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• Best Linear Unbiased Prediction 
- GBLUP, SNPBLUP

• GREML
• Assumes SNP effects are:

- all non-zero
- very small
- normally distributed



CRICOS code 00025BThe Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of The University of Queensland (UQ), supported by the Queensland Government.

Assumptions regarding distribution of SNP effects

4

• Alternative distributions? 



CRICOS code 00025BThe Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of The University of Queensland (UQ), supported by the Queensland Government.

Assumptions regarding distribution of SNP effects

5

• Alternative distributions?

Assumption Distribution of SNP effects Method

Small number of moderate to large 
effects, many small effects

Students t BayesA



CRICOS code 00025BThe Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of The University of Queensland (UQ), supported by the Queensland Government.

Assumptions regarding distribution of SNP effects

6

• Alternative distributions?

Assumption Distribution of SNP effects Method

Small number of moderate to large 
effects, many small effects

Students t BayesA

Small number of moderate to large 
effects, many zero effects

Mixture, spike at zero, 
Students t

BayesB

Small number of small effects, many 
zero effects

Mixture, spike at zero, 
normal distribution

BayesC

Many zero effects, proportion of small 
effects, some moderate to large effects

Multi-variate normal BayesR
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• Alternative distributions?

BayesC BayesR

Bayesian approach allows us to incorporate this prior knowledge in the prediction of SNP effects
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Bayesian methods

• Consider an experiment where we measure height 
of 10 people to estimate average height

• We want to use prior knowledge from many 
previous studies that average height is 174cm 
with standard error 5cm

y=average height + e
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Bayesian methods
• Bayes theorem
• Less certainty about prior information? Use less informative (flat) 
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• Bayes theorem
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• y = 1nµ+Xβ+e

BayesC
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BayesC -> Gibbs Sampling
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• Cannot solve directly, as estimates of parameters depend on other 
parameters -> no closed form solution

• For example, estimate of a SNP effect depends on whether or not
the SNP is in the zero variance part of distribution or non-zero 
variance part of the distribution 

• Use Gibbs sampling!

• Sample from posterior distribution of parameter conditional on all 
other parameters 
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• Sample from posterior distribution of parameter conditional on all 
other parameters

• For example, for SNP effect 𝛽!
- First sample if in zero effect or non zero effect part of distribution 

(𝛿!)
- Then if in non-zero part of the distribution, sample from

𝑁
𝐗𝐢𝐣$ 𝐲 − 𝐗𝐢𝐣$ 𝐗𝛽(𝐢𝐣&𝟎) − 𝐗𝐢𝐣$ 𝟏𝐧𝜇

𝐗𝐢𝐣$ 𝐗𝐢𝐣 + 𝜎*+/𝜎,
+ , 𝜎*+/ 𝐗𝐢𝐣′𝐗!- + 𝜎*+/𝜎,

+

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3 -2 -1 0 1 2 3
Effect

De
ns
ity



CRICOS code 00025BThe Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of The University of Queensland (UQ), supported by the Queensland Government.

BayesC -> Gibbs Sampling

2
9

• Sample from posterior distribution of parameter conditional on all 
other parameters

• For example, for SNP effect 𝛽!
- First sample if in zero effect or non zero effect part of distribution 

(𝛿!)
- Then if in non-zero part of the distribution, sample from

𝑁
𝐗𝐢𝐣$ 𝐲 − 𝐗𝐢𝐣$ 𝐗𝛽(𝐢𝐣&𝟎) − 𝐗𝐢𝐣$ 𝟏𝐧𝜇

𝐗𝐢𝐣$ 𝐗𝐢𝐣 + 𝜎*+/𝜎,
+ , 𝜎*+/ 𝐗𝐢𝐣′𝐗!- + 𝜎*+/𝜎,

+

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3 -2 -1 0 1 2 3
Effect

De
ns
ity



CRICOS code 00025BThe Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of The University of Queensland (UQ), supported by the Queensland Government.

