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Functional genomic annotations provide orthogonal information which can be used to improve 
polygenic prediction.

• Chromatin states

• Biological functions

• Pathways

• Context dependent

• Molecular quantitative trait loci (xQTL)

• LD and MAF

• etc

Functional genomic annotations

2

Image from ENCODE
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Functional genetic architecture
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Functional annotations are informative on both the presence of causal variants and the 
distribution of causal effect sizes.
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Separate the causal variants from non-causal SNPs in high LD. However, variant 
annotation and effect may discord if the causal variant is not observed.
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LDpredFunct method

AnnoPred method

P+T-funct-LASSO method

BayesRC method

Literature

Need prediction methods that can simultaneously fit 
all SNPs and learn weights of annotations from the 
data.
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ResidualsGWAS SNP marginal effects LD correlation matrix SNP joint effects

Var 𝝐 ∝
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Var 𝜺 ∝

Low-rank model (fits 7M SNPs or more)

It only requires the top 20% 
eigenvalues to explain 99.5% of the 
variance in LD!

In each quasi-independent LD block:
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𝑓 𝜋!" = Intercept +,SNP annotation × annotation effect

𝜋#𝛽! ~ + 𝜋$ + 𝜋% + 𝜋& + 𝜋'

SNP annotations

Anno 1

Anno 2

Anno 3

𝜋! 𝜋"            𝜋# 𝜋$            𝜋%

Deviation to genome average

Modelling functional annotations (SBayesRC)

annotation effect ~𝑁 0, 𝜎%#

Probit link is used to enable Gibbs sampling
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Real data analysis

o 340K unrelated individuals of 
European ancestry

o 28 independent traits with large
sample size (including 8 diseases)

o Adjust for age, sex and 10PCs

o 96 continuous and categorical SNP 
annotations from BaselineLDv2.2
(Gazal et al 2017 Nature Genetics)

o Random sample of 20K individuals of 
European ancestry as LD reference
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Benchmark is the prediction accuracy from SBayesR using 1M HapMap3 SNPs (dash line).
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Within European ancestry prediction

Genetics and population analysis

LDpred2: better, faster, stronger
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1National Centre for Register-Based Research, Aarhus University, Aarhus 8210, Denmark 2Univ. Grenoble Alpes, Inria, CNRS, Grenoble
INP, LJK, Grenoble 38000, France and and 3Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark

*To whom correspondence should be addressed.

Associate Editor: Russell Schwartz
Received on July 15, 2020; revised on November 24, 2020; accepted on December 1, 2020editorial decision on November 25, 2020;

Abstract

Motivation: Polygenic scores have become a central tool in human genetics research. LDpred is a popular method
for deriving polygenic scores based on summary statistics and a matrix of correlation between genetic variants.
However, LDpred has limitations that may reduce its predictive performance.
Results: Here, we present LDpred2, a new version of LDpred that addresses these issues. We also provide two new
options in LDpred2: a ‘sparse’ option that can learn effects that are exactly 0, and an ‘auto’ option that directly learns
the two LDpred parameters from data. We benchmark predictive performance of LDpred2 against the previous ver-
sion on simulated and real data, demonstrating substantial improvements in robustness and predictive accuracy
compared to LDpred1. We then show that LDpred2 also outperforms other polygenic score methods recently devel-
oped, with a mean AUC over the 8 real traits analyzed here of 65.1%, compared to 63.8% for lassosum, 62.9% for
PRS-CS and 61.5% for SBayesR. Note that LDpred2 provides more accurate polygenic scores when run genome-
wide, instead of per chromosome.
Availability and implementation: LDpred2 is implemented in R package bigsnpr.
Contacts: florian.prive.21@gmail.com and bjv@econ.au.dk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, the use of polygenic scores (PGS) has become wide-
spread. A PGS aggregates (risk) effects across many genetic variants
into a single predictive score. These scores have proven useful for
studying the genetic architecture and relationships between diseases
and traits (Kong et al., 2018; Purcell et al., 2009). Moreover, there
are high hopes for using these scores in clinical practice to improve
disease risk estimates and predictive accuracy. The heritability, i.e.
the proportion of phenotypic variance that is attributable to genet-
ics, determines an upper limit on the predictive performance of PGS
and thus their value as a predictive tool. Nevertheless, a number of
studies have shown the potential benefits of using PGS in clinical set-
tings (Abraham et al., 2019; Pashayan et al., 2015; Willoughby
et al., 2019). PGS are also extensively used in epidemiology and eco-
nomics as predictive variables of interest (Barth et al., 2020; Harden
and Koellinger, 2020; Horsdal et al., 2019; Musliner et al., 2015).
For example, a recently derived PGS for education attainment has
been one of the most predictive variables in behavioral sciences so
far (Allegrini et al., 2019).

