

Connectivity Map for identifying drug candidates

Lecture Overview

- Gene signature matching
- A database of compound gene signatures CMap
- Generating a disease gene signature
- Querying CMap

Genetic variants

Disease genes

Drug candidates

- Are GWAS-significant genes targets of existing drugs (identify drug repurposing candidates)
 - Repurposing FDA-approved compounds better safety profile, lower risk, shortest path to approval
 - Screening failed drugs against new indications benefit-risk profile may vary depending on the unmet medical need
 - But...
 - Drugs with unknown mechanism of action (MoA) will be missed with this approach
 - Important disease biology may be lost under stringent p-value thresholds

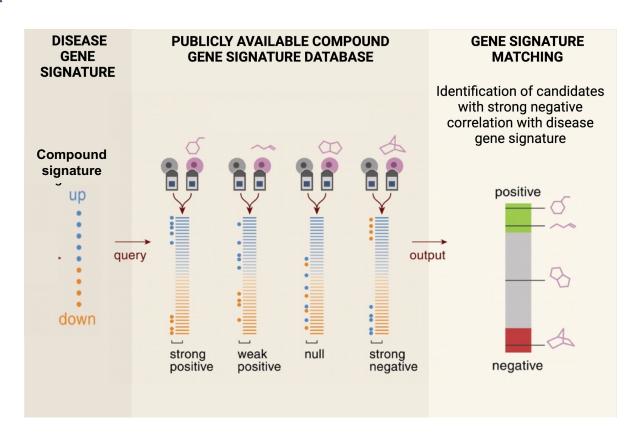
Gene signature matching

Gene expression signature matching

Assumption: compounds that have the same MoA induce similar gene expression responses. Can be useful for:

- Understanding MoA of a compound
- 2. Drug repurposing potential
- 3. Identifying new drug candidates
- Compounds that reverse gene expression changes associated with disease
- Does not require knowledge of the drug's MoA
- 4. Identifying potential drug side-effects

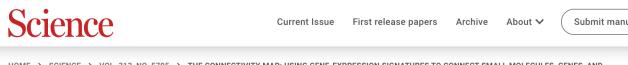
Requires gene expression signatures for drugs and diseases



Connectivity Map (CMap)

Library of gene expression signatures in response to chemical and genetic perturbation.

- >1 million gene expression profiles
- ~50 different cell lines (only 4 are noncancer cell lines)
- ~20,000 compounds (chemical perturbation)
- ~20,000 knockdown/overexpression (genetic perturbations)



HOME > SCIENCE > VOL. 313, NO. 5795 > THE CONNECTIVITY MAP: USING GENE-EXPRESSION SIGNATURES TO CONNECT SMALL MOLECULES, GENES, AND...

The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease

JUSTIN LAMB, EMILY D. CRAWFORD, DAVID PECK, JOSHUA W. MODELL, IRENE C. BLAT, MATTHEW J. WROBEL, JIM LERNER, JEAN-PHILIPPE BRUNET, ARAVIND SUBRAMANIAN

https://www.broadinstitute.org/connectivity-map-cmap

THE UNIVERSITY OF QUEENSLAND AUSTRALIA

1st Generation CMap - Lamb et al Science 2013

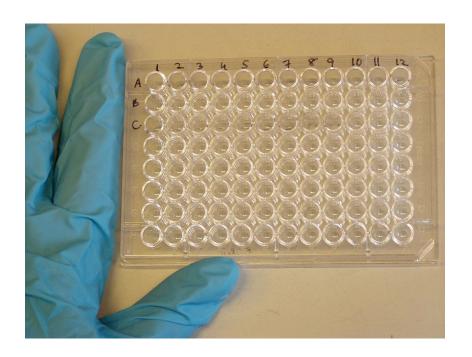
- Need to establish the relation among diseases, physiological processes, and the action of small-molecule therapeutics.
- Previous compound and genetic perturbation studies in yeast and rats
 - Translation to humans
 - High cost of animal studies
- Mammalian cells
 - Generalisable, systematic and biologically relevant
 - BUT...a large number of parameters would need to be optimized for each perturbation cell type, dose, duration
- Pilot study demonstrated the feasibility of this approach

1st Generation CMap - compounds

164 distinct small-molecule perturbagens, selected to represent a broad range of activities:

- FDA—approved drugs
- nondrug bioactive "tool" compounds
- multiple compounds sharing molecular targets (test if they share gene signatures e.g. HDAC inhibitors)
- compounds with the same clinical indication (test whether compounds with different MoA that treat the same disease generate similar gene signatures e.g. antidiabetics)
- