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General Information:

- We are currently located in Building 69
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Data Agreement

To maximize your learning experience, we will be working with genuine human
genetic data, during this module.

Access to this data requires agreement to the following in to comply with human
genetic data ethics regulations

Please email pctgadmin@imb.com.au with your name and the below statement to
confirm that you agree with the following:

‘| agree that access to data is provided for educational purposes only and that |
will not make any copy of the data outside the provided computing accounts.”


mailto:pctgadmin@imb.com.au

Polygenic risk scores (PRS) 0 B

AUSTRALIA

Polygenic risk scores (PRS) are predictors of the genetic susceptibilities of individuals to diseases.

Can be calculated for a wide range of diseases from a saliva or blood sample using genotyping
technologies that are inexpensive.
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Polygenic risk scores (PRS) are predictors of the genetic susceptibilities of individuals to diseases.

Can be calculated for a wide range of diseases from a saliva or blood sample using genotyping
technologies that are inexpensive.
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Learning objectives 0 S

« Understand what PRS are and what they are not

« How to evaluate PRS and what the pitfalls are in application

 Understand the basic method to calculate PRS

« Get to know more advanced methods in common usage "’\W
» Discuss challenges, opportunities and future directions .
* Know how to generate a PRS from start fo end @ Youw Did Jt!

i

Module materials at '@@.

https://cnsgenomics.com/data/teaching/GNGWS23/moduleb/ \7

CRICOS code 000258



Module Program
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. llectwe _______ |Pracfical

This afternoon

Tomorrow morning

Tomorrow afternoon

Basic science of PRS

Evaluations of PRS and
pitfalls in application

Best Linear Unbiased
Prediction (BLUP)

Bayesian methods to
predict PRS

PRS prediction using
summary data

Trans-ancestry prediction;

Improved PRS using
functional annotations;
Complete PRS pipeline

Basic method to compute
PRS (C+PT)

Calculation of prediction
Accuracy; winner's curse

How to do BLUP using R
and GCTA

How to do BayesR using R
and GCTB

How to do SBayesR using R
and GCTB

Our in-house PRS pipeline:
from lab data to personal
scores

CRICOS code 000258
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Many polygenic genetic architectures 0 Ly
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Polygenic disease for an individual B e

_alll.
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900 DNA polymorphic sites

Frequency
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— o ve RV =risk variant o
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0 Grey:. Homozygote no risk alleles (or equivalently 2 protective alleles) Toy

1 Blue : Heterozygote one risk allele (and one non-risk/protective allele)
2 Red: Homozygote two risk alleles

example
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Polygenic disease for an individual B e
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Polygenic score

count RV = 19 » “True” polygenic score

Noft all variants captured
on genotyping arrays

o . : h?2 = 24 heritabilit
Genetic variance between people attributed to all genetic factors V(A) ~ V(P Y

b2 _ o VIASNP)

SNP — based heritability

Genetic variance between people attributed to all genetic factors
associated with SNPs on genotyping arrays

CRICOS code 000258



Limitations in prediction accuracy
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PRS have a theoretical upper limit dependent on the heritability of
the trait (how much of the variance of trait values between people
attributed to genetic factors).

PRS have a technical upper limit associated with the proportion of
variance tagged by the DNA variants measured.

PRS have a practical upper limit dependent on the sample size of

IS

the discovery sample used to estimate effect sizes of risk alleles, and

the quality of the discovery sample.

PRS can be pushed closer to the technical upper limit by the
statistical methodology used to generate the optimal weighting
given to the risk alleles, and new methods integrate new biological
data.