LDpred is a popular method for deriving polygenic scores based
on summary statistics and a Linkage Disequilibrium (LD) matrix
only (Vilhjálmsson et al., 2015). However, LDpred has several limi-
tations that may reduce its predictive performance. The non-
infinitesimal version of LDpred, which assumes there is a proportion
p of variants that are causal, is a Gibbs sampler and is particularly
sensitive to model misspecification when applied to summary

statistics with large sample sizes. It is also unstable in long-range LD
regions such as the human leukocyte antigen (HLA) region of
chromosome 6. This issue has led to the removal of such regions
from analyses (Lloyd-Jones et al., 2019; Marquez-Luna et al.,
2020), which is unfortunate since this region of the genome contains
many known disease-associated variants, particularly with auto-
immune diseases and psychiatric disorders (Matzaraki et al., 2017;
Mokhtari and Lachman, 2016).

2 Approach

Here, we present LDpred2, a new version of LDpred that addresses
these issues while markedly improving its computational efficiency,
allowing exploring a larger grid of parameters in the same computa-
tional time as LDpred1. We provide this faster and more robust im-
plementation of LDpred in R package bigsnpr (Privé et al., 2018).
We also provide two new options in LDpred2. First, we provide a
‘sparse’ option, where LDpred2 truly fits some effects to zero, there-
fore providing a sparse vector of effects. Second, we also provide an
‘auto’ option, where LDpred2 automatically estimates the sparsity p
and the SNP heritability h2, and therefore does not require valid-
ation data to tune hyper-parameters. We show that LDpred2 pro-
vides higher predictive performance than LDpred1 (LDpred v1.0.0),
especially when there are causal variants in long-range LD regions,
when the proportion of causal variants is small, and when GWAS

VC The Author(s) 2021. Published by Oxford University Press. 1
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2021, 1–8

doi: 10.1093/bioinformatics/btaa1029

Advance Access Publication Date: 16 December 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa1029/6039173 by guest on 08 January 2021

ARTICLE

Incorporating functional priors improves polygenic
prediction accuracy in UK Biobank and 23andMe
data sets
Carla Márquez-Luna 1,2,3✉, Steven Gazal 2,3, Po-Ru Loh 2,4,5, Samuel S. Kim 2,6, Nicholas Furlotte7,
Adam Auton7, 23andMe Research Team* & Alkes L. Price 1,2,4✉

Polygenic risk prediction is a widely investigated topic because of its promising clinical

applications. Genetic variants in functional regions of the genome are enriched for complex

trait heritability. Here, we introduce a method for polygenic prediction, LDpred-funct, that

leverages trait-specific functional priors to increase prediction accuracy. We fit priors using

the recently developed baseline-LD model, including coding, conserved, regulatory, and LD-

related annotations. We analytically estimate posterior mean causal effect sizes and then use

cross-validation to regularize these estimates, improving prediction accuracy for sparse

architectures. We applied LDpred-funct to predict 21 highly heritable traits in the UK Biobank

(avg N = 373 K as training data). LDpred-funct attained a +4.6% relative improvement in

average prediction accuracy (avg prediction R2 = 0.144; highest R2 = 0.413 for height)

compared to SBayesR (the best method that does not incorporate functional information). For

height, meta-analyzing training data from UK Biobank and 23andMe cohorts (N = 1107 K)

increased prediction R2 to 0.431. Our results show that incorporating functional priors

improves polygenic prediction accuracy, consistent with the functional architecture of

complex traits.
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Prediction R2 = 0.4 in height and 0.16 in BMI (~70% SNP-based heritability)
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Cross-biobank prediction (Lifelines)
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ARTICLES NATURE GENETICS

PRS-CS via simulations, using real genotypes or in-sample LD 
from the UK Biobank40. We trained each method using 337,491 
unrelated British-ancestry individuals40 and computed predic-
tions in four target populations: non-British Europeans, south 
Asians, east Asians and Africans. We estimated mixing weights for 
PolyPred, PolyPred-S and PolyPred-P using 500 individuals from 
the target population. We evaluated prediction accuracy using 
held-out individuals from each target population that were not 
included in the training sets: 42,000 non-British Europeans, 7,700 
south Asians, 900 east Asians and 6,200 Africans. We computed 
PRS using 250,963 MAFs ≥ 0.1% SNPs with INFO score ≥ 0.6 on  
chromosome 22.

Generative trait architectures were specified as follows: we simu-
lated traits with polygenicity (genome-wide proportion of causal 
SNPs) either 0.1% (less polygenic) or 0.3% (more polygenic) and 
heritability = 5%. We specified prior causal probabilities for each 
SNP in proportion to per-SNP heritabilities, which we generated for 
each SNP based on its British LD, MAF and functional annotations, 
using the baseline-LF model47. For each causal SNP, we sampled 
ancestry-specific causal effect sizes from a multivariate normal 
distribution assuming cross-population genetic correlations of 0.8 
(refs. 13,30). Other parameter settings were explored in secondary 
analyses (see below).

We computed relative R2 for each method, target population and 
trait architecture, averaged across 100 simulations. In addition to the 
simulations with in-sample LD described below, we also performed  

simulations with reference panel LD (Supplementary Note; see also 
Table 2). Further details of the simulation framework are provided 
in Methods.

The simulation results are reported in Fig. 3 and Supplementary 
Table 1 (see also Table 2). PolyPred was the most accurate method 
in each target population, with relative improvements versus 
BOLT-LMM (respectively P values for improvement) ranging from 
+13% in non-British Europeans (P < 10−16) to +65% in Africans 
(P < 10−16) for the less polygenic architecture, and from +2% in 
non-British Europeans (P = 0.0001) to +17% in Africans (P = 10−8) 
for the more polygenic architecture. PolyPred-S and PolyPred-P 
performed slightly worse than PolyPred, but were substantially and 
significantly more accurate than their corresponding constituent 
methods. Among the remaining methods, BOLT-LMM was consis-
tently the most accurate and P + T the least accurate method, far 
underperforming the other methods (despite its widespread recent 
use11,13–18,23,31,48–52). We note that the higher accuracy of BOLT-LMM 
versus SBayesR and PRS-CS does not imply that BOLT-LMM is a 
superior method, because BOLT-LMM analyzes individual-level 
training data whereas SBayesR and PRS-CS analyze summary 
statistics.

We additionally performed many secondary analyses to investi-
gate the sensitivity of the results to the simulation parameters, the 
SNP set and the functional annotations, and to evaluate the com-
putational cost and memory cost of each method (Supplementary 
Note and Supplementary Tables 1 and 2).

PolyFun-pred effect sizes

PolyFun-pred effect sizes

PolyFun-pred

Small training sample
from target cohort (n = 500)

PolyPred effect sizes

BOLT-LMM

Large European sample
(n > 100,000) BOLT-LMM effect sizes

PolyPred

PolyFun-pred

Small training sample
from target cohort (n = 500)

PolyPred effect sizes

BOLT-LMM

Large European sample
(n > 100,000)

BOLT-LMM effect sizes

Large non-European
sample (n > 100,000)

BOLT-LMM-pop

PolyPred+

a

b

βBOLT-LMM

βPolyFun-pred

βBOLT-LMM

βPolyFun-pred

βBOLT-LMM-pop

ω1βBOLT-LMM

+ ω2βPolyFun-pred

ω1βBOLT-LMM

+ ω2βPolyFun-pred

+ ω3βBOLT-LMM-pop

Fig. 1 | Overview of PolyPred and PolyPred+. a, Overview of PolyPred. PolyPred linearly combines the effect sizes of BOLT-LMM ( β

