

Bayesian Methods For Genomic Prediction Jian Zeng

ND Institute for Molecular Bioscience

Slides credit: Ben Hayes Queensland Alliance for Agriculture and Food Innovation, University of Queensland

Bayesian methods for Genomic Prediction

- Alternative assumptions regarding the distribution of SNP effects
- Introduction to Bayesian methods
- Genomic prediction with Bayesian methods
- Comparison of accuracy of methods

- Best Linear Unbiased Prediction
 - GBLUP, SNPBLUP
- GREML
- Assumes SNP effects are:
 - all non-zero
 - very small
 - normally distributed

• Alternative distributions?

4

• Alternative distributions?

Assumption	Distribution of SNP effects	Method
Small number of moderate to large effects, many small effects	Students t	BayesA

• Alternative distributions?

Assumption	Distribution of SNP effects	Method
Small number of moderate to large	Students t	BayesA
effects, many small effects		
Small number of moderate to large	Mixture, spike at zero,	BayesB
effects, many zero effects	Students t	
Small number of small effects, many	Mixture, spike at zero,	BayesC
zero effects	normal distribution	
Many zero effects, proportion of small	Multi-variate normal	BayesR
effects, some moderate to large effects		

• Alternative distributions?

BayesC

Assumptions regarding distribution of SNP effects

• Alternative distributions?

Bayesian approach allows us to incorporate this prior knowledge in the prediction of SNP effects

Bayesian methods for Genomic Prediction

- Alternative assumptions regarding the distribution of SNP effects
- Introduction to Bayesian methods
- Genomic prediction with Bayesian methods
- Comparison of accuracy of methods

• Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

• Bayes theorem

 $P(x \mid y) \propto P(y \mid x)P(x)$

Probability of parameters x given the data y (posterior)

• Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

Probability ofIs proportional toparameters x given+the data y (posterior)+

• Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

$$f(x \mid y) \propto P(y \mid x)P(x)$$
ity of Is proportional to Probability of

Probability of
parameters x givenIs proportional to
data y given the
x (likelihood of
data)

• Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

Probability of
parameters x givenIs proportional to
data y given the
x (likelihood of
data)Prior

- Consider an experiment where we measure height of 10 people to estimate average height
- We want to use prior knowledge from many previous studies that average height is 174cm with standard error 5cm

y=average height + e

• Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

Prior probability of x (average height)

• Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

From the data.....

$$\overline{x} = 178$$

s.e = 5

Prior probability of x (average height)

• Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

Likelihood of data (y) given height x, most likely x = 178cm Prior probability of x (average height)

• Bayes theorem

- Bayes theorem
- Less certainty about prior information? Use *less* informative (flat) prior

- Bayes theorem
- Less certainty about prior information? Use *less* informative (flat) prior

- Bayes theorem
- More certainty about prior information? Use *more* informative prior

- Bayes theorem
- More certainty about prior information? Use *more* informative prior

Bayesian methods for Genomic Prediction

- Alternative assumptions regarding the distribution of SNP effects
- Introduction to Bayesian methods
- Genomic prediction with Bayesian methods
- Comparison of accuracy of methods

BayesC

• $y = 1_n \mu + X\beta + e$

$$eta_j egin{cases} \sim N(0,\sigma_eta^2) & ext{ with probability } \pi \ = 0 & ext{ with probability } 1-\pi \end{array}
ightarrow$$

$P(\boldsymbol{\beta}, \mu | \boldsymbol{y}) \propto P(\boldsymbol{y} | \boldsymbol{\beta}, \mu) P(\boldsymbol{\beta}, \mu)$

BayesC

BayesC -> Gibbs Sampling

- Cannot solve directly, as estimates of parameters depend on other parameters -> no closed form solution
- For example, estimate of a SNP effect depends on whether or not the SNP is in the zero variance part of distribution or non-zero variance part of the distribution
- Use Gibbs sampling!
- Sample from posterior distribution of parameter conditional on all other parameters