CRICOS code 000258
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Schizophrenia

Max:
25% Liability
AUC 0.84

Current:
11% Liability
AUC 0.74

Polygenic scores cannot
be highly accurate
predictors of phenotypes



Polygenic risk scores R e
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3. Methods to choose DNA variants and to cecide their weights

TREFFF PRPDDD

A -

4. Evaluate PRS les with kno 5. Calcutate PRS for Individuals with unknown disease —
case(mmsgzm = smuulsamnena;urtnsugum\l;pul;l“on Y— b*PRS + e

1. Large genome-wide association stucy

« A weighted count of risk alleles
PRS = ,31951;1\"‘ .52/251'2 + B3xi3 + - Z ,Bjxu
0,1o0r2 - /;
Risk alleles Which SNPs
What weights?

. ' « Don't need to know causal variants for prediction!
: \* * Prediction can be based on correlated variants.

* Prediction robust to inclusion of false positives

4. Evaluate AUC statistic:
Probability that a case ranks

B e e e R? = var(b*PRS)/Var(Y) higher than a control



Visualising Prediction Accuracy

Evaluation of disease risk prediction:
Area Under the ROC Curve
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Different views of the same data
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Different views of the same data
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Control Case 0 10 20 30 40 50 60 70 80 90 100

CAD Percentile of polygenic score

Khera et al (2018) Genome-wide polygenic scores for common diseases identify
individuals with risk equivalent to monogenic mutations. Nature Genetics
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Khera et al (2018) Genome-wide polygenic scores for common diseases

identify individuals with risk equivalent to monogenic mutations. Nature _
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Stratification & health economics

Population risk of 1%

80% of cases in
top 18% of genetic risk

Proportion of cases

0.1

0 02 04 056 035 10
Proportion of population

For every 1,000 people treated with intervention could “save” 10
Treat only 18% = 180 and “save” 8

Number of people freated to save 1 reduced from 100 to 22.5

Polychronakos & Li NRG (2011) Understanding Type | Diabetes through genetics. Nat Rev Genetics
CRICOS code 000258



Breast Cancer 0 e
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AUC 313-SNPs 0.63

33%
A 0.35
>99%
% 03 ——95-99%
m T i 0
@ 025 90-95%
= 80-90%
§ 0.2 ——60-80%
< ——40-60%
o 0.15 °
= 20-40%
2 0.1 10-20%
=
- e 5-10%
. — 1-5%
0 Tirrttrrrry — <1%
25 30 35 40 45 50 55 60 65 70 75
Age (years) 2 5%

Mavaddat et al (2019) Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer
Subtypes. AJHG CRICOS code 000258
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Polygenic risk score applications

JAMA Psychiatry | Review G O O | :
From Basic Science to Clinical Application of Polygenic Risk Scores | o | Jnderstandable by interested clinician

AP . 7' . H
rimer « Technically accurate — backed up in

Naomi R. Wray, PhD:; Tian Lin, PhD; Jehannine Austin, PhD; John J. McGrath, MD, PhD:; lan B. Hickie, MD;

