

Genome-wide Association Studies

Practical 3: Do the GWAS with relatives

Data Use Agreement

- To maximize your learning experience, we will be working with genuine human genetic data
- Access to this data requires agreement to the following in to comply with human genetic data ethics regulations
- Please email <u>pctgadmin@imb.uq.edu.au</u> to confirm that you agree with the following:
 - "I agree that access to data is provided for educational purposes only and that I will not make any copy of the data outside the provided computing accounts."

The objective of this practical is to run a GWAS using a sample where relatives are included in the analysis.

We will use the sparse-GRM implemented in GCTA to account for the covariance between 'close' relatives ($\pi > 0.05$)

Data

• Data for this practical is found in the directory:

- /data/module1/7_relGWAS/

- Genotype & phenotype files:
 - data.bed
 - data.bim
 - data.fam
 - simData2.phen

– data2.grm.bin

• GRM files:

 \rightarrow binary file containing genomic relationship matrix

 \rightarrow individual ID's corresponding to grm files

 \rightarrow phenotype file

- data2.grm.N.bin \rightarrow binary file
- data2.grm.id
- \rightarrow binary file with number of SNP markers used in GRM

 \rightarrow binary file containing genomic relationship matrix

 \rightarrow binary file with number of SNP markers used in GRM

 \rightarrow individual ID's corresponding to grm files

GCTA

- We will be using GCTA for this practical
 - Comprehensive website: <u>https://yanglab.westlake.edu.cn/software/gcta/#Overview</u>
 - 'Citations' section on how to cite and key papers
- Similar to PLINK, basic command:
 - gcta64 --bfile <data prefix> --command

TECHNICAL REPORT https://doi.org/10.1038/s41588-019-0530-8

A resource-efficient tool for mixed model association analysis of large-scale data

Longda Jiang^{1,4}, Zhili Zheng^{1,2,4}, Ting Qi¹, Kathryn E. Kemper¹, Naomi R. Wray^{1,3}, Peter M. Visscher¹ and Jian Yang^{1,2,*}

The genome-wide association study (GWAS) has been widely used as an experimental design to detect associations between genetic variants and a phenotype. Two major confounding factors, population stratification and relatedness, could potentially lead to inflated GWAS test statistics and hence to spurious associations. Mixed linear model (MLM)-based approaches can be used to account for sample structure. However, genome-wide association (GWA) analyses in biobank samples such as the UK Biobank (UKB) often exceed the canability of most existing MIM-based tools especially if the number of traits is large. Here

Quick look to see what data you have

• How many individuals & SNPs in the dataset?

• How many individuals are included in the GRM?

Use the UNIX commands:

head file.txt

wc -l file.txt [word count, count number of lines (only) as the flag]

(1) Identifying relatives & an unrelated set

• Use GCTA at the command line with the --grm-singleton flag, e.g.

gcta64 --grm data2 --grm-singleton 0.05 --out relatives

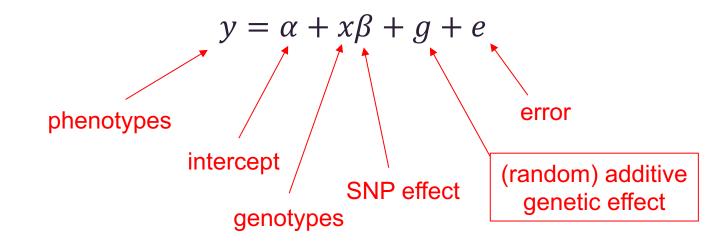
Three files produced:

- relatives.family.txt \rightarrow all relative pairs and their relationship value
- relatives.singleton.txt
- relatives.log

- \rightarrow all 'singletons', no relatives in the dataset
- \rightarrow log file

(1) Identifying relatives & an unrelated set

We are running this command just to see what the data is and how many relatives we have in our dataset. Have a look at the output.


Q: How many individuals do you have in each set?

Q: How is the number of individuals in the XX.singleton.txt related to those obtained with the --grm-cutoff flag?

[please don't run this command, check the GCTA website if unsure]

Using fastGWA

We are going to use the --fastGWA-lr and --grm-sparse flags in GCTA to fit a <u>sparse</u> genomic relationship matrix (GRM) to model the covariance between closely related individuals

(2) Making a sparse matrix

• Use GCTA at the command line with the --make-bK-sparse flag, e.g.

gcta64 --grm data2 --make-bK-sparse 0.05 --out data2_sparse

Three files produced:

- data2_sparse.grm.sp \rightarrow index and relationships over 0.05 from GRM
- data2_sparse.grm.id \rightarrow corresponding ID file
- data2_sparse.grm.lod \rightarrow log file

Use the R/unix to investigate your output.

Q: Why are the number of lines in the sparse GRM different from the families.txt file obtained previously?

(3) running fastGWA

• Use GCTA at the command line with the --fastGWA-mla and --grmsparse flag, e.g.

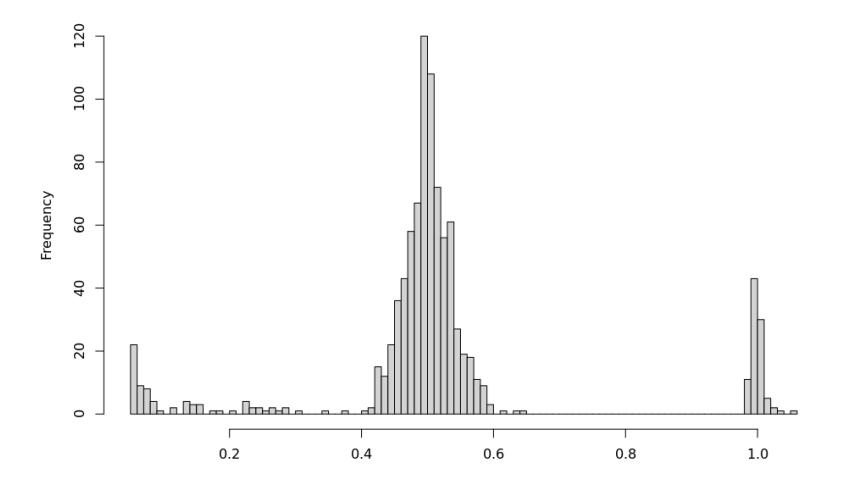
gcta64 --bfile data --fastGWA-mlm --grm-sparse data2_sparse
--pheno simData3.phen --out assocSparse

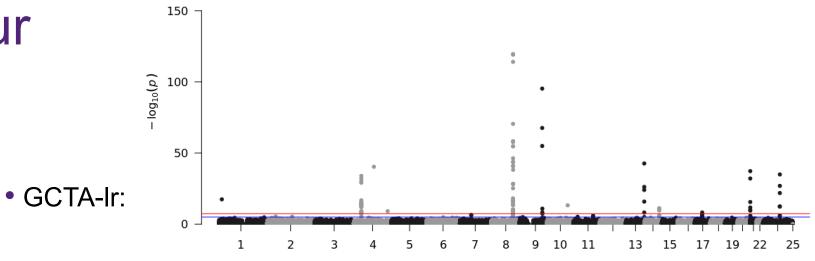
Plot results in R, examine the QQ-plot & calculate the genomic inflation factor

• Reminder: gif = qchisq(1-median(p),1)/qchisq(0.5,1)

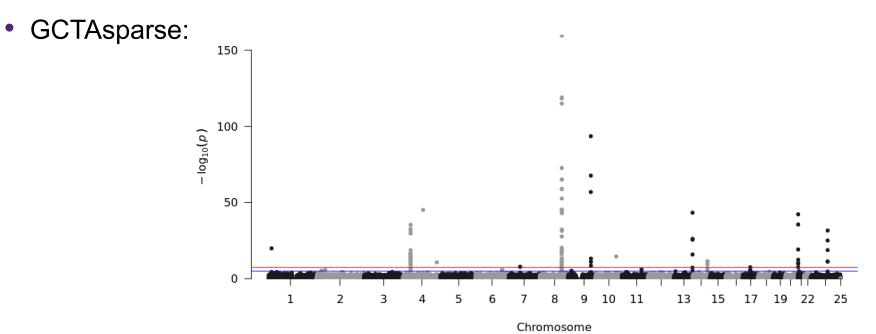
 Compare your results to an analysis where you ignored close relatives, use either PLINK or GCTA to do a standard GWAS

plink --bfile data --assoc --pheno simData3.phen --out
assocPLINK

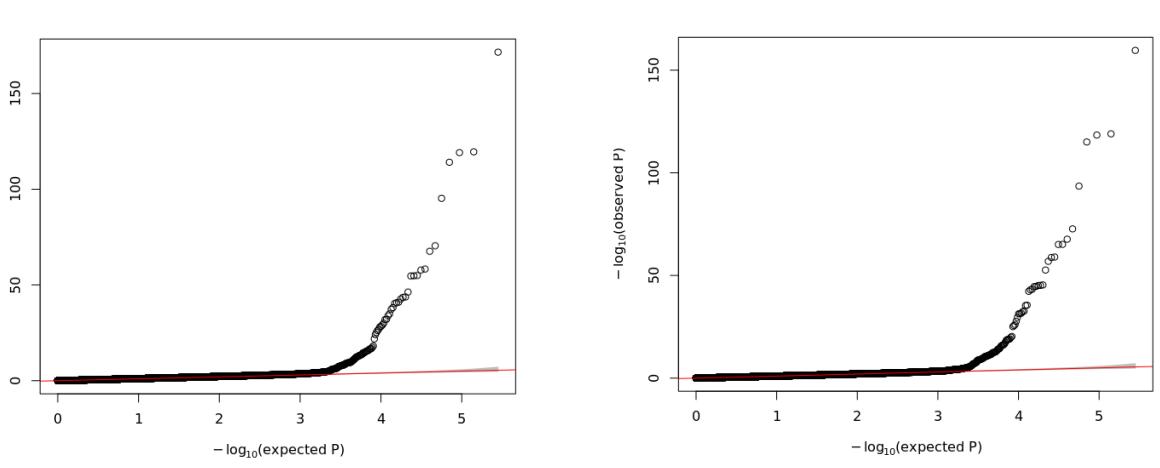

OR


gcta64 --bfile data --fastGWA-lr --pheno simData3.phen --out
assocGCTA

STOP here


(2) Making a sparse matrix

A histogram of the elements in the sparse matrix



Chromosome

• PLINK:

- log₁₀(observed P)

GCTAsparse:

- PLINK, GIF = 1.109886
- GCTAsparse, GIF = 1.007401

- The effect of fitting the sparse GRM is subtle in these results
 - -> most obvious in the GIF

 This prac used a <u>simulated</u> phenotype where there was a small common environmental effect between relative pairs

Q: Do we expect inflation of the test statistic in the absence of a common environment?

e.g. imagine that you were analysing data from IVF siblings raised independently