BayesC -> Gibbs Sampling

- Sample from posterior distribution of parameter conditional on all other parameters
- For example, for SNP effect β_i
 - First sample if in zero effect or non zero effect part of distribution (δ_i)
 - Then if in non-zero part of the distribution, sample from

$$N\left(\frac{\mathbf{X}_{ij}'\mathbf{y} - \mathbf{X}_{ij}'\mathbf{X}\beta_{(ij=0)} - \mathbf{X}_{ij}'\mathbf{1}_{n}\mu}{\mathbf{X}_{ij}'\mathbf{X}_{ij} + \sigma_{e}^{2}/\sigma_{\beta}^{2}}, \sigma_{e}^{2}/(\mathbf{X}_{ij}'\mathbf{X}_{ij} + \sigma_{e}^{2}/\sigma_{\beta}^{2})\right)$$

BayesC -> Gibbs Sampling

- Sample from posterior distribution of parameter conditional on all other parameters
- For example, for SNP effect β_i
 - First sample if in zero effect or non zero effect part of distribution (δ_i)
 - Then if in non-zero part of the distribution, sample from

$$N\left(\frac{\mathbf{X}_{ij}'\mathbf{y} - \mathbf{X}_{ij}'\mathbf{X}\beta_{(ij=0)} - \mathbf{X}_{ij}'\mathbf{1}_{n}\mu}{\mathbf{X}_{ij}'\mathbf{X}_{ij} + \sigma_{e}^{2}/\sigma_{\beta}^{2}}, \sigma_{e}^{2}/(\mathbf{X}_{ij}'\mathbf{X}_{ij} + \sigma_{e}^{2}/\sigma_{\beta}^{2})\right)$$

BayesC -> Gibbs Chain

- Set starting values for $(\sigma_e^2, \mu, \delta, \beta, \sigma_\beta^2, \pi)$
- Then (for many iterations)
 - For each SNP, sample δ_i , β_i conditional on other parameters
 - Sample σ_e^2 , μ , σ_β^2 , π with updated δ_i , β_i
- Samples reconstruct posterior distributions of parameters

BayesC -> Gibbs Chain

- Set starting values for $(\sigma_e^2, \mu, \delta, \beta, \sigma_\beta^2, \pi)$
- Then (for many iterations)
 - For each SNP, sample δ_i , β_i conditional on other parameters
 - Sample σ_e^2 , μ , σ_β^2 , π with updated δ_i , β_i
- Samples reconstruct posterior distributions of parameters

Iteration

BayesC -> Gibbs Chain

- Set starting values for $(\sigma_e^2, \mu, \delta, \beta, \sigma_\beta^2, \pi)$
- Then (for many iterations)
 - For each SNP, sample δ_i , β_i conditional on other parameters
 - Sample σ_e^2 , μ , σ_β^2 , π with updated δ_i , β_i
- Samples reconstruct posterior distributions of parameters

BayesR

• $y = 1_n \mu + X\beta + e$

 $\sigma_{\beta}^{2} = \begin{cases} 0 \cdot \sigma_{a}^{2} \text{ with probability } p_{1} \\ 0.0001 \cdot \sigma_{a}^{2} \text{ with probability } p_{2} \\ 0.001 \cdot \sigma_{a}^{2} \text{ with probability } p_{3} \\ 0.01 \cdot \sigma_{a}^{2} \text{ with probability } p_{4} \end{cases}$

- Each SNP has a probability of being in each of the four distributions
- Use Dirichlet distribution to sample distribution proportions

Bayesian methods for Genomic Prediction

- Alternative assumptions regarding the distribution of SNP effects
- Introduction to Bayesian methods
- Genomic prediction with Bayesian methods
- Comparison of accuracy of methods

Real Data, 800K

- Reference
 - Holstein = 3049 bulls, 8478 cows
 - Jersey = 770 bulls, 3917 cows
- Validation
 - Holstein = 262 bulls
 - Jersey = 105 bulls
 - Australian Reds = 114 bulls
- GEBV with GBLUP, BayesR
- (Kemper et al GSE, 2014)

