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Polygenic prediction

« Best prediction methods take genetic values as random effect
(e.g., BLUP and BayesR).

« These methods require individual-level genotype and phenotype
data.

« Data are not publicly accessible, due to privacy and ethical
considerations.

« Computationally demanding when numbers of individuals and
SNPs are large.

« Use of GWAS summary-level data can address both problems.

 Methodology in human genetics has moved forward to use GWAS
summary-level data.
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Consensus of sharing GWAS summary data (in
human genetics research community)

Has Become a standard to share and make publicly available the
summary-level data when publishing a GWAS study.

nature

genetics

Asking for more

Because of the usefulness of genome-wide association study (GWAS) data for mapping regulatory variation in

the human genome, the journal now asks authors to report the co-location of trait-associated variants with gene
regulatory elements identified by epigenetic, functional and conservation criteria. We also ask that authors publish
or database the genotype frequencies or association P values for all SNPs investigated, whether or not they reached

genome-wide significance. o
—Nat Genet editorial, July 2012 3
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Cell Genomics o CelPress

OPEN ACCESS

2021

‘ '.) Check for updates

Genome-wide association studies

Workshop proceedings: GWAS summary
statistics standards and sharing

Jacqueline A.L. MacArthur,’-2* Annalisa Buniello,” Laura W. Harris," James Hayhurst," Aoife McMahon, Elliot Sollis,’
Maria Cerezo,! Peggy Hall, Elizabeth Lewis,' Patricia L. Whetzel," Orli G. Bahcall,* Inés Barroso,> Robert J. Carroll,®

Michael Inouye,”-#-° Teri A. Manolio,® Stephen S. Rich,'° Lucia A. Hindorff,®> Ken Wiley,® and Helen Parkinson'-*

Table 1. Recommended standard reporting elements for GWAS

SumStats

Data element

Column header

Mandatory/Optional

variant id
chromosome

base pair
location

p value
effect allele
other allele

effect allele
frequency

effect (odds

ratio or beta)
standard error
upper confidence
interval

lower confidence
interval

variant_id
chromosome

base_pair_
location

p_value
effect_allele
other_allele

effect_allele_
frequency

odds_ratio or
beta

standard_error
ci_upper

ci_lower

One form of variant ID

is mandatory, either rs|D

or chromosome, base pair
location, and genome build®

Mandatory
Mandatory
Mandatory
Mandatory

Mandatory

Mandatory
Optional

Optional

Emil Uffelmann
Yukinori Okada
Danielle Posthuma

', Qin Qin Huang®?, Nchangwi Syntia Munung®?3, Jantina de Vries?,

45, Alicia R. Martin®78, Hilary C. Martin?, Tuuli Lappalainen®'%'? and
LT

Table 3 | Databases of GWAS summary statistics

Database Content

GWAS Catalog'* GWAS summary statistics and GWAS lead SNPs reported in
GWAS papers

GeneAtlas® UK Biobank GWAS summary statistics

Pan UKBB UK Biobank GWAS summary statistics

GWAS Atlas?”? Collection of publicly available GWAS summary statistics

with follow-up in silico analysis

FinnGen results GWAS summary statistics released from FinnGen, a project
that collected biological samples from many sources in

Finland

dbGAP Public depository of National Institutes of Health-funded
genomics data including GWAS summary statistics

OpenCGWAS database GWAS summary data sets

Pheweb.jp GWAS summary statistics of Biobank Japan and

cross-population meta-analyses

For a comprehensive list of genetic data resources, see REF.">. GWAS, genome-wide
association studies; SNP, single-nucleotide polymorphism.
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What do we need to perform summary-data-
based polygenic predictione
For simplicity, let's assume the genotypes of each SNP has been

standardised with column mean zero and variance one when
conducting GWAS.

In this case, the minimum data required are
« SNP marginal effect estimates

« GWAS sample size

« LD correlations among SNPs

CRICOS code 000258 5



GWAS summary data B By

SNP marginal effect estimates

GWAS estimates effect of each SNP one at a fime from single SNP regression, so the
estimate is marginal to (unconditional on) other SNPs.