BOLT-LMM) and 
PolyFun-pred ( β

PolyFun-pred) (trained using European training data). It uses a small training sample from the target population to estimate mixing weights 
(ω

1, ω2) for the constituent methods. b, Overview of PolyPred+. PolyPred+ linearly combines the effect sizes of BOLT-LMM ( β

BOLT-LMM), PolyFun-pred 
( β

PolyFun-pred) (trained using European training data) and BOLT-LMM-pop ( β

BOLT-LMM-pop) (trained using non-European training data from the target 
population). It uses a small training sample from the target population to estimate mixing weights (ω

1, ω2, ω3) for the constituent methods. PolyPred-S and 
PolyPred-P (respectively, PolyPred-S+ and PolyPred-P+) replace all instances of BOLT-LMM with SBayesR or PRS-CS, respectively.

NATURE GENETICS | VOL 54 | APRIL 2022 | 450–458 | www.nature.com/naturegenetics452

PolyPred-S (Weissbrod et al 2022 Nature Genetics)

PolyPred-S is a variation of PolyPred with BOLT-LMM replaced by SBayesR estimates.
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Trans-ancestry prediction
ARTICLES NATURE GENETICS

compare the predictive performance of PRS-CSx with existing PRS 
construction methods across traits with a wide range of genetic 
architectures, cross-population genetic overlaps and discovery 
GWAS sample sizes via simulations. We further apply PRS-CSx 
to predict quantitative traits using data from the UK Biobank 
(UKBB)28, Biobank Japan (BBJ)29,30, the Population Architecture 
using Genomics and Epidemiology Consortium (PAGE) study31 
and the Taiwan Biobank (TWB)32,33, and predict schizophrenia risk 
using cohorts of European and East Asian ancestries15,34.

Results
Overview of PRS-CSx. PRS-CSx extends PRS-CS19—a recently 
developed Bayesian polygenic modeling and prediction frame-
work—to improve cross-population polygenic prediction by inte-
grating GWAS summary statistics from multiple ancestry groups 
(Methods). PRS-CSx uses a shared continuous shrinkage prior to 
couple SNP effects across populations, which enables more accu-
rate effect size estimation by sharing information between summary 
statistics and leveraging LD diversity across discovery samples. The 
shared prior allows for correlated but varying effect size estimates 
across populations, retaining the flexibility of the modeling frame-
work. In addition, PRS-CSx explicitly models population-specific 
allele frequencies and LD patterns, and inherits from PRS-CS the 
computational advantages of CS priors, and the efficient and robust 
posterior inference algorithm (Gibbs sampling). Given GWAS sum-
mary statistics and ancestry-matched LD reference panels, PRS-CSx 
calculates one polygenic score for each discovery sample, and inte-
grates them by learning an optimal linear combination to produce 
the final PRS (Fig. 1).

Overview of PRS analysis. We have broadly classified polygenic 
prediction methods into two categories: single-discovery meth-
ods, which train PRS using GWAS summary statistics from a 
single-discovery sample; and multi-discovery methods, which com-
bine GWAS summary statistics from multiple discovery samples for 
PRS construction. In this work, in addition to PRS-CSx, we assess 
and compare within- and cross-population predictive performance 
of three representative single-discovery (LD-informed pruning 
and P value thresholding (PT)35, LDpred2 (ref. 20) and PRS-CS19) 
and four multi-discovery (PT-meta, PT-mult26, LDpred2-mult and 
PRS-CS-mult) methods. PT-meta applies PT to the meta-analyzed 

discovery GWAS summary statistics. The three ‘mult’ methods 
respectively apply PT, LDpred2 and PRS-CS to each discovery 
GWAS separately, and linearly combine the resulting PRS. PT-mult 
has been demonstrated to improve the prediction in recently 
admixed populations26. Here, we have extended the idea of PT-mult 
to LDpred2-mult and PRS-CS-mult, creating two new methods to 
quantify the benefits of jointly modeling multiple GWAS summary 
statistics via the coupled shrinkage prior. The workflow for each 
PRS construction method is shown in Fig. 1. In all the PRS anal-
yses, we use the discovery dataset to estimate the marginal effect 
sizes of genetic variants and generate GWAS summary statistics for 
each population; we use the validation dataset, with individual-level 
genotypes and phenotypes, to tune hyperparameters for different 
polygenic prediction methods; and we use the testing dataset, with 
individual-level genotypes and phenotypes, to evaluate the pre-
diction accuracy of PRS and compute performance metrics using 
hyperparameters learnt in the validation dataset. The three data-
sets comprise nonoverlapping individuals. For convenience, we 
use the target dataset to refer to the combination of validation and 
testing datasets, which have matched ancestry. For fair comparison, 
throughout the paper we use 1000 Genomes Project (1KG) Phase 
3 (ref. 36) superpopulation samples (European (EUR) N = 503; East 
Asian (EAS) N = 504; African (AFR) N = 661; admixed American 
(AMR) N = 347) as the LD reference panels across different PRS 
construction methods.

Simulations. We first evaluated the predictive performance of dif-
ferent polygenic prediction methods via simulations. We simulated 
individual-level genotypes of EUR, EAS and AFR populations for 
HapMap3 variants with minor allele frequency (MAF) >1% in at 
least one of the three populations using HAPGEN2 (ref. 37), with 
the 1KG Phase 3 samples as the reference panel. In our primary 
simulation setting, we randomly sampled 1% HapMap3 variants 
as causal variants, which, in aggregation, explained 50% of pheno-
typic variation in each population. We assumed that causal variants 
are shared across populations but allowed for varying effect sizes, 
which were sampled from a multivariate normal distribution with 
the cross-population genetic correlation (rg) set to 0.7. The simula-
tion was repeated 20 times.

We first applied single-discovery methods to GWAS summary 
statistics generated by 100,000 simulated EUR samples and 20,000 
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Method
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Final PRS
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Fig. 1 | Overview of polygenic prediction methods. The predictive performances of three representative single-discovery (PT, LDpred2 and PRS-CS) and 
five multi-discovery (PT-meta, PT-mult, LDpred2-mult, PRS-CS-mult and PRS-CSx) methods are compared in this study. LDpred2-mult and PRS-CS-mult 
depicted here are not published methods but are helpful for comparing potential improvements from PRS-CSx, which uses a coupled CS prior for the effect 
sizes of genetic variants. The discovery samples (to generate GWAS summary statistics (sumstats)), validation samples (to tune hyperparameters in PRS 
construction methods) and testing samples (to assess prediction accuracy) are nonoverlapping. LD ref, LD reference panel; pop A/B/C, Population A/B/C.
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Improvement (%) in prediction 
accuracy for SBayesRC using 
annotations relative to that without 
annotations:

𝑅)../0# − 𝑅1/#

𝑅1/#

regression slope = 1.88 (se = 0.22)
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Computational efficiency

Method (No. SNPs) Runtime (hours) Memory (GB) Storage (GB)

SBayesRC (7M) 9.5 75.1 130

LDpred-funct (7M) 6.0 120.6 40-50 per trait

PolyPred-S (7M) 19.8 71.7 2,800

LDpred2 (1M) 5.5 53.4 43

SBayesRC (1M) 1.2 7.8 5.6

SBayesR (1M) 0.5 27.0 22

PRS-CSx (1M) 14.2 4.7 5.6

Results are average values across traits using 4 CPU cores.
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• SBayesRC improves prediction accuracy by 14% in European ancestry and by up to 33% in 
trans-ancestry prediction, compared to the baseline method SBayesR which does not use 
annotations.

• SBayesRC outperforms state-of-the-art methods LDpred-funct, PolyPred-S and PRS-CSx by 12-
15% in prediction accuracy.

• We identified a significant interaction between SNP density and annotation information, 
encouraging future use of whole-genome sequence variants for prediction. 

• Functional partitioning analysis highlights a major contribution of evolutionary constrained 
regions to prediction accuracy. 

22

Summary
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GCTB software https://cnsgenomics.com/software/gctb

R package at https://github.com/zhilizheng/SBayesRC


