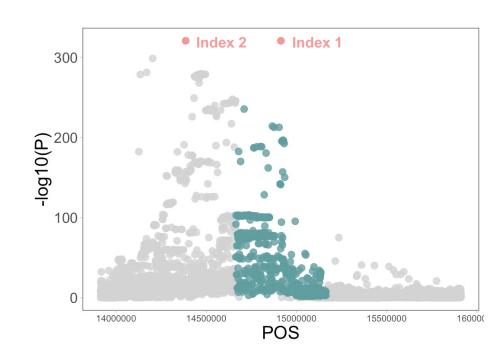

MODULE 1 | GENETIC MAPPING Session 9. Independent GWAS associations

20 June 2023

Independent loci | Background

- GWAS associations are typically clustered at specific loci
- Often, these clusters include only one causal variant, and the other variants are in LD with the causal variant

- Why is important to assess the number of independent associations?
 - Better understanding of the true genetic architecture of the trait
 - Inform functional follow-up studies
 - Out-of-sample prediction (module 5)
- How can we identify independent associations?
 - LD-based clumping
 - Conditional analyses



What is LD clumping?

- A method to restrict GWAS summary statistics to a subset of variants that are uncorrelated with each other.
- This method is implemented in PLINK

How does it work?

- 1. The SNP with lowest *P*-value is defined as an index SNP
- 2. All variants that are:
 - within a certain distance from the index SNP
 - in LD with the index SNP, based on a given LD r²
 - associated at a given P-value threshold are assigned to the same cluster as the index SNP
- 3. Start again with another index SNP that was not in the clump above

What is LD clumping?

- A method to restrict GWAS summary statistics to a subset of variants that are uncorrelated with each other.
- This method is implemented in PLINK

How does it work?

- The SNP with lowest P-value is defined as an index SNP
- 2 All variants that are:
 - within a certain distance from the index SNP
 - in LD with the index SNP, based on a given LD r²
 - associated at a given P-value threshold are assigned to the same cluster as the index SNP
- 3. Start again with another index SNP that was not in the clump above

PLINK example:

```
plink --bfile $ld_ref \
    --clump $sumstats_file \
    --clump-p1 5e-8 \
    --clump-p2 0.01 \
    --clump-r2 0.5 \
    --clump-kb 250 \
    --out $output_file
```

Needs individual-level data from the GWAS or a reference dataset to estimate LD

What is LD clumping?

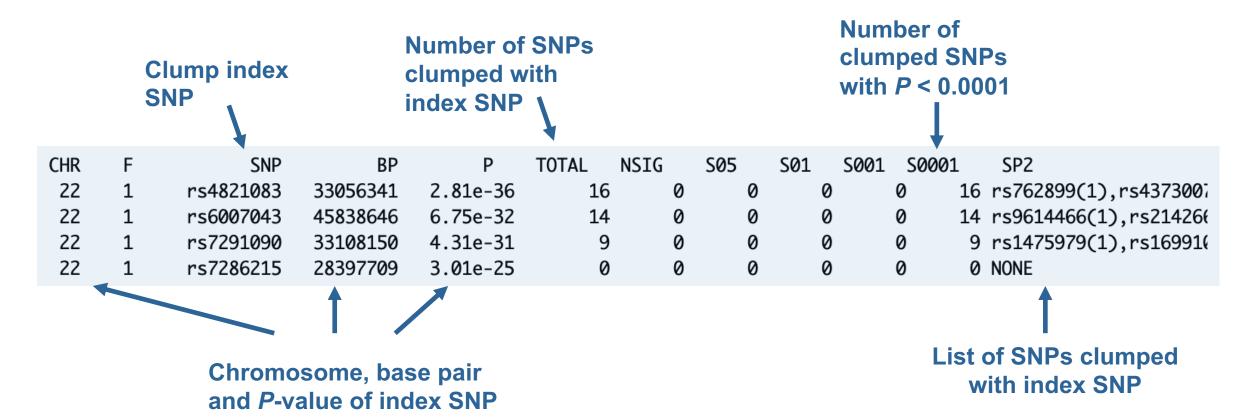
- A method to restrict GWAS summary statistics to a subset of variants that are uncorrelated with each other.
- This method is implemented in PLINK

How does it work?

- The SNP with lowest P-value is defined as an index SNP
- 2 All variants that are:
 - within a certain distance from the index SNP
 - in LD with the index SNP, based on a given LD r²
 - associated at a given P-value threshold are assigned to the same cluster as the index SNP
- 3. Start again with another index SNP that was not in the clump above

PLINK example:

```
plink --bfile $ld_ref \
    --clump $sumstats_file \
    --clump-p1 5e-8 \
    --clump-p2 0.01 \
    --clump-r2 0.5 \
    --clump-kb 250 \
    --out $output_file
```


Lets user specify:

- Maximum P-value of index (p1)
- Maximum P-value for clumping (p2)
- LD r² threshold for clumping
- Distance from index for clumping

Example output file

Each line represents one clump.

In some cases, we may have variants that are in close proximity and in LD with each other, but that represent independent associations. Here is an example:

							Conditional on rs12794714		Conditional on rs116970203	
Chr	SNP	Position	EA	EAF	beta	<i>P</i> -value	bC	pC	bC	pC
11	rs61883501	13882754	Α	0.97	0.002	0.7492	-0.012	0.0373	0.006	0.2683
11	rs116970203	14876718	G	0.97	0.377	0.0E+00	0.415	0.0E+00	NA	NA
11	rs117576073	14912573	G	0.99	0.147	5.9E-62	0.182	1.1E-93	0.159	2.8E-72
11	rs12794714	14913575	G	0.58	0.088	0.0E+00	NA	NA	0.105	0.0E+00
11	rs61891388	66079818	T	0.54	-0.013	4.1E-10	-0.013	4.1E-10	-0.013	4.1E-10
11	rs78168201	70971149	С	0.99	-0.089	5.2E-25	-0.089	5.3E-25	-0.089	5.3E-25
11	rs1660839	71094232	G	0.75	-0.029	6.4E-37	-0.029	6.6E-37	-0.029	6.6E-37
11	rs12803256	71132868	Α	0.22	-0.104	0.0E+00	-0.104	0.0E+00	-0.104	0.0E+00
11	rs12798050	71223256	С	0.17	-0.110	0.0E+00	-0.110	0.0E+00	-0.110	0.0E+00
11	rs72997623	75488054	С	0.92	-0.028	1.3E-14	-0.028	1.3E-14	-0.028	1.3E-14
11	rs1149605	76485216	T	0.83	-0.022	1.3E-16	-0.022	1.3E-16	-0.022	1.3E-16

- The highlighted SNPs would likely be clumped together because they are:
 - within 36,857 bp of each other and in high LD $(r^2 = 1)$
- But, conditional analysis shows that the effects are independent

Stepwise conditional analysis

An alternative to clumping to identify independent associations is through stepwise conditional analysis. This is typically done with individual-level data, but GCTA implements a method (COJO) that can do these analyses based on summary-level data and an LD reference (Yang et al. 2012 Nat Genet).

How does COJO work?

- Identify the most significant GWS SNP in the GWAS
- 2. Calculate the *P*-values of all other SNPs conditional on the SNP above
- 3. Identify the next most significant GWS SNP based on the conditional *P*-values
- 4. Fit all the selected SNPs jointly in a model and drop the SNP with the largest *P*-value that is greater than the cutoff *P*-value.
- 5. Repeat processes (2), (3) and (4) until no SNPs can be added or removed from the model

GCTA example:

```
gcta --bfile $ld_ref \
--cojo-file $sumstats \
--cojo-p 5e-8 \
--cojo-slct \
--out Height_meta
```

User can change specify maximum *P*-value of SNPs selected to condition on

Example output file

Each line is an independent locus identified with COJO

Info about genetic variant tested	Each variant fitted individually in the model	All variants fitted jointly in the same model

Chr	SNP	bp	refA	freq	b	se	p	n	freq_geno	bJ	bJ_se	рJ	LD_r
22	rs2540653	18973549	G	0.9089	-0.0087	0.0029	0.0029	707907	0.912525	-0.0398	0.003	6.62E-41	0.0034
22	rs1155419	20787850	Т	0.5695	-0.0133	0.0017	6.50E-15	700238	0.536779	-0.0265	0.0017	2.35E-53	0.0487
22	rs5754102	21916272	С	0.8226	0.0121	0.0022	4.77E-08	697485	0.824056	0.0317	0.0022	3.36E-45	-0.0342

Effect allele
Estimates are
relative to this allele

GWAS summary statistics

Some examples of information gained through COJO

SNPs in modest LD

SNP	Chr	bp Gene	refA	freq	b p)	freq_geno	bJ	pJ	LD_r
rs7689420	4	145787802 HF	HIP T	0.163	-0.069	1.1E-41	0.164	-0.054	2.90E-23	
rs1367226	2	55943044 <i>EF</i>	EMP1 A	0.434	-0.005	2.0E-01	0.428	-0.027	5.0E-11	-0.421
rs1367226	2	55943044 <i>EF</i>	EMP1 A	0.434	-0.005	2.0E-01	0.428	-0.027	5.0E-11	-0.421
rs3791675	2	55964813 <i>EF</i>	EMP1 T	0.234	-0.050	1.1E-28	0.249	-0.063	3.0E-37	
							J			

- When increasing alleles are positively correlated, marginal SNP effects are overestimated
- When increasing alleles are negatively correlated, marginal SNP effects are underestimated
- When increasing alleles are negatively correlated, joint analysis is more powerful

Multiple associations in a single locus

SNP C	Chr b	Gene Gene	refA	freq	b	p	freq_geno	bJ	рJ	LD_r
		87164536 ACAN		0.51	-0.025	2.70E-10	0.52		2.30E-08	
rs16942341 1	15	87189909 ACAN	Т	0.031	-0.134	2.20E-24	0.027	-0.116	1.80E-18	-0.122
rs2280470 1	15	87196630 ACAN	Α	0.334	0.039	1.50E-22	0.33	0.036	6.30E-19	

Links for further information

- PLINK clump
- Yang et al. 2012 Nat Genet
- GCTA COJO