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- Discovery/Training/Derivation

P

« Estimate the effect sizes (b) of SNPs on a trait (y) — GWAS

Table 1. Summary of Methods Used to Generate Polygenic Scores

Tuning Predefined Parameters Estimated in
- - - - Method Distribution of SNP Effects (f) Sample Parameters Tuning Sample
I n n I n I I n I I I n PC+T None Yes - p-value threshold
-
SBLUP n No A -
B~N (o‘i) LD radius in kb
m
. - h;: SNP-based heritability, m: number of SNPs; i = m(1 — hgl-,ﬂhs
urther estimate some parameters . :
LD radius in ¢cM or kb
. LDpred-funct 8~N(0,ca?) No n? -
° ] I [ [ L] LD radius in number of
p I O l l a . - ye S y aye S . l I O :.qC0f = h}, ¢ is a normalizing constant, o7 is the expected SNPs
per SNP heritability under the baseline-LD annotation model
estimated by stratified LDSC from the discovery GWAS within
LDpred-funct software
LDpred2 2 Yes h2 7, sparsity
N [0.=Z |, with probability of =  software default
n ] n 8~ am values, LD radius in
- Target/Testing/Validation
When sparsity is “true,"” the ﬁl for SNPs in the (1 — ) partition are
all set to zero
] [] ]
N n Lassosum f(B) = y'y+(1 — s)B'X'X.B — 2B'Xy+sp'B+2 (B} Yes LD blocks is
. ' 1
l I I I I X.: n X m matrix of genotypes of LD reference sample, where n is
" sample size
PRS-CS o2 Yes a=1,b=05 ¢
§~N (o. ﬂ,) n
LD blocks
A ~ ¥ ~G (a,&)
— &~G (b,¢),¢ is a global scaling parameter
y . :K’ .
l l PRS-CS-auto Same as PRS-CS, but estimates ¢ from the discovery GWAS No a=1,b=05 =
n
[l LD blocks
l SBayesR 0, with probability of 1 No LD radius in cM or kb -
. C=4
A N (0, v,0%). with probability of 4 software default
. . - ol B | w2~ : values
* ;1S the eStlimated etect size 10r /- >
l N (0, v,a%), with probability of 1 — " mc
=]
" " ad~Inv — 32 (df. = 4)
. . m ~Dir(1), estimated from discovery GWAS in SBayesR software
x - v; are scaling parameters
l MegaPRS Lasso: d/ ~DE (2 /a)) Yes LD radius in cM The tuning cohort is used to

« Evaluate the prediction performance/accuracy

Ridge regression: ,‘3, ~N (0, vaf!

. with probability of &

BOLT-LMM: §~
baf
N (0. f20] ) with probability of 1 —

1-w

f» is the proportion of the total mixture variance in the second normal
distribution

BayesR: similar to SBayesR with C = 4, and m; and v; estimated in the
tuning sample

er is the expected per SNP-heritability under BLD-LDAK model using
SumHer

or kb estimate the parameters
Parameters used that maximize prediction
in BLD-LDAK for each model, and from

Grid search parameter
values for each
method

these the model that
maximizes prediction is
selected

Ni et al. 2021




Accuracy and bias

- y is a quantitative phenotype

Cov(y,§)*
Var(y)Var (9)

R%(y,9) =

the coefficient of determination
or the square of correlation coefficient
or the variance of y explained by y

Reduce: y ~ cov; Full: y~cov + y

Incremental R?: R, — RZquce

- Regression of phenotypes (y) on PRS (9)
« Deviation from expectation of the slope
« Expectation is usually 1
 If not close to expectation, then biased



Accuracy for binary trait

Nagelkerke’s R*

AUC

Decile Odds Ratio

Variance explained on liability scale
Risk stratification
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Nagelkerke’s R“ depends on case proportion in the sample:e:

0.25
— — A =P K= disease prevalence
0.2
N - -
= Predictor explains 7% of
s 08 variance in liability
"4
—
)
=
@ 0.1 /\
o0
1)
"
0.05
0
0 0.2 04 0.6 0.8 1

Proportion of cases in the target sample (P)
Slide from Naomi
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Area Under Receiver Operator Characteristic Curve
At this cutoff:
~75% of cases were correctly classified

Toy example:

Receiver

~10% of controls were wrongly classified
Operating
o true - false false - M true + AUC = 0.853 L.
.  Characteristic
| ! 1 curve
0.06 1 O Current
(' " cutoff
0.751
v
@
0.04 ©
& s AUC.:
& = 050
- <] Area under the
- ROC curve
0.02
0.25
0.00 1 0.00
0.00 0.25 0.50 0.75 1.00
PGS false positive rate

True Positive Rate = TP / (TP+FN) = Sensitivity

False Positive Rate =FP/(FP +TN) = 1- Specificity Slide from Dr. Guiyan Ni
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o true - false + false - M true + AUC = 0.853
1.00 1
0.06 1
0.75 1
Q
0.04 ©
= g
7] -
c = 0.50¢
= g
Q
— ]
F =]
0.02 1
0.25 -
0.00 1 0.00
-25 0 25 50 0.00 0.25 0.50 0.75 1.00
false positive rate
PGS P

https://www.youtube.com/watch?v=y4wTRSGrVuo
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Max AUC depends on heritability and disease prevalence® oo

o |
(02}
D o
- Range 0.51t0 1; o
- 0.5 has no predictive value x O |
- Probability that a randomly selected case %E
has a score higher than a randomly <N Z‘ E= 8'8?‘
selected control ° P g
- Independent to proportion of cases and d K=0.3
H (o}
controls in sample S -
I
!
g 1
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
h2

Figure 2. Relationship between maximum AUC (AUC,,,,) from a
genomic profile and heritability on the liability scale /3. For

Wray et al. 2010 Plos Genet ’



3) Odds ratio
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Odds rato

Cut distribution into deciles

Each decile will include both cases and controls

Odds of being a case in each decile

Odds ratio for each decile compared to the 15! decile /Middle decile

« Good visualisation

« Shows that there could be utility in using
high vs low profile risk scores

+ But remember case-control samples are
50% cases

* Would look less impressive if a
population sample

4 5 6
Decile

PGC-SCZ 2014 108 loci Nature

w

Slide from Naomi



3) Odds ratio

In case control samples Same data scaled to population risk
Sample
o % dataset
35'0 =noaarh_aarh
i oo
} } 25
i: + H u ” } - . standgrdised riskzscore ! °
4 I |
2 UL T U S
‘; 2 :|3 4 5Deci|eé 7 8 9 10

Slide from Naomi



Toy examp le S
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P
odds; _ ‘/1-p,

Odds ratio = oadsy ~ P/, p. Toy example:
P
P = probability of being case (Bottom 10%) | (Top 10%)
Case 23 83
Control 103 40
Odds being a case in 1st decile
= 23/103
Odds being a case in 10t decile
= 83/40

Odds ratio between 10t and 1st decile
=(23/103) / (83/40) =9.3

12



4) R? on liability scale
Liability threshold model

- Observed probability 0-1 scale
- Underlying unobserved continuous liability
scale

- heritability is independent of disease

prevalence K = Proportion of the

population that are
diseased

Density

Phenotypic liability

Falconer 1965; Lee 2011

13



4) R2 on liability scale

R? on the liability scale when using ascertained case-control studies Sample

600
J

500
1

Linear regression; Y are Os and 1s
Null: Y= cov +e i
Full: Y=cov + PGS + e

400
I

Frequency
300
1

200
|

2
R occ*

R? ., =
ST 14+ RE %0
Population i (
. .
|

100
!

Likelihood -
Rg cc — _( - null)z/N I !
- Likelihood gy | J
|
phenotypic value

Control (1- P) Case (P)

[ |
= K(1-K)MRL1-K)
- z2 P(1{8)
||

z = density at t

Density

K=Proportion of the population that are

0 = i (ﬂ) (i % —t) | diseased

1-K
e Ref: Lee, 2012, Genet Epidemiol
Phenotypic liability t = threshold Modified from Guiyan Ni’s slide




5) Net reclassification index (NRI)

Introduced in 2008 (Pencina et al.)

which was corrected after recalibration. Using a risk threshold of 7.5%, addition of the

Getting popular, but still under debate polygenic risk score to pooled cohort equations resulted in a net reclassification improvement
of 4.4% (95% Cl, 3.5% to 5.3%) for cases and -0.4% (95% Cl, -0.5% to -0.4%) for noncases
Kathleen et al. 2014 (overall net reclassification improvement, 4.0% [95% Cl, 3.1% to 4.9%]).

The NRI, as originally proposed, seeks to quantify
whether a new marker provides clinically relevant improve-
ments in prediction. In the definition of “net reclassification
indices,” the risk prediction model with established predictors
is called the “old” model. The model that adds the new marker
is the “new” model. “Events” are cases—persons who have or
will have the disease or outcome in the absence of intervention.