Real Data, 800K

• r(GEBV,DTD)

Fat Milk Protein Fat% Protein% **Average** *Holstein*

GBLUP	0.60	0.59	0.58	0.72	0.83	0.66	
BAYESR	0.64	0.62	0.57	0.81	0.84	0.69	
Jersey							
GBLUP	0.56	0.62	0.67	0.64	0.76	0.65	
BAYESR	0.56	0.69	0.71	0.76	0.79	0.70	
Australian Reds							
GBLUP	0.20	0.16	0.11	0.32	0.34	0.22	
BAYES	0.26	0.21	0.13	0.44	0.36	0.28	

position, Mbp

 $10^{-4} \text{ x } \sigma^2_{a}$ 10⁻³ x σ²α

10⁻² x σ²α

Prediction of disease risk in humans

Bayesian methods for Genomic Prediction

Bayesian approach allows us to incorporate prior knowledge in prediction of SNP effects

Bayesian methods can have an advantage when:

QTL of moderate to large effect on the trait (eg Fat%, DGAT1)

Very large numbers of SNP (800K, sequence) -> set some SNP effects to zero

Integrates genomic prediction and QTL fine-mapping

Reference

BayesA, BayesB:

Copyright © 2001 by the Genetics Society of America

Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,* B. J. Hayes[†] and M. E. Goddard^{†,‡}

*Research Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands, [†]Victorian Institute of Animal Science, Attwood 3049, Victoria, Australia and [‡]Institute of Land and Food Resources, University of Melbourne, Parkville 3052, Victoria, Australia

> Manuscript received August 17, 2000 Accepted for publication January 17, 2001

> > BMC

Meuwissen et al is the paper coined genomic selection.

BayesC:

Habier et al. BMC Bioinformatics 2011, 12:186 http://www.biomedcentral.com/1471-2105/12/186

Bioinformatics
Open Access

RESEARCH ARTICLE

Extension of the bayesian alphabet for genomic selection

David Habier1*, Rohan L Fernando1, Kadir Kizilkaya1.2 and Dorian J Garrick2.3

J. Dairy Sci. 95:4114–4129 http://dx.doi.org/10.3168/jds.2011-5019 © American Dairy Science Association[®], 2012. Open access under <u>CC BY-NC-ND license</u>

Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels

M. Erbe,*¹ B. J. Hayes,†‡\$^{1,2} L. K. Matukumalli,# S. Goswami,|| P. J. Bowman,†‡ C. M. Reich,†‡ B. A. Mason,†‡ and M. E. Goddard†¶

A dairy cattle ism panels th,†‡ BEERCHARTICLE Simultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model Gerhard Moser¹*, Sang Hong Lee¹, Ben J. Hayes^{2,3}, Michael E. Goddard^{2,4}, Naomi B. Wray¹, Peter M. Visscher^{1,5}

Practical 4: Polygenic prediction using Bayesian methods

https://cnsgenomics.com/data/teaching/GNGWS23/model5/Practical4_Bayes.html

Log into the cluster

cd to your working directory in scratch: cd /scratch/[your folder]

You will learn how to run MCMC using the toy example data set in R.

You will use GCTB to run BayesR in the simulated data set based on real genotypes.

Compared to C+PT, does BayesR improve prediction accuracy? Why or why not?

The SNP effect β_i is denoted as α_i in this Appendix..

