 2018 Nature Reviews Genetics 10
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Integrate functional annotation
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2. Perform fine-mapping using these prior causal
Which are the
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Fine-mapping
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Cano-Gamez et al. Frontiers in Genetics (2020)
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Example

Cross-ancestry fine-mapping

» Utilise populations of different ancestries to prioritise

SNP1 SNP2 SNP3 SNP4

SNPs ror1 | (D@D O C O
» Relies on the assumption that causal variants are shared Porz) D | @D C D)
between populations (generally supported in literature). POPs| @D C_ ) C )
« Leveraging differences in LD between populations
 Methods: SuSiEx, MS-Caviar Biobank Japan (85.) . g
complex traits 304 BBJ: CAD rs9349379 |
* Japanese
’J (n=178,726)
i

FinnGen (FG) release 6
67 complex traits

Finnish
w (n=271,341)

UK Biobank (UKBB)
119 complex traits

o White British
~§ (n=7361,194)

Kanai et al, medRxiv (2021) 12



Sum of Single Effects (SuSIE)

Methods for fine-mapping multiple causal variants sets

For each causal variant b; = (b4, ..., by;) single effect vector

For multiple causal variants, sums over multiple vectors of single effects
b = }.b;

lterative Bayesian stepwise selection
« Can quantify uncertainty in variables selected

Outputs 95% credible sets with PIPs for each SNP

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Wang 2020
Zou 2022
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Genetic Mapping Session 11 - Fine-mapping
baws 2023

Obijective

The goal of fine-mapping is to prioritise SNPs that are most likely to be causal (or in LD with causal variants).
In this practical session will apply the Sum of Single Effects (SuSIE) fine-mapping method to investigate the genetic effects underlying height.

We will use summary statistics from Wood et al (2014). This is a GWAS meta-analysis of adult height from 79 studies consisting of 253,288
individuals of European ancestry. This study identified 697 SNPs that reached genome-wide significance (P < 5 x 1078) that were approximately
conditionally independent. We will fine-map some of the regions surrounding these loci.
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