“Nonevents” are controls. The formula defining the NRI is* 7.5% is the threshold for intervention (e.g
statin for CVD)

Example from Elliott et al. 2020

"Old model”: pooled cohort equations for CVD

NRI = P(up|event) — P(down|event) + P(down|nonevent)
— P(up|nonevent). “New” model: “Old”+PRS

“Up” means that the new risk model places a person into a
higher risk category than the old model. Similarly, “down”
means the new model places a person into a lower risk cat-
egory. For example, NRI*? means a two-category index with 5

~ - - ww——A 1 A A .



Time-to-event/survival analysis Bl =

AUSTRALIA

Time-to-event:
- From assessment to disease (indicate cases) - PRS + traditional risk model
- From birth to disease (age of onset) — PRS alone

A
MethOd: COX proportional hazard anaIySiS Genetic risk predicted by PRS: == Top 5% risk == Median == Top 5% protected

40-54 yo

=2

012345678910 0123456728910
Years since assessment

55-69 yo

Women l I Men ]
10
N A

o 1 2 3 4 5 6 7 8 9 10 01234567891 012345678910
Years since assessment Years since assessment

(=]

(=]

Statistics:

- Hazard ratio per SD
- Harrell's C-index

S

[=2]
N

o

Cumulative incidence of CAD (%) W

R package:
“coxph” function in “survival” package

S

Cumulative incidence of CAD (%)

N

«n

Cumulative incidence of CAD (%)

Figure 1. Cumulative incidence of coronary artery disease (CAD) in UK Biobank incident cases in group Ill.

A, All of group IlI. B, Group Il stratified into 4 subgroups according to age (45-54- and 55-69-y-old age ranges) and sex. Individuals are
further stratified by polygenic risk score (PRS)-defined risk into the top 5% of PRS risk (red), the median 40% to 60% distribution of risk
(blue), and the bottom 5% of risk distribution (green).

Riveros-Mckay et al. Circulation: GPM 2021 16



Factors affecting prediction accuracy

The prediction accuracy of PRS (y) for a quantitative trait y

L Covy,9y
FOD = vartvar 3

The expected value of this prediction accuracy
2

hiy

ERY) =17 M/(NhZ)

< h%

N: discovery sample size
M: the number of SNPs (assume LD-independent)
hz,: the SNP-heritability captured by M SNPs

An upper bound of h3

Larger N, larger R?

The trade-off between M and h%
- More SNPs, larger M, smaller R?
- More SNPs, larger h%,, larger R?

17
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assume LD-independent
y=X"bix; +e;9 =3 bix;

L Covy,9)°
RO = artyvar 6)

M M M M
E(Cov(y,9)) =E <Cov (Z b;x; + e,z b;x; >> = Z E(Cov(b;x;, bix;)) = Z biE(Bl-)Var(xi)

M
- z b2Var(x;) = h3Var(y)
i

M

M M M M
E(Var (37)) =FE (Var (Z bix; )) = z E(Eiz)Var(xi) = Z (bl2 + Var(Bi)) Var(x;) = z b*Var(x;) + z Var(Ei)Var(xi)

l

~ h%Var(y) + M * Var(y) /N

R ehy R

hi, + M/N 1+ M/(Nh3)

E(R*(y,9)) =

Daetwyler et al. Plos One 2008; Visscher et al. 2010; Wray et al. 2013 Nat Rév Gene



Genetic prediction

- Discovery/Training/Derivation

~

« Estimate the effect sizes (b) of SNPs on a trait (y) — GWAS

- Tunning/Validation
* Further estimate some parameters (depends on methods; not
all methods require it)

- Target/Testing/Validation
« Build a polygenetic risk score (PRS) (¥):
« Evaluate the prediction performance/accuracy

((@ GENOME-WIDE ASSOCIATION STUDIES — OPINION

Pitfalls of predicting complex
traits from SNPs

Should be independent; no overlap;
out-of-sample prediction

Naomi R. Wray, Jian Yang, Ben J. Hayes, Alkes L. Price, Michael E. Goddard
and Peter M. Visscher
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Pitfall 1: no target sample — report R? in discovery sample® ooszsi

x: M markers for N samples

y from N(0,1) independently (null hypothesis)

1) Multiple linear regression of y on x (when M<N)

E(R?) = M/N
(R%) / By chance

2) Select m “best” markers out of M in total, and conduct multiple
linear regression in the same dataset

2
E(R?) » m/N + winner’s curse

Out-of-sample prediction

20
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ARTICL.