BayesC -> Gibbs Chain
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• Set starting values for (𝜎*+, 𝜇, 𝛿 , 𝛽 , 𝜎,+, 𝜋)
• Then (for many iterations)

- For each SNP, sample 𝛿!, 𝛽! conditional on other parameters
- Sample 𝜎*+, 𝜇, 𝜎,+, 𝜋 with updated 𝛿!, 𝛽!

• Samples reconstruct posterior distributions of parameters
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BayesR

• y = 1nµ+Xβ+e

• Each SNP has a probability of being in each of the four distributions
• Use Dirichlet distribution to sample distribution proportions

𝜎,+
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Real Data, 800K
• Reference 

– Holstein = 3049 bulls, 8478 cows
– Jersey = 770 bulls,  3917 cows

• Validation
– Holstein = 262 bulls
– Jersey = 105 bulls
– Australian Reds = 114 bulls

• GEBV with GBLUP, BayesR
• (Kemper et al GSE, 2014)
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Real Data, 800K

• r(GEBV,DTD) 

Fat Milk Protein Fat% Protein% Average
Holstein

GBLUP 0.60 0.59 0.58 0.72 0.83 0.66

BAYESR 0.64 0.62 0.57 0.81 0.84 0.69

Jersey

GBLUP 0.56 0.62 0.67 0.64 0.76 0.65

BAYESR 0.56 0.69 0.71 0.76 0.79 0.70

Australian Reds

GBLUP 0.20 0.16 0.11 0.32 0.34 0.22

BAYES 0.26 0.21 0.13 0.44 0.36 0.28
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based methods in particular on the number of iterations used. We did not investigate in detail
how many iterations are sufficient and ran BSLMM with its default value of 1,000,000 sampling
steps and BayesR for 50,000 iterations. We observed only minor differences in the posterior
distributions between replicated chains and interpreted this as evidence that the algorithm

Fig 6. Proportion of genetic variance on each chromosome explained by SNPs with different effect sizes underlying seven traits in WTCCC.
Proportion of additive genetic variation contributed by individual chromosomes and the proportion of variance on each chromosome explained by SNPs with
different effect sizes. For each chromosome we calculated the proportion of variance in each mixture component as the sum of the square of the sampled
effect sizes of the SNPs allocated to each component divided by the sum of the total variance explained by SNPs. The colored bars partition the genetic
variance in contributions from each mixture class.

doi:10.1371/journal.pgen.1004969.g006

Analysis of Complex Traits Using a Bayesian Mixture Model

PLOS Genetics | DOI:10.1371/journal.pgen.1004969 April 7, 2015 10 / 22

Inferences of BayesR about the genetic architecture were consistent with the underlying
model and provided insights into the genetic architecture (S4–S5 Figs.). Posterior inference of
the BayesR model for the scenario including 10 causative SNPs, which is poorly supported by
the BayesR prior, provided strong evidence to revise the prior model. As for the 287K data,
BayesR and BSLMM outperformed LMM and GRPS in finding causal variants in all scenarios
(S6 Fig.).

Analyses of WTCCC Data
In addition to simulated data we assessed the performance of BayesR for seven diseases of the
Welcome trust case control consortium (WTCCC [17]). These data were previously used to es-
timate heritability [18,19] and for risk prediction [14,20–22].

SNP-based heritability. We report h2
g for the diseases in WTCCC on the liability scale (S3

Table), but make comparisons on the observed scale since the controls are common between
traits so that comparisons reflect the underlying genetic architecture in the cases samples. For
five of the seven traits (BD, CAD, CD, HT, RA), estimates of h2

g were very similar between

methods with estimates from BayesR slightly lower than BSLMM and LMM (Fig. 4A). For RA
and T1D, which have large associations with alleles in the major histocompatibility complex,
h2
g from the Bayesian methods was much smaller compared to LMM. Estimates of BayesR were

less consistent (indicated by larger posterior standard deviations), particularly for traits with a
large polygenic contribution to variance, such as BD and HT.