Graham K. Murray, MD, PhD; Peter M. Visscher, PhD

Supplement & Rscript

Graham Murray,

lan Hickie, UoCambridge
UoSydney
whe(e PRS
e Hiptpatadr | of100peoplein Piitiaear | ori00peoplepresenting | ITEPERIEIE | 100 people with diagnosis of
#eddfdeqep | e population, 1 will get - at clinic with symptoms 4 "the disease”
pehbbbbpbp | edisease”inlifetime, | jepppepppqp | DUt Withouta clear Lttt
PR RRRPH aisl?fmtling a QIksedifSi% PePRRERIRR dlagno:;s, atzlghier ::::::::::
of lifetime ris R proportion thanin . .
:I:I:HH: #+#s#bidpe | 3POpulation sample will dehtbdbidh Jehqr)ﬂ'ne AUSJ””(
FERPRPPRD P PPRRRPRIRE go on to get "the disease” LI LTI TT) UoBritish Columbia
tereredtied L2222 110 in their lifetime dehbhbeddd
Pridibiiee il TRRRRETROr
PRS contribute to risk stratification PRS contribute to clinical decisions PRS contribute to treatment choices
PRERRRTIRE 2 (222211111 :
phibsetesp | Ofl00peopleinthetop | goipgeppe | OF 100peoplepresening | [HEEEIY) |HHSIINS [teaeeeees]
PhibieiiRd stratum, a higher L2221 13 With symptoms T .
PRRPREPERD proportion will get PeePRePIP in the top PRS stratum, 44444 John
PRERRRTERE “the disease” in their FEEETrEre a higher proportion than
FFFFEETryys lifetime and hence are #4#4#oddde | intheclinic-presenting McGrath, UQ
thbdbbbie particularly encouraged sddddddddd | Cohortwill goon toget Genetic information may contribute to more
PREERREEIRE to enter established PeeeRbROPE diagnosis of “the disease” effective choice of treatment, with reduced
PREPERTERE disease screening Y L2 LL Il in their lifetime adverse events
PrivEETEIRT teerivRbEE
Likely Common diseases/ When there is no clear diagnosis Potentially all common
applications: disorders for which there based on presenting symptoms, diseases/disorders but little data
is already population screening guide monitoring of emergent symptoms available to date
&
Likely first Cancers: breast and colorectal; common eye Differentiating between type 1 and Inflammatory bowel disease is a flagship S
applications: disorders: glaucoma, macular degeneration; type 2 diabetes in the genetics of common disease; Tian Lin, UQ
heart disease perhaps we will see first applications here? ’
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Polygenic risk score applications

JAMA Psychiatry | Review

From Basic Science to Clinical Application of Polygenic Risk Scores | o

A Primer

Naomi R. Wray, PhD:; Tian Lin, PhD; Jehannine Austin, PhD; John J. McGrath, MD, PhD:; lan B. Hickie, MD;

Graham K. Murray, MD, PhD; Peter M. Visscher, PhD

Goal:

Understandable by interested clinician

« Technically accurate — backed up in
Supplement & Rscript

Cohort
where PRS
applied:

Likely
applications:

Likely first
applications:

Vebiesass | OF100pcoplein
#vkefeddep | e population, 1 will get
tehbhbbhbh “the dISEBSE"II'I lifetime,
FeRPRR PR R assuming a disease
FPRPRPERDR of lifetime risk of 1%
LERLI LTI

LES LI LI Ld S

iiasdiditdy

irRreRPAPE

::::::::z: Of 100 people in the top
PRiebRPERE PRS stra_tum,g higher
PeibERPERH proportion will get
PREPRRTRRD “the disease" in their
PRI lifetime and hence are
dhdbbbibr e particularly encouraged
PREEPRPIRE to enter established
tdads3adily disease screening

L isdsdatily

Common diseases/
disorders for which there
is already population screening

Cancers: breast and colorectal; common eye
disorders: glaucoma, macular degeneration;
heart disease

PRS could have utility in community setfings
(strafification to better tfriage people into
established screening programs)

Graham Murray,

lan Hickie, UoCambridge

UoSydney

Jehannine Austin,
UoBritish Columbia

John
McGrath, UQ

Tian Lin, UQ
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Polygenic risk score applications

JAMA Psychiatry | Review

From Basic Science to Clinical Application of Polygenic Risk Scores | o | Jnderstandable by interested clinician

« Technically accurate — backed up in
Supplement & Rscript

A Primer

Naomi R. Wray, PhD:; Tian Lin, PhD; Jehannine Austin, PhD; John J. McGrath, MD, PhD:; lan B. Hickie, MD;