L1

doi:10.1038/nature10811

The Drosophila melanogaster
Genetic Reference Panel

Trudy F. C. Mackay'*, Stephen Richards?*, Eric A. Stone'*, Antonio Barbadilla®*, Julien F. Ayroles't, Dianhui Zhu?,

Sonia Casillas®f, Yi Han? Michael M. Magwire!, Julie M. Cridland®, Mark F. Richardson®, Robert R. H. Anholt®, Maite Barron?®,
Crystal Bess?, Kerstin Petra Blankenburg® Mary Anna Carbone', David Castellano?, Lesley Chaboub?, Laura Duncan', Zeke Harris',
Mehwish Javaid?, Joy Christina Jayaseelan?, Shalini N. Jhangiani?, Katherine W. Jordan', Fremiet Lara®, Faye Lawrence!,
Sandra L. Lee?, Pablo Librado’, Raquel S. Linheiro®, Richard F. Lyman', Aaron J. Mackey®, Mala Munidasa®, Donna Marie Muzny?,
Lynne Nazareth?, Irene Newsham?, Lora Perales?, Ling-Ling Pu?, Carson Qu?, Miquel Ramia®, Jeffrey G. Reid?,

Stephanie M. Rollmann'+, Julio Rozas’, Nehad Saada? Lavanya Turlapati', Kim C. Worley?, Yuan-Qing Wu?, Akihiko Yamamoto®,
Yiming Zhu?, Casey M. Bergman®, Kevin R. Thornton®, David Mittelman® & Richard A. Gibbs?

Predicting phenotypes from genotypes

We used regression models to predict trait phenotypes from SNP
genotypes and estimate the total variance explained by SNPs. The
latter cannot be done by summing the individual contributions of “A cross-validated Bayesian
the single marker effects because markers are not completely inde- prediction analysis using
pendent, and estimates of effects of single markers are biased when :
more than one locus affecting the trait segregates in the population. all genetic markers on the
We derived gene-centred multiple regression models to estimate the same data found that only
effects of multiple SNPs simultaneously. In all cases 6-10 SNPs 6% of phenotypic variation
explal.n from 51-72% of the phenotypic variance and 65-90% of the could be explained by the
genetic variance (Supplementary Tables 25 and 26 and Supplemen- . ”

tary Figs 11-13). We also derived partial least square regression predictor.

models using all SNPs for which the single marker effect was significant (Wray et al,, 2013. Nat. Rev. Genet.)

21
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Pitfall 2: target sample overlapped with discovery sample® oo

- Overlapping target and discovery sample
- Greater similarity between target and discovery sample (such as
relatedness)
- Cross-validation: not a pitfall, but to be aware

COV(j\’i, yi) = COV{E (xijbj)’z xijbf s ei}
Jj=1 Jj=1

= E var(x, )b iy +:;2 X,; COV( BJ. e, ) )

i

If b estimated from the same data in which
prediction is made, then the second term is non-zero

22



Pitfall 3: non-independence T or aummsi

Correlation of actual phenotype with
predicted phenotype in validation set

Estimate SNP effects and/or select SNPs from total sample (discovery
+ target sample)

Re-estimate effects in the target sample after selecting in the
discovery sample

—4— Validation set excluded from GWASs and excluded | Out_of_sam ple pred |Ct|0n

when estimating prediction equation

—s— Validation set included in GWASs butexcluded = EStimate SNP effects in total sample

0.2 - when estimating prediction equation . . .
—A— Validation set included in GWASs and included DIreCt report R2 In the dISCOvery Sample
0.1 when estimating prediction equation
O I | T I T I I 1
-8 -7 -6 -5 -4 -3 -2 -1 0

log(P value in GWASs)
23



Summary ) ey
* measurement of prediction performance
« RZ?for quantitative traits
 for binary traits
« Pseudo-R? (Nagelkerke’s R?)
« AUC
* Decile Odds Ratio
« variance explained on liability scale
* risk stratification (Net reclassification index)
« Time-to-event analysis
 factors affecting prediction accuracy
 SNP-heritability (h%),
* number of SNPs (M)
« discovery sample size (N)
 pitfalls
* No target sample (only discovery sample)
* Overlapping discovery & target sample
* non-independence 2




Thank you for your attention