Full conditionals for single-site Gibbs

$$(\mu | \mathbf{y}, \alpha, \sigma_{\theta}^{2}) \sim \mathsf{N}(\frac{\mathbf{1}'(\mathbf{y} - \mathbf{X}\alpha)}{n}, \frac{\sigma_{\theta}^{2}}{n})$$

$$(\alpha_{j} | \mathbf{y}, \mu, \alpha_{j_{-}}, \sigma_{\theta}^{2}) \sim \mathsf{N}(\hat{\alpha}_{j}, \frac{\sigma_{\theta}^{2}}{c_{j}})$$

$$\hat{\alpha}_{j} = \frac{\mathbf{x}_{j}' \mathbf{w}}{c_{j}}$$

$$\mathbf{w} = \mathbf{y} - \mathbf{1}\mu - \sum_{j' \neq j} \mathbf{x}_{j'} \alpha_{j'}$$

$$c_{j} = (\mathbf{x}_{j}' \mathbf{x}_{j} + \frac{\sigma_{\theta}^{2}}{\sigma_{\alpha}^{2}})$$

$$(\sigma_{\theta}^{2} | \mathbf{y}, \mu, \alpha) \sim [(\mathbf{y} - \mathbf{W}\theta)'(\mathbf{y} - \mathbf{W}\theta) + \nu_{\theta} S_{\theta}^{2}] \chi_{(\nu_{\theta} + n)}^{-2}$$

The SNP effect β_j is denoted as α_j in this Appendix.

Derive: full conditional for α_j

From Bayes' Theorem,

$$f(\alpha_j | \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{\boldsymbol{e}}^2) = \frac{f(\alpha_j, \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{\boldsymbol{e}}^2)}{f(\boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{\boldsymbol{e}}^2)}$$

$$\propto f(\mathbf{y}|\alpha_j, \mu, \boldsymbol{\alpha}_{j_-}, \sigma_e^2) f(\alpha_j) f(\mu, \boldsymbol{\alpha}_{j_-}, \sigma_e^2)$$

$$\propto (\sigma_e^2)^{-n/2} \exp\{-\frac{(\boldsymbol{w}-\boldsymbol{x}_j\alpha_j)'(\boldsymbol{w}-\boldsymbol{x}_j\alpha_j)}{2\sigma_e^2}\}(\sigma_\alpha^2)^{-1/2} \exp\{-\frac{\alpha_j^2}{2\sigma_\alpha^2}\}$$

where

$$oldsymbol{w} = oldsymbol{y} - oldsymbol{1} \mu - \sum_{j
eq j'} oldsymbol{x}_{j'} lpha_{j'}$$

The SNP effect β_j is denoted as α_j in this Appendix.

Derive: full conditional for α_j

The exponential terms in the joint density can be written as:

$$-\frac{1}{2\sigma_e^2} \{ \boldsymbol{w}' \boldsymbol{w} - 2\boldsymbol{x}'_j \boldsymbol{w} \alpha_j + [\boldsymbol{x}'_j \boldsymbol{x}_j + \frac{\sigma_e^2}{\sigma_\alpha^2}] \alpha_j^2 \}$$

Completing the square in this expression with respect to α_j gives

$$-\frac{1}{2\sigma_e^2}\{\boldsymbol{c}_j(\alpha_j-\hat{\alpha}_j)^2+\boldsymbol{w}'\boldsymbol{w}-\boldsymbol{c}_j\hat{\alpha_j}^2\}$$

where

$$\hat{\alpha}_j = \frac{\mathbf{x}_j \mathbf{w}}{\mathbf{c}_j}$$

So,

$$f(\alpha_j | \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_}, \sigma_{\boldsymbol{e}}^2) \propto \exp\{-rac{(lpha_j - \hat{lpha}_j)^2}{2rac{\sigma_{\boldsymbol{e}}^2}{c_j}}\}$$

Appendix - Full conditional distributions for BayesC model parameters The SNP effect β_j is denoted as α_j in this Appendix. In this slide, treat r_j as α_j .

Full-conditional for δ_j :

$$\Pr(\delta_j | \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{-j}, \boldsymbol{\delta}_{-j}, \sigma_{\alpha}^2, \sigma_{\boldsymbol{e}}^2, \pi) = \Pr(\delta_j | \boldsymbol{r}_j, \boldsymbol{\theta}_{j_-})$$

$$\mathsf{Pr}(\delta_j|\mathbf{r}_j, \boldsymbol{\theta}_{j_}) = \frac{f(\delta_j, \mathbf{r}_j|\boldsymbol{\theta}_{j_})}{f(\mathbf{r}_j|\boldsymbol{\theta}_{j_})}$$

$$=\frac{f(r_j|\delta_j,\boldsymbol{\theta}_{j_-})\operatorname{Pr}(\delta_j|\pi)}{f(r_j|\delta_j=\mathbf{0},\boldsymbol{\theta}_{j_-})\pi+f(r_j|\delta_j=\mathbf{1},\boldsymbol{\theta}_{j_-})(\mathbf{1}-\pi)}$$

The SNP effect β_j is denoted as α_j in this Appendix.

Full conditional for σ_e^2

From Bayes' theorem,

$$f(\sigma_{\boldsymbol{e}}^{2}|\boldsymbol{y},\mu,\boldsymbol{\alpha}) = \frac{f(\sigma_{\boldsymbol{e}}^{2},\boldsymbol{y},\mu,\boldsymbol{\alpha})}{f(\boldsymbol{y},\mu,\boldsymbol{\alpha})}$$

 $\propto f(m{y}|\sigma_{e}^{2},\mu,m{lpha})f(\sigma_{e}^{2})f(\mu,m{lpha})$

where

$$f(\mathbf{y}|\sigma_{e}^{2},\mu,\alpha) \propto (\sigma_{e}^{2})^{-n/2} \exp\{-\frac{(\mathbf{w}-\mathbf{x}_{j}\alpha_{j})'(\mathbf{w}-\mathbf{x}_{j}\alpha_{j})}{2\sigma_{e}^{2}}\}$$

and

$$f(\sigma_e^2) = \frac{(S_e^2 \nu_e/2)^{\nu_e/2}}{\Gamma(\nu/2)} (\sigma_e^2)^{-(2+\nu_e)/2} \exp(-\frac{\nu_e S_e^2}{2\sigma_e^2})$$

The SNP effect β_j is denoted as α_j in this Appendix.

Full conditional for σ_e^2

So,

$$f(\sigma_e^2 | \mathbf{y}, \mu, \alpha) \propto (\sigma_e^2)^{-(2+n+\nu_e)/2} \exp(-\frac{SSE + \nu_e S_e^2}{2\sigma_e^2})$$

where

$$SSE = (\boldsymbol{w} - \boldsymbol{x}_j \alpha_j)'(\boldsymbol{w} - \boldsymbol{x}_j \alpha_j)$$

So,

$$f(\sigma_e^2|m{y},\mu,m{lpha})\sim \tilde{
u}_e \tilde{S}_e^2 \chi_{\tilde{
u}_e}^{-2}$$

where

$$ilde{
u}_{e} = n +
u_{e}; \quad ilde{S}_{e}^{2} = rac{SSE +
u_{e}S_{e}^{2}}{ ilde{
u}_{e}}$$

The SNP effect β_j is denoted as α_j in this Appendix.

Full conditional for σ_{α}^2

This can be written as

$$f(\sigma_{\alpha}^{2}|\boldsymbol{y}, \boldsymbol{\mu}, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{\boldsymbol{e}}^{2}) \propto f(\boldsymbol{y}|\sigma_{\alpha}^{2}, \boldsymbol{\mu}, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{\boldsymbol{e}}^{2}) f(\sigma_{\alpha}^{2}, \boldsymbol{\mu}, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{\boldsymbol{e}}^{2})$$

But, can see that

$$f(\mathbf{y}|\sigma_{\alpha}^{2},\mu,\boldsymbol{\alpha},\boldsymbol{\delta},\sigma_{e}^{2}) \propto f(\mathbf{y}|\mu,\boldsymbol{\alpha},\boldsymbol{\delta},\sigma_{e}^{2})$$

So,

 $f(\sigma_{\alpha}^{2}|\boldsymbol{y},\mu,\boldsymbol{\alpha},\boldsymbol{\delta},\sigma_{e}^{2}) \propto f(\sigma_{\alpha}^{2},\mu,\boldsymbol{\alpha},\boldsymbol{\delta},\sigma_{e}^{2})$