Graham K. Murray, MD, PhD; Peter M. Visscher, PhD

Goal:

i® ;; LS
& '
ey

Graham Murray,

lan Hickie, UoCambridge
UoSydney
Cohort Symptoms: help-seeking
where PRS
e S4ssiqess | OF100peoplepresenting
bR RIRE at clinic with symptoms
#edetpipie | DUt withouta clear
SERRERIRY || Smes he
proportion than in . .
:::I::H:: a population sample will Jehannine Austin,
I go on to get "the disease . UoBritish Columbia
#eéeiddiee |  Intheir lifetime PRS could contribute to
bedvibbibE . . . . .
clinical decision-making for
PRS contribute to clinical decisions . .
e those presenting with
seisddpee | Of 100peoplepresenting || oymMptoms but where formal
R : o
H | rionthin diagnosis is unclear. i;\)hg .
PEEPREPERR in the clinic-presenting cirarn,
PR RORH cohort will go on to get
e RbRORE diagnosis of “the disease”
teebibRbe in their lifetime
tetvibbdid
Likely When there is no clear diagnosis
applications: based on presenting symptoms,
guide monitoring of emergent symptoms
Likely first Differentiating between type 1 and S )
applications: type 2 diabetes Tian Lin, UQ




Polygenic risk score applications

JAMA Psychiatry | Review G O O | : ‘ ;
From Basic Science to Clinical Application of Polygenic Risk Scores | o | Jnderstandable by interested clinician ‘ '; e

-

A Primer . .
« Technically accurate — backed up in
Naomi R. Wray, PhD:; Tian Lin, PhD; Jehannine Austin, PhD; John J. McGrath, MD, PhD:; lan B. Hickie, MD;

Graham K. Murray, MD, PhD; Peter M. Visscher, PhD Supplemen-l- & Rscrlp-l- an Hickio Sg%k:]or;nbﬁ\l/(\jug”:y'
UoSydney

Cohort Established diagnosis
whe!e PRS
applied: :z::::z:z: 100 people with diagnosis of
dehddepddp |  hedisease”

Lidbdadidds
TPRPTRTRTY

:I::::::I: Jehqr)nine Aus’rin,.

dehdhdbidh UoBritish Columbia
LI TTTT]
TeREvERREH

PRS could contribute to treatment choices,
bUT more dOTO are needed TO O”OW thhbddbhid| |PhébbibRed |+ﬂﬂﬁ"§|

development of PRS in this context. i Rl

PRS contribute to treatment choices

LI LTI LT John
McGrath, UQ

Genetic information may contribute to more
effective choice of treatment, with reduced
adverse events

Likely Potentially all common
applications: diseases/disorders but little data
available to date

Likely first Inflammatory bowel disease is a flagship .
applications: in the genetics of common disease; Tian Lin, UQ
perhaps we will see first applications here? !




Australia vs other countries

! @ ourfuturehealth.org.uk/participants/

T Genometools 4 Google Scholar & Cybrary 8 UQEmail 8 UniFi G Google [B) PubMed < NetBank - Logon 000 ABC News 24 (Au.. B3 PGC B3 MND

+

Our
Future
Health

Home Our programme About us Participants Partners ews &ev Careers

Participants

— Taking partin Our Future Health Our aim is to recruit up to five million people over the age
of 18, from all backgrounds and ethnic groups, and from
all across the UK to take part. This will make Our Future
Health the largest ever health research programme
involving members of the public in the UK.

World-leading research to improve health

Our plan is to collect information from millions of people from across the UK,
in a giant digital database. Researchers will use this resource to make new
discoveries about human health and disease. This could transform the
prevention, detection and treatment of conditions such as dementia, cancer,
diabetes, heart disease and stroke. So future generations can live in good

NHSJ

About us Key tools and info COVID-19 response

Accelerating Detection of
Disease

Accelerating Detection of Disease (ADD) is the UK's largest ever health
research programme. By building the most detailed picture we've ever
had of the UK’s health, it will help detect common diseases earlier and
allow more people to live healthier lives for longer.

Finland, Estoniq, ......

All-/'Us

RESEARCH PROGRAM

THE UNIVERSITY
OF QUEENSLAND

AUSTRALIA

The All of Us Research Program has a simple mission.
We want to speed up health research breakthroughs. To
do this, we’re asking one million people to share health
information. In the future, researchers can use this to

conduct thousands of health studies.