-1
— 'y . 4 - °
b = (X;X;) Xiy | § .
. . . 4.0
Assuming X has been standardised with column : e
mean zero and varionce one, then Q 3 : =
Xij = nVar(Xj) =n £ s
. O
And 201
1_, ; : ;
b' - — y SNP genotype
J TR

Note that it has the inner product of the SNP genotypes and the phenotypes.
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SNP marginal effect estimates

For diseases, GWAS is done using logistic regression

Pi
08 1—Pi U+ ijlY

The SNP effect is log odds ratio (OR), i.e.,

difference in log odds for cases vs. controls — . - @
| | |
b; = log(OR) | l l
0 ] 2
Approximately equal to the b; from the linear Genotype

model when true effect size is small.

CRICOS code 000258 7



What do we need to perform summary-data-
based polygenic predictione

For simplicity, let's assume the genotypes of each SNP has been
standardised with column mean zero and varionce one when
conducting GWAS.

Then, the minimum data required are
« SNP marginal effect estimates

« GWAS sample size

* LD correlations among SNPs

CRICOS code 000258
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Linkage disequillibrium (LD) correlations

Usually obtained from a reference population
LD correlation matrix -

&

R — _XIX :.‘..4:_:-;.?.

assuming X is standardised “u,
with mean zero and s
variance one

CRICOS code 000258 9



Use of summary data only - how does it work?

GWAS results and LD correlations are sufficient statistics for the
estimation of SNP joint effects!

CRICOS code 000258 10
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A staftistic is sufficient if no other staftistic that can be calculated from
the same sample provides any addifional information as to the value
of the parameter.

e.9., X1, X9, ..., Xy ~ N(, 6?) and we want to estimate u and o2

i * . . .
i = =17  Yi=1x; and n are sufficient statistics for u
n
2 ?:1 xi2 Z?:l Xi ? * ?:1 Xiz ) ?:1 X and n are sufficient
- 4 | 7 statistics for g2

We don't need to know the value of each x!

CRICOS code 000258 11



How does it work?

BLUP
y=Xp +e
BLUP solutions: Recall

5 R = lX’X

X'X+ 1B =Xy "
by ==Xy

where A = “—f ‘ ‘ n

98
n R nb

R (LD matrix), b (marginal effects) and n are sufficient
staftistics for the estimation of B.

CRICOS code 000258



From individual- to summary-level model

Consider an individual-data model with a standardised genotype
maftrix X:

y=Xp +e
Multiply both sides by %X’ gives

1X' 1X'X +1X'
— — = —_ e
n y n ﬂ n

b =R €
7 T B-I_ T Var(e)=%R0€2

GWAS marginal SNP effects

. : L
. . LD correlation matrix P
;e § i £
a (o) : »r?‘._. i
¢ 3Ao—8 - '!B‘:':_

eeeeeeeeeee
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Individual-level data Summary-level data
analysis analysis

womosoma

9

Covariates, such as age and sex, are accounted for when conducting GWAS.

CRICOS code 000258 14
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BLUP vs. SBLUP

BLUP SBLUP
c y=XB+e *b=Rf + €
« Var(e) =Ig? e Var(e) = %Raez
« [X'X+11]B =Xy . [nR +11]8 =nb
e B=[XX+1]"X"y [nR + I1] " 1nb
/ AN / \ \
Genotype Phenotypes GWAS Mardinal SNP effect
matrix sample correlation ek o
Size matrix

Individual-level data
Summary-level data CRICOS code 000258 15
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SBayes

€

b =R+
-« B 1 5
GWAS marginal SNP effects — / \ Var(e) = i~ Rog
LD correlation matrix SNP joint effects
Prior distribution for each SNP effect
LDpred-Inf LDpred?2 BSLMM SBayesR

SBLUP SBayesC

I A

CRICOS code 000258 16



SBayesR

Each SNP effect has a mixture distribution:

[ 1T ~ Dirichlet (1)

4

Bi~ > mN(0.yiaf)

=t AL

g (o~

ARTICLE

OPEN

Improved polygenic prediction by Bayesian multiple
regression on summary statistics

Luke R. Lloyd-Jones 19¢ Jian Zeng 19¢ Julia Sidorenko'?, Loic Yengo1, Gerhard Moser34,
Kathryn E. Kemper!, Huanwei Wang® ', Zhili Zheng', Reedik Magi2, Tonu Esko?, Andres MetspaluZ®,
Naomi R. Wray® "6, Michael E. Goddard’, Jian Yang® "8* & Peter M. Visscher® ™

%~ 1 w7

/
Y1 =0
Null effect

¥, = 0.01
Small effects

]/3 = 0.1
Medium effects

I
Ya=1
Large effects
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SNP 1 SNP 2 SNP 3 SNP 4 SNP 5

CRICOS code 000258 18



The posterior distribution of SNP effects

Posterior « Likelihood X Prior
f(B|Summary data) < f(Summary data|B) X f(B)

Blb~N(CIr,c16?)
where

Individual-level data Summary-level data

r=X'y r =nb
o2 o2
C=XX+G1= C=nR+G 1=
B B

CRICOS code 000258 19
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Single-site Giblbs sampling

Full conditional distribution for g;

) 2
£(B; | b,else) = N (Z,—fgc—e>

J I
where

Individual-level data Summary-level data
r=X«?—E Xﬁ) _ E
] J) PkPk r: = nb; — R'kﬁk
k%] J J kzj

2
g2 O¢

/ e . =
GXiXj+— G=n+t-3

\\‘ Viog 4// \_ Yjop .

TRICOS code 00258 20
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Comparison between individual and summary
level algorithms

Algorithm 1 - Individual level data algorithm Algorithm 2 Summary data algorithm
Initialise parameters and read genotypes and phenotypes in PLINK binary format Initialise parameters and read summary statistics
Initialise y* =y — XpB Reconstruct X'X and X'y from summary statistics and LD reference panel
for i :=1 to number of iterations do Calculate r* = X'y — X'XB
fori:=1topdo for i:=1 to number of iterations do
Calculate r; = xjy* fori:=1topdo

Calculate rp= r]? + X;X/"B](.iil) Calculate l'j2= r;-‘ + X;X’ﬁl )
Calculate 02 = Ué'y(g]:C for each of C classes (e.g., BayesR C=4 and = (0,0.0001,0.001,0.01)) Calculate o = 0375/:5 for each fo C classes (e.g., SBayesR C=4 and v = (0,0.01,0.1,1)")

. a
Calculate the left hand side /e = x/x; + % for each of the C classes Calculate the left hand side ljc = x;-x,- +o for each of the C classes

2 g . . .
Calculate the log densities of given d; = c using log(L.) = —3 [10g (U[ < ) ; =3 ] +log(7;), where 7. is the current Calculate the log densities of given j = ¢ using log(£Lc) = — 3 [log ( ) :| log(7tc), where 7 is the current
Calculate the full conditional posterior probability for §; = c for C classes with IP(LS] =cl0,y) = m Calculate the full conditional posterior probability for J; = ¢ for C classes with ]P (0 =cloy) = TC, expllog(£;)—log(Lo)]
1=1 ©
Using full conditional posterior probabilities sample class membership for ‘Bj-l) using categorical random variable sampler Using full conditional posterior probabilities sample class membership for ﬁf") using categorical random variable sampler
. i g2
Given class sample SNP effect /55. from N (,L, ‘17—82) Given class sample SNP effect ﬁ(f) from N (1/—’[, T;)
Given SNP effect adjust corrected phenotype side (y*)) = (y*)(-1) ( /5<’ ;; i- 1)) Given SNP effect adjust corrected right hand side (r*)(+1) = (r*)) — X'x; (,BJ(.HI) - ,B’(i)). X'x; is the jth column of X'X.
od od
52 /32,
. 2 : : Y & vpSEHELy 3 ~ ~ WAL -
Sample update from full conditional for o from scaled inverse chi-squared distribution 7 = vg + g and 5?5 = W’ Sample update from full conditional for 02 from scaled inverse chi-squared distribution 7, = v + q and T2, = e
where g is the number of non-zero variants where g is the number of non-zero variants
Sample update from full conditional for 172 from scaled inverse chi-squared distribution v, = n + v, Sample update from full conditional for 72 from scaled inverse chi-squared distribution 7, = n + v,
and scale parameter 57 = SSEIVE = and SSE = y*'y" and scale parameter 72 = szJr# and SSE =y'y — p'r* — B'X'y
Sample update from full conditional for 7t, which is Dirichlet(C, ¢ + «), where c is a vector of length C and contains the counts Sample update from fuu conditional for 7, which is Dirichlet(C, ¢ + &), where c is a vector of length C and contains the counts
of the number‘ of Vquants in egch Varlancg class 9nd o; =(1,...,1) of the number of variants in each variance class. . .
Calculate genetic variance for hgy calculation using oy = Var(Xg) Calculate genetic variance for h}y, calculation using 07 = MSS/n, where MSS = B X'y — B r*
0_2
2 % 73
Calculate figyp = T+l Calculate hyp, = p = 7
od od

X’y and X’X can be replaced by nb and nR

Lloyd-Jones & Zeng et al. 2019 NC supplement CRICOS code 000258 21
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Relax the assumption of standardised genotypes

« Insofar, derivations are based on standardised genotypes.
« GWAS are usually performed using unstandardised genotypes (allele counts; X;')

* b; from the GWAS using X; is called per-allele effect
» Need to rescale GWAS effects by bj = Sjb;‘ where s; is the genotype SD
« Because

y=X:bj +e

k
X .
——XSjbj + e
Sj

=X]b] + e

CRICOS code 000258 22
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How to find S

We need more information and make assumptions!

Method 1:
-« Use (minor) allele frequency p; and assume Hardy-Weinberg Equilibrium (HWE)
=./2p;(1 —p))

« Cons: dllele frequency from the GWAS sample may not be available

Method 2:
- Use GWAS effect standard error SE; and assume b; confribute fo negligible variance

1 .2 1 2 21.2 "y
e SE. = / 0 = |[— (o5 — s#b; -  §:=
J X;-Xj e \/ns]z( y ] 7] J nSE2+b2 nSE2

- Cons: by may be large for a major QTL.

CRICOS code 000258 23
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How to find S

In GCTB, we use

Method 3:

* Use p; and SE; and estimate o5

* oy = the median value of 2p;(1 — p;)|nSE? + b7| across SNPs

2
o
° L — Yy

S -
] 24 p2
nSE] +bJ

« The median value of per-SNP 03% is robust to allele frequency errors.

CRICOS code 000258 24



Critical information from GWAS summary dato

* Marginal SNP effects
« GWAS sample size

« Standard errors

« Allele frequencies

CRICOS code 000258
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Ofther information critical to quality control (QC)

Which allele is the effect allele in GWAS?
e.g., Al dllele

- 2 ° Need to match with the allele used to
g r calculate the LD matrix in the reference
. "o sample
2 35 o F ot
s |8 e -
e 3.07 [orm—_—
.
o
2.0+ g
; 1 ; i
SNP genotype -
A2A2 ATA2 ATAI

CRICOS code 000258 26
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Ofther information critical to quality control (QC)

Per-SNP sample size

Heterogeneity in per-SNP sample size (usually due to meta-analysis)
may result in a convergence problem in MCMC.

We recommend to visualise the per-SNP sample size distribution and
remove the outliers.

CRICOS code 000258 27
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Influence of heterogeneity in per-SNP sample size

Frequency

2e+05 4e+05 6e+05

0e+00

L

[
500000

I I I
550000 600000 650000

Per-SNP sample size

1
700000

Abnormal

Normal

SBayesR effect estimates

SBayesR effect estimates

0.05

0.00

-0.05

-0.10

SBayesR effect
0
I

oo

L

o

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08
-0.10 -0.05 0.00 0.05 0.10

GWAS effect estimates

Chromosome 1

https://cnsgenomics.co
m/software/gctb/#FAQ

T T T T

-0.10 -0.05 0.00 0.05

‘OS code 00025B

GWAS effect estimates
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Critical information from GWAS summary dato

* Marginal SNP effects
(Per-SNP) GWAS sample sizes
Standard errors

Effect alleles and alternate alleles (A1 and A2)
Effect allele frequencies

Input file (.Mma)

SNP Al A2 freq b se p N

rslf90l A G 0.8493 0.0024 0.0055 0.6653 129850
rsloe2 C G 0.0306 0.0034 0.0115 0.7659 129799
rsl0e3 A C 0.5128 0.0045 0.0038 0.2319 129830

CRICOS code 000258 29
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LD matrix from a reference sample

« Offen cannot use genome-wide full LD matrix from the GWAS
sample.

« Use areduced (banded, sparse, or shrunk) LD matrix from @
reference sample.

Full Chromosome block Sparse

} Chr 1

VVVVV

30
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Implicit assumptions

LD reference population matches with GWAS population in genetics
* No systematic differences in LD 2 same ancestry and population structure

* Minimum sampling variance in LD - LD ref sample size cannot be too small

c AFR d EAS e AFR

b 1.0 2= 1.0 1.0
1g Ris
%) m 0.6 o o 0.6
< > =

0.4 - - 0.4
ﬂwg 0.2 i'i:;f 0.2
G St mmam MU EEA O . 0 O 0

CRICOS code 000258 31
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Implicit assumptions

LD reference population matches with GWAS population in genetics
* No systematic differences in LD - same ancestry and population structure

* Minimum sampling variance in LD - LD ref sample size cannot be too small

GWAS data are collected on the same set of individuals

« Often anissue in GWAS meta-analysis
« Consistent genotyping platforms or imputation panels across cohorts

« Remove SNP outliers in per-SNP sample size

Violation these assumptions can cause model misspecification, resulting in
affenuated prediction accuracy or even failure to reach convergence.

CRICOS code 000258 32
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Influence of choice of LD reference

0.081
0.100 0.0780.078 908

. 0.064
ﬁi; = 0.061

0.075
0.052

o 0.042
- ;
Q |
©0.050
o
@
[ -
o

0.025

0.000 - ]

B N Lloyd-Jones & Zeng et al. 2019 NC
o‘l" v \s"‘ \){h \)+ \){3’ \){3’ \Slg’ S
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Method comparison
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Real data - FTO - GWAS

Fine-mapping

200 - j < 151421085
e NEW ENGLAND
. @@ ® ® ® JOURNAL o MEDICINE
® FIO Obesity Variant Circuitry and Adipocyte Browning in Humans
150 . )
- ® e
) .
=
1 © .
Real data - body mass index S
2 100+ -
P= . . .
=
o
o
0
50+
. _
LIPS L — O
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200+ [¢] associated protein locus - T T T T T
. FTO gene 53800000 53810000 53820000 53830000 53840000
* Chromosome 16 - FTO locus
150- .
— ®
() .
2
© .
2 100-
g; ® 1.004 'Y
g : ;
- 4 ]
50- i i b
| [ ] . . ®
2 . S H : ® D 5 '_-‘2' 0.754 ®
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] ® ®
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Computational efficiency

100k individuals

1M SNPs 6.03 500 14§6.9
Resource consumption for ? e _ Method
summary-data-based methods is 2 o 1000 = BayesR
. . > = = SBayesR
independent of sample size once 2 ,5> = RSS
GWAS summary statistics are £ E = LDpred
obtained. > 202 s . = SBLUP
@)
% 1z644.‘1 39.6 23 1

CRICOS code 000258 36
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Summary

« Summary-level methods unleash the full power of GWAS of large sample
sizes for polygenic prediction.

* Free from limitation of data accessibility.
« Computationally efficient.

« Only an approximation to the individual-level counterpart due to
reduction in LD matrix.

« Flexible to incorporate other information, such as functional annotations
or omics datq.

CRICOS code 000258 37
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Practical 5: Polygenic prediction using summary data

https.//cnsgenomics.com/data/teaching/GNGWS23/model5/Practical5_SBLUP_and_SBayes.html
Log info the cluster

cd to your working directory in scratch: cd /scratch/[your folder]

You will learn how to run MCMC with summary data using the toy example data set in R.

You will use GCTB to run SBayesR in the simulated data set based on real genotypes. Now we are

able to leverage information from the full UK Biobank data without accessing to the individual
genotypes and phenotypes.
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