Note that σ_{α}^2 appears only in $f(\alpha | \sigma_{\alpha}^2)$ and $f(\sigma_{\alpha}^2)$:

$$f(lpha | \sigma_{lpha}^2) \propto (\sigma_{lpha}^2)^{-k/2} \exp\{-rac{lpha' lpha}{2\sigma_{lpha}^2}\}$$

and

$$f(\sigma_{\alpha}^2) \propto (\sigma_{\alpha}^2)^{-(\nu_{\alpha}+2)/2} \exp\{rac{
u_{lpha} S_{lpha}^2}{2\sigma_{lpha}^2}\}$$

The SNP effect β_j is denoted as α_j in this Appendix.

Full conditional for σ_{α}^2

Combining these two densities gives:

$$f(\sigma_{\alpha}^{2}|\boldsymbol{y},\mu,\boldsymbol{\alpha},\boldsymbol{\delta},\sigma_{e}^{2}) \propto (\sigma_{\alpha}^{2})^{-(\boldsymbol{k}+\nu_{\alpha}+2)/2} \exp\{\frac{\boldsymbol{\alpha}'\boldsymbol{\alpha}+\nu_{\alpha}S_{\alpha}^{2}}{2\sigma_{\alpha}^{2}}\}$$

So,

$$(\sigma_{\alpha}^{2}|\mathbf{y},\mu,\boldsymbol{lpha},\boldsymbol{\delta},\sigma_{e}^{2})\sim \tilde{
u}_{lpha}\tilde{S}_{lpha}^{2}\chi_{ ilde{
u}_{lpha}}^{-2}$$

where

$$\tilde{\nu}_{\alpha} = \mathbf{k} + \nu_{\alpha}$$

and

$$ilde{\mathcal{S}}_{lpha}^{2} = rac{oldsymbol{lpha}^{\prime}oldsymbol{lpha} +
u_{lpha}oldsymbol{\mathcal{S}}_{lpha}^{2}}{ ilde{
u}_{lpha}}$$

The SNP effect β_j is denoted as α_j in this Appendix.

Hyper parameter: S_{α}^{2}

If σ^2 is distributed as a scaled, inverse chi-square random variable with scale parameter S^2 and degrees of freedom ν

$$\mathsf{E}(\sigma^2) = \frac{\nu S^2}{\nu - 2}$$

Recall that under some assumptions

$$\sigma_{\alpha}^{2} = \frac{V_{a}}{\sum_{j} 2p_{j}q_{j}}$$

So, we take

$$S_{lpha}^2 = rac{(
u_{lpha}-2)V_a}{
u_{lpha}k(1-\pi)2\overline{pq}}$$

The SNP effect β_j is denoted as α_j in this Appendix.

Full conditional for π

Using Bayes' theorem,

$$f(\pi|\boldsymbol{\delta},\boldsymbol{\mu},\boldsymbol{\alpha},\sigma_{\alpha}^{2},\sigma_{e}^{2},\boldsymbol{y}) \propto f(\boldsymbol{y}|\pi,\boldsymbol{\delta},\boldsymbol{\mu},\boldsymbol{\alpha},\sigma_{\alpha}^{2},\sigma_{e}^{2})f(\pi,\boldsymbol{\delta},\boldsymbol{\mu},\boldsymbol{\alpha},\sigma_{\alpha}^{2},\sigma_{e}^{2})$$

But,

- Conditional on δ the likelihood is free of π
- Further, π only appears in probability of the vector of bernoulli variables: δ

Thus,

$$f(\pi|\boldsymbol{\delta},\mu,\boldsymbol{lpha},\sigma_{\alpha}^{2},\sigma_{e}^{2},\boldsymbol{y}) = \pi^{(k-m)}(1-\pi)^{m}$$

where $m = \delta' \delta$, and k is the number of markers. Thus, π is sampled from a beta distribution with a = k - m + 1 and b = m + 1.