N

Australian Government
Department of Health

ConsultationHub  Find Consultations  We Asked, You Said, We Did

Medical Research Future Fund's Genomics Health Futures Mission - National
Consultation on the Roadmap, Implementation Plan and Summary of
Recommendations from the Scientific Strategy Committee Report

Overview Closes 23 Apr 2021

. . - Opened 14 Dec 2020
The Medical Research Future Fund’s (MRFF) Genomics Health Futures Mission
(the Mission) was announced as part of the 2018-19 budget to provide $500

million for research to deliver better testing. diagnosis and treatment.




Increase prediction accuracy....

Combine PRS with conventional risk predictors

Coronary Artery Disease
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Inouye et al (2018) Genomic risk prediction of CAD in 480K adults. JACC



Increase prediction accuracy....

Combine PRS with known risk mutations
Breast cancer

A
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Kuchenbaecker et al: Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCAT and
BRCA2 mutation carriers. J Natl Cancer Inst (2017)
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JAMA Psychiatry | Review

From Basic Science to Clinical Application of Polygenic Risk Scores
Will people withOUT known family history have high PRS? A Primer

Naomi R. Wray, PhD; Tian Lin, PhD; Jehannine Austin, PhD; John J. McGrath, MD, PhD; lan B. Hickie, MD;

MOybe, Ond -I-ho-l-’s imporTOnT! Graham K. Murray, MD, PhD; Peter M. Visscher, PhD

Not affected over lifetime
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Grey: Homozygote: Two non-risk/protective adlleles — always passes a non-risk allele to child at the locus
Red: Homozygote: Two risk alleles — always passes a risk allele to child at the locus
Blue: Heterozygotes: One risk allele & one non-risk allele —

passes a risk allele 50% of the time & a non-risk allele 50% of the time



Children (Parents: 171 & 189) O or vzt

Children of
these parents
Mean: 180
+/-3SD: 153-207

Genetic variance
within the family

Population
Mean: 180
+/-3SD: 142-218

No family
history, but by
chance
segregation of
alleles has high
genetic risk




H H T
Familv histor

Will people with known family history have high PRS? JAMA Peychiatry | Review N o o
From Basic Science to Clinical Application of Polygenic Risk Scores
Maybe, maybe notl! A Primer

Naomi R. Wray, PhD; Tian Lin, PhD; Jehannine Austin, PhD; John J. McGrath, MD, PhD; lan B. Hickie, MD;
Graham K. Murray, MD, PhD; Peter M. Visscher, PhD

Affected over lifetime
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Grey: Homozygote: Two non-risk/protective adlleles — always passes a non-risk allele to child at the locus
Red: Homozygote: Two risk alleles — always passes a risk allele to child at the locus
Blue: Heterozygotes: One risk allele & one non-risk allele —

passes a risk allele 50% of the time & a non-risk allele 50% of the time



Children (Parents:

206 & 180)
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variance
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family

210

11
T
TR S

Children of
these parents
Mean: 193
+/-3SD: 166-220

Population
Mean: 180
+/-3SD: 142-218



What's in a name? BR o queensiano

« PRS- Polygenic risk score

«  GPRS- Genomic or genetic profile risk score

« PGS -Polygenic score

« GRS - Geneticrisk score

« rsPS —restricted to significant polygenic score

« gePS - global extended polygenic score

« Multi-SNP score (usually this uses only single nucleofide polymorphisms (SNPs)
that are genome-wide significant, hence the same as gePS)

MetaGRS - a PRS constructed from genetic data for the disease/trait of
interest plus from other correlated traits

« MTAG-GRS/PRS a PRS constructed from GWAS data from multiple correlated
traits

« Genetic score

« Genotypic score

« Allele score

« Profile score

- Linear predictor (this of course is a generic term, but has been used to
describe PRS when risk alleles are the only predictors)
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Polygenic risk score methods

A weighted sum of the count of risk alleles

PRS = p1xi1 + Boxiz + P3xiz + -

Basic method:

Clumping & P-value thresholding
(C+PT):

« Select most associated SNP in
tower — LD-based clumping

« Select on a p-value threshold

How many SNPse
Which SNPs?
What weightse

n
— Z SNP IB]xl]

b PG,M r5202964

12+ r596?823

rs10500661
* 19:18793695
0 '525121594 rs12631337 rs2523589 ¢
re61787782/ 15078 ¢ rs62435650
T 1206esa 2100485494 1510641960 9800013 1512532051 o
= | ® rs13097265 *e * rs149140438)
® g rs729156554 & 153863241 .
i) r$32546 * rs1873914 14:103333187
3 ' rs2976388 * *
rs10891491
rs77968610
6,
4 - N < o © ~ ® o o = o ® ¥ 1O O N~ OO =
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Polygenic risk score methods O it

A weighted sum of the count of risk alleles

— R 5= n How many SNPs?
PRS = B1xi1 + BoXiz + Baxiz + - = X; 21" Bix;; Which SNPs?
What weightse
Basic method:
Clumping & P-value thresholding 300
(C+PT):

« Select most associated SNP in
tower — LD-based clumping

« Select on a p-value threshold 5

00000000




Polygenic risk score methods Wl

A weighted sum of the count of risk alleles

L _ _— n How many SNPs?
PRS = B1x;1 + B2xiz + f3xi3 + -+ = Z SNP IBJle Which SNPs<¢

What weightse

Basic method:

0.20

Clumping & P-value thresholding
(C+PT):

QD.
0.15 —log1p model

P —value

20
15
10
5

PRS model fit: R?
o
)

« Select most associated SNP in
tower — LD-based clumping

« Select on a p-value threshold

0.00

INIEEEN
P- alue th eshold (P7)




Polygenic risk score methods B o

A weighted sum of the count of risk alleles

_ 5 —~ o n How many SNPs?¢
PRS = B1xi1 + Baxip + P3xi3 + -+ = Z SNP ,B]xl] Which SNPs?2
What weightse
New methods model
genetic architecture
L Dpred-Inf L DPred?2 BSLMM SBayesR

SBLUP SBayesC

Al P

44



Polygenic risk score methods

Table 1. Summary of Methods Used to Generate Polygenic Scores

Tuning Predefined Parameters Estimated in Arc h iva I Re p o ﬂ E;‘;Ig,ﬂg:;;

Method Distribution of SNP Effects (B) Sample Parameters Tuning Sample
PC+T None Yes - p-value threshold
SBLUP 2 No A -
B~N (0,—g> LD radius in kb
m
h2: SNP-based heritability, m: number of SNPs; 2 = m(1 — h2)/hZ c H H S d
5 SNP-based heraily,m: pumsr of SNPs; 2 = m(1 — #5)/ A Comparison of Ten Polygenic Score Methods
Ldpred2-Inf Same as SBLUP No hg - - - - - -
R— L6 radus in e or o for Psychiatric Disorders Applied Across Multiple
LDpred-funct :~N (0,ca?) No h -
,:, ! LgD radius in number of COhorts
>-1,2-0co? = hZ, cis a normalizing constant, o7 is the expected SNPs
=
per SNP heritability under the baseline-LD annotation model Guiyan Ni, Jian Zeng, Joana A. Revez, Ying Wang, Zhili Zheng, Tian Ge, Restuadi Restuadi,
estimated by stratified LDSC from the discovery GWAS within . N R A
LDpred-funct software Jacqueline Kiewa, Dale R. Nyholt, Jonathan R.l. Coleman, Jordan W. Smoller, Schizophrenia
LDpred2 2 Yes 2 «, sparsity Working Group of the Psychiatric Genomics Consortium, Major Depressive Disorder Working
N (0,—2 . with probability of = w software default Group of the Psychiatric Genomics Consortium, Jian Yang, Peter M. Visscher, and
B~ wm values, LD radius in Naomi R. Wra
. ™ cM or kb . y
0, with probability of 1 —
When sparsity is “true,” the 5/. for SNPs in the (1 — =) partition are
all set to zero
Lassosum f(B) =y'y+(1 — s)B'XIXB — 2B'XTy+sB"B+2 1|} Yes LD blocks s
X::n X m matrix of genotypes of LD reference sample, where n is
sample size 0.80 Benchmark Infinitesimal model Genetic architecture is modelled
PRS-CS 2 Yes a=1,b=05 [ ’ Tuning sample:  Tuning sample: Tuning sample:
B~N (o.?//,) ,L7D - 0.78 1 Yes No Yes
ocks
Y~G (@) 0.76 A PC+T SBLUP  LDpred2-Inf LDpred-funct LDpred2 Lassosum PRS-CS PRS-CS-auto SBayesR MegaPRS
8~G (b,¢),¢ is a global scaling parameter 0.74
o 5 T
PRS-CS-auto Same as PRS-CS, but estimates ¢ from the discovery GWAS No a=1,b=05 - 2 0.72 v 2
n
LD blocks 0.70 %
SBayesR 0, with probability of 1 No LD radius in cM or kb - 0.68 é
c=4
N (0, v20%), with probability of v software default 0.66 %
B [ w05~ : values
c-1
N (0,vc0%), with probability of 1 — > mc
c=1
a§~lnv — X2 (df. =4) .
i ~Dir(1), estimated from discovery GWAS in SBayesR software [ R d r ' ' ff 'I' r ' ' d | f d ff 'I'
y: are scaling parameters O n O e e C S O e S > |Xe e e C S
MegaPRS Lasso: ﬁ/-~DE (2 /aj) Yes LD radius in cM The tuning cohort is used to
Ridge regression: 3 ~N (0,va?) or kb estimate the parameters m d |
' ! ) Parameters used that maximize prediction O e S
(1—"f2)af . ™ in BLD-LDAK for each model, and from
N (0‘ [ )'th probability of « Grid search parameter  these the model that
BOLT-LMM: §;~ values for each maximizes prediction is

e « Mixture models > non-mixture

f, is the proportion of the total mixture variance in the second normal M . M .
(infinitesimal) models
BayesR: similar to SBayesR with C = 4, and m; and v; estimated in the
tuning sample
af is the expected per SNP-heritability under BLD-LDAK model using
SumHer
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AUSTRALIA

Crohn’s Disease Ulcerative Colitis Issues
g EUR-ASN 0.76 lg EUR-ASN 0.79 . Same causal variants

a b
2] 224 RPL3, SYNGRI . :
) g s  Different allele frequencies
17 1811
| — b « LD differences
NOD2 12 I GOT1, NKX2-3 . .
y — » Different effect sizes
° ‘ - =, ¢ Different causal variants
5 \ — I « Different phenotype
——"5
2 N In general: d EAS 3y
|| — — We expect common causal m .
| - / e variants to be shared across .
ancestries z s
European Asian European Asian 02
p— - T But correlafion structure differs 00

CRI de 000258
Liu et al (2015) Association analysis identifies 38 susceptibility loci for IBD and highlight shared genetic risk across populations. Nat Gen%%?go °
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PERSPECTIVE

https://doi.org/10.1038/541588-019-0379-x

Clinical use of current polygenic risk scores may

exacerbate health disparities

AliciaR. Martin®'v23*, Masahiro Kanai®'2345, Yoichiro Kamatani®5¢, Yukinori Okada®578,

Benjamin M. Neale ©®?* and Mark J. Daly ©'23°

nature
genetlcs

Predicted into Japanese

b c

0.08 1 Summary statistics .

(=

-»-BBJ 3

=) 0.08 -»- UKBB 2

z o
@

. 0.04 1 Q
i 2
o . 3
T 0.02 - i * i

3
0.00 - &
I 1 I T I
\g QO 0
&L 06,69 F L&
c‘}’b
Phenotype

Predicted into European

0.04 - ,
y
0.02 -
0.00 TT
: ; ; ; ;
K € TR
(.9\0
Phenotype

Individuals in GWAS (millions)

100 -

Prediction accuracy

Population
[l European
East Asian
South Asian/other Asian
African
Hispanic/Latino
Greater Middle Eastern
1 [l Oceanic
| Other
Multiple

(suoyiq) uorendod [eqoin

—to

T T T T

2006 2008 2010 2012

1.00 -

0.75 A

0.50 -

(relative to Europeans)

0.25 -

0.00 -

T T T T

2014 2016 2018 Present

Population



Realistic expectations for PRS
» PRS are NOT diagnostic

» PRS will become more accurate as GWAS sample size increases...but still wont be diagnostic
» Very high PRS- immediate utility

» Combine PRS with other predictors

> The fime is ripe for evaluation of PRS in clinical setftings

» At the same time, more data and improved methods to ensure PRS have utility across ancestries

» Research designs: 44- fold difference in odds of having schizophrenia for lowest centile of PRS, the
highest centile



M T
History of PRS or qurin

GENOMIC PREDICTION
2019

Complex Trait Prediction from Genome Data:
Contrasting EBV in Livestock to PRS in Humans

Naomi R. Wray,*** Kathryn E. Kemper,* Benjamin J. Hayes,* Michael E. Goddard,***
and Peter M. Visscher*-

Q Shai Carmi @ShaiCarmi - Apr 6

Remember when the Broad Institute discovered polygenic scores? Now it
seems as if they invented quantitative genetics.

See below for a thread. (Happy if someone could send me the full text.)

17

Concordance of a High Polygenic Score Among

Eh Relatives

& ahajournals.org



Justify for one disease and the rest come for freel @eramis

AUSTRALIA
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PRS are ...

« PRS are imperfect genetic predictors with inherently limited accuracy.

* PRS are often combined with other predictive measures to predict the
total disease risk.

* PRS are useful in risk stratification to beftter friage people into
established screening programs.

 |In principle, PRS are available for an individual for all common
diseases from birth.

CRICOS code 000258
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PRS are not ...

« PRS are not diagnostic.

« PRS are not absolute risk and do not provide a baseline or timeframe
for the progression of a disease.

« PRS accuracy will increase with GWAS sample size but are never going
to be able to definitively predict complex conditions.

 PRS are not and never will be stand-alone predictors of common
diseases.

CRICOS code 000258
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Practical 1: Computation of PRS using C+PT

https.//cnsgenomics.com/data/teaching/GNGWS23/model5/Practicall_PRS.html
Log info the cluster

cd to your working directory in scratch: cd /scratch/[your folder]

If you have not created a folder yet, you can do it by

cd /scratch/
mkdir [your folder]

CRICOS code 000258
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What is the maximum prediction accuracy we can get? R or i

hZ : True variance explained by the predictor
hz depends on the SNP set - subscript m.

1+C
Variance explained by C:. captures the error in estimation
the predictor
As C> 0, R? > h2,
We want C to be as small as possible:
« C decreases as Discovery sample N increases C ~

« C decreases as the number of SNPs in the SNP set m decreases

As m gets smaller, hZ, also gets smaller

How to optimise m and hZ, to get max R* ?



How about whole genome sequencing?

Maximum depends on h2
maximising hf, R2 _ m

We use GWAS data so the 1+ 5 h
maximum k2, is the SNP-based Nh;, "

heritability

Theoretical maximum depends
is the heritability of the trait

With whole genome sequencing the variance captured by all
measured SNPs will increase

But the number of SNPs that we have estimate effect sizes for
increases much more

Need MASSIVE discovery sample sizes for WGS association

Also..rare variants are less likely to be shared across populations

Wray et al (2019) Complex trait prediction from genome data. Genetics 57