Accuracy and bias of prediction. We created 20 random 80/20 splits for each disease and
assessed accuracy by computing the area under the curve (AUC [23]). The predictive perfor-
mance for all seven diseases is shown in Fig. 4B. Mean (± standard deviation) of AUC scores of
BayesR were 0.58 (±0.012) for CAD, 0.58 (±0.017) for HT, 0.58 (±0.017) for T2D, 0.62
(±0.017) for BD, 0.64 (±0.018) for CD, 0.71 (±0.012) for RA and 0.85 (±0.011) for T1D.

Fig 4. Comparison of performance of BayesR, BSLMM, LMM and GPRS inWTCCC data. (A) Estimates of SNP-based heritability on the observed scale.
Antennas are standard deviations of posterior samples for BayesR and BSLMM or standard errors for LMM. GPRS does not provide estimates of heritability.
(B) Distribution of the area under the curve (AUC). The single boxplots display the variation in estimates among 20 replicates. In each replicate, the data set
was randomly split into a training sample containing 80% of individuals and a validation sample containing the remaining 20%.

doi:10.1371/journal.pgen.1004969.g004

Analysis of Complex Traits Using a Bayesian Mixture Model

PLOS Genetics | DOI:10.1371/journal.pgen.1004969 April 7, 2015 7 / 22

Prediction of disease risk in humans
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Bayesian approach allows us to incorporate prior knowledge in prediction of 
SNP effects

Bayesian methods can have an advantage when:

QTL of moderate to large effect on the trait (eg Fat%, DGAT1)

Very large numbers of SNP (800K, sequence) -> set some SNP effects to zero

Integrates genomic prediction and QTL fine-mapping
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RESEARCH ARTICLE Open Access

Extension of the bayesian alphabet for genomic
selection
David Habier1*, Rohan L Fernando1, Kadir Kizilkaya1,2 and Dorian J Garrick2,3

Abstract

Background: Two Bayesian methods, BayesCπ and BayesDπ, were developed for genomic prediction to address
the drawback of BayesA and BayesB regarding the impact of prior hyperparameters and treat the prior probability
π that a SNP has zero effect as unknown. The methods were compared in terms of inference of the number of
QTL and accuracy of genomic estimated breeding values (GEBVs), using simulated scenarios and real data from
North American Holstein bulls.

Results: Estimates of π from BayesCπ, in contrast to BayesDπ, were sensitive to the number of simulated QTL and
training data size, and provide information about genetic architecture. Milk yield and fat yield have QTL with larger
effects than protein yield and somatic cell score. The drawback of BayesA and BayesB did not impair the accuracy
of GEBVs. Accuracies of alternative Bayesian methods were similar. BayesA was a good choice for GEBV with the
real data. Computing time was shorter for BayesCπ than for BayesDπ, and longest for our implementation of
BayesA.

Conclusions: Collectively, accounting for computing effort, uncertainty as to the number of QTL (which affects the
GEBV accuracy of alternative methods), and fundamental interest in the number of QTL underlying quantitative
traits, we believe that BayesCπ has merit for routine applications.

Background
High-density single nucleotide polymorphisms (SNPs)
covering the whole genome are available in animal and
plant breeding to estimate breeding values. First, indivi-
duals having SNP genotypes and trait phenotypes are
used to estimate SNP effects (training), and then geno-
mic estimated breeding values (GEBVs) are obtained for
every genotyped individual using those effects. Cur-
rently, the number of SNP genotypes per individual
amounts to tens of thousands, but, owing to the rapid
advances in genomics, it will soon exceed millions at
comparable costs. The statistical challenge is to estimate
SNP effects in a situation where the number of training
individuals is much smaller than the vast number of
SNPs. For this purpose, Meuwissen et al. [1] presented
two hierarchical Bayesian models, termed BayesA and
BayesB, that are discussed extensively in animal and
plant breeding research (e.g., [2-6]). The reason for their

popularity is that their implementation as single site
locus sampler is straightforward, computing time is rea-
sonable, and both simulations [1,7,8] and real data ana-
lyses [9,10] have shown that linkage disequilibrium (LD)
between SNPs and quantitative trait loci (QTL) is
exploited better than with least-squares or ridge-regres-
sion; hence, accuracies of GEBVs were higher for these
Bayesian methods. Gianola et al. [11] pointed to statistical
drawbacks of BayesA and BayesB that center around the
prior for SNP effects. A priori, a SNP effect is zero with
probability π, and normally distributed having mean zero
and a locus-specific variance with probability (1-π). This
locus-specific variance has a scaled inverse chi-square
prior with few degrees of freedom and a scale parameter,
S2a, that is often derived from an assumed additive-genetic
variance under certain genetic assumptions [11,12]. It can
be shown that the full-conditional posterior of a locus-spe-
cific variance has only one additional degree of freedom
compared to its prior regardless of the number of geno-
types or phenotypes. This conflicts with the concept of
Bayesian learning, and as a consequence, shrinkage of
SNP effects depends strongly on S2a as detailed by [11].

* Correspondence: dhabier@gmail.com
1Department of Animal Science and Center for Integrated Animal Genomics,
Iowa State University, Ames, IA 50011, USA
Full list of author information is available at the end of the article

Habier et al. BMC Bioinformatics 2011, 12:186
http://www.biomedcentral.com/1471-2105/12/186

© 2011 Habier et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Simultaneous Discovery, Estimation and
Prediction Analysis of Complex Traits Using a
Bayesian Mixture Model
Gerhard Moser1*, Sang Hong Lee1, Ben J. Hayes2,3, Michael E. Goddard2,4, Naomi
R. Wray1, Peter M. Visscher1,5

1 Queensland Brain Institute, University of Queensland, Brisbane, Australia, 2 Department of Primary
Industries, Biosciences Research Division, Bundoora, Australia, 3 Dairy Futures Cooperative Research
Centre, Bundoora, Australia, 4 Faculty of Land and Food Resources, University of Melbourne, Melbourne,
Australia, 5 University of Queensland Diamantina Institute, University of Queensland, Translational
Research Institute (TRI), Brisbane, Australia

* g.moser@uq.edu.au

Abstract
Gene discovery, estimation of heritability captured by SNP arrays, inference on genetic ar-
chitecture and prediction analyses of complex traits are usually performed using different
statistical models and methods, leading to inefficiency and loss of power. Here we use a
Bayesian mixture model that simultaneously allows variant discovery, estimation of genetic
variance explained by all variants and prediction of unobserved phenotypes in new sam-
ples. We apply the method to simulated data of quantitative traits and Welcome Trust Case
Control Consortium (WTCCC) data on disease and show that it provides accurate estimates
of SNP-based heritability, produces unbiased estimators of risk in new samples, and that it
can estimate genetic architecture by partitioning variation across hundreds to thousands of
SNPs. We estimated that, depending on the trait, 2,633 to 9,411 SNPs explain all of the
SNP-based heritability in the WTCCC diseases. The majority of those SNPs (>96%) had
small effects, confirming a substantial polygenic component to common diseases. The pro-
portion of the SNP-based variance explained by large effects (each SNP explaining 1% of
the variance) varied markedly between diseases, ranging from almost zero for bipolar disor-
der to 72% for type 1 diabetes. Prediction analyses demonstrate that for diseases with
major loci, such as type 1 diabetes and rheumatoid arthritis, Bayesian methods outperform
profile scoring or mixed model approaches.

Author Summary
Most genome-wide association studies performed to date have focused on testing individ-
ual genetic markers for associations with phenotype. Recently, methods that analyse the
joint effects of multiple markers on genetic variation have provided further insights into
the genetic basis of complex human traits. In addition, there is increasing interest in using
genotype data for genetic risk prediction of disease. Often disparate analytical methods are

PLOSGenetics | DOI:10.1371/journal.pgen.1004969 April 7, 2015 1 / 22
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1

Practical 4: Polygenic prediction using Bayesian methods

https://cnsgenomics.com/data/teaching/GNGWS23/model5/Practical4_Bayes.html

Log into the cluster

cd to your working directory in scratch: cd /scratch/[your folder]

You will learn how to run MCMC using the toy example data set in R.

You will use GCTB to run BayesR in the simulated data set based on real genotypes.

v Compared to C+PT, does BayesR improve prediction accuracy? Why or why not?
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Appendix - Full conditional distributions for BayesC model parameters

4
2

Full conditionals for single-site Gibbs

I (µ|y ,↵,�2
e) ⇠ N(10

(y�X↵)
n , �2

e
n )

I (↵j |y , µ,↵j_,�
2
e) ⇠ N(↵̂j ,

�2
e

cj
)

I

↵̂j =
x 0

j w
cj

I

w = y � 1µ�
X

j0 6=j

x j0↵j0

I

cj = (x 0
j x j +

�2
e

�2
↵

)

I (�2
e|y , µ,↵) ⇠ [(y �W✓)0(y �W✓) + ⌫eS2

e ]��2
(⌫e+n)
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The SNP effect 𝛽! is denoted as 𝛼! in this Appendix..
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Appendix - Full conditional distributions for BayesC model parameters

4
3

The SNP effect 𝛽! is denoted as 𝛼! in this Appendix.

Derive: full conditional for ↵j

From Bayes’ Theorem,

f (↵j |y , µ,↵j_,�
2
e) =

f (↵j , y , µ,↵j_,�
2
e)

f (y , µ,↵j_,�2
e)

/ f (y |↵j , µ,↵j_,�
2
e)f (↵j)f (µ,↵j_,�

2
e)

/ (�2
e)�n/2 exp{�

(w � x j↵j)
0(w � x j↵j)

2�2
e

}(�2
↵)�1/2 exp{�

↵2
j

2�2
↵
}

where
w = y � 1µ�

X

j 6=j 0
x j 0↵j 0
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Appendix - Full conditional distributions for BayesC model parameters

4
4

The SNP effect 𝛽! is denoted as 𝛼! in this Appendix.

Derive: full conditional for ↵j

The exponential terms in the joint density can be written as:

� 1
2�2

e
{w 0w � 2x 0

jw↵j + [x 0
jx j +

�2
e

�2
↵
]↵2

j }

Completing the square in this expression with respect to ↵j
gives

� 1
2�2

e
{cj(↵j � ↵̂j)

2 + w 0w � cj ↵̂j
2}

where
↵̂j =

x jw
cj

So,

f (↵j |y , µ,↵j_,�
2
e) / exp{�

(↵j � ↵̂j)
2

2�2
e

cj

}
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Appendix - Full conditional distributions for BayesC model parameters

4
5

The SNP effect 𝛽! is denoted as 𝛼! in this Appendix. In this slide, treat 𝑟! as 𝛼!.

Full conditionals for single-site Gibbs

Full-conditional distributions for µ, ↵, and �2
e are as with the

Normal prior.
Full-conditional for �j :

Pr(�j |y , µ,↵�j , ��j ,�
2
↵,�2

e,⇡) =

Pr(�j |rj ,✓j_)

Pr(�j |rj ,✓j_) =
f (�j , rj |✓j_)

f (rj |✓j_)

=
f (rj |�j ,✓j_) Pr(�j |⇡)

f (rj |�j = 0,✓j_)⇡ + f (rj |�j = 1,✓j_)(1� ⇡)
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Appendix - Full conditional distributions for BayesC model parameters

4
6

The SNP effect 𝛽! is denoted as 𝛼! in this Appendix.

Full conditional for �2
e

From Bayes’ theorem,

f (�2
e|y , µ,↵) =

f (�2
e, y , µ,↵)

f (y , µ,↵)

/ f (y |�2
e, µ,↵)f (�2

e)f (µ,↵)

where

f (y |�2
e, µ,↵) / (�2

e)�n/2 exp{�
(w � x j↵j)

0(w � x j↵j)

2�2
e

}

and

f (�2
e) =

(S2
e⌫e/2)⌫e/2

�(⌫/2)
(�2

e)�(2+⌫e)/2 exp(�⌫eS2
e

2�2
e

)
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Appendix - Full conditional distributions for BayesC model parameters

4
7

The SNP effect 𝛽! is denoted as 𝛼! in this Appendix.

Full conditional for �2
e

So,

f (�2
e|y , µ,↵) / (�2

e)�(2+n+⌫e)/2 exp(�SSE + ⌫eS2
e

2�2
e

)

where
SSE = (w � x j↵j)

0(w � x j↵j)

So,
f (�2

e|y , µ,↵) ⇠ ⌫̃eS̃2
e��2

⌫̃e

where

⌫̃e = n + ⌫e; S̃2
e =

SSE + ⌫eS2
e

⌫̃e
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Appendix - Full conditional distributions for BayesC model parameters

4
8

The SNP effect 𝛽! is denoted as 𝛼! in this Appendix.

Full conditional for�2
↵

This can be written as

f (�2
↵|y , µ,↵, �,�2

e) / f (y |�2
↵, µ,↵, �,�2

e)f (�2
↵, µ,↵, �,�2

e)

But, can see that

f (y |�2
↵, µ,↵, �,�2

e) / f (y |µ,↵, �,�2
e)

So,
f (�2

↵|y , µ,↵, �,�2
e) / f (�2

↵, µ,↵, �,�2
e)

Note that �2
↵ appears only in f (↵|�2

↵) and f (�2
↵):

f (↵|�2
↵) / (�2

↵)�k/2 exp{�↵0↵

2�2
↵
}

and

f (�2
↵) / (�2

↵)�(⌫↵+2)/2 exp{⌫↵S2
↵

2�2
↵

}
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Appendix - Full conditional distributions for BayesC model parameters

4
9

The SNP effect 𝛽! is denoted as 𝛼! in this Appendix.

Full conditional for �2
↵

Combining these two densities gives:

f (�2
↵|y , µ,↵, �,�2

e) / (�2
↵)�(k+⌫↵+2)/2 exp{↵0↵ + ⌫↵S2

↵

2�2
↵

}

So,
(�2

↵|y , µ,↵, �,�2
e) ⇠ ⌫̃↵S̃2

↵��2
⌫̃↵

where
⌫̃↵ = k + ⌫↵

and

S̃2
↵ =

↵0↵ + ⌫↵S2
↵

⌫̃↵
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Appendix - Full conditional distributions for BayesC model parameters

5
0

The SNP effect 𝛽! is denoted as 𝛼! in this Appendix.

Hyper parameter: S2
↵

If �2 is distributed as a scaled, inverse chi-square random
variable with scale parameter S2 and degrees of freedom ⌫

E(�2) =
⌫S2

⌫ � 2

Recall that under some assumptions

�2
↵ =

VaP
j 2pjqj

So, we take

S2
↵ =

(⌫↵ � 2)Va

⌫↵k(1� ⇡)2pq
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Appendix - Full conditional distributions for BayesC model parameters

5
1

The SNP effect 𝛽! is denoted as 𝛼! in this Appendix.

Full conditional for ⇡

Using Bayes’ theorem,

f (⇡|�, µ,↵,�2
↵,�2

e, y) / f (y |⇡, �, µ,↵,�2
↵,�2

e)f (⇡, �, µ,↵,�2
↵,�2

e)

But,
I Conditional on � the likelihood is free of ⇡

I Further, ⇡ only appears in probability of the vector of
bernoulli variables: �

Thus,
f (⇡|�, µ,↵,�2

↵,�2
e, y) = ⇡(k�m)(1� ⇡)m

where m = �0�, and k is the number of markers. Thus, ⇡ is
sampled from a beta distribution with a = k �m + 1 and
b = m + 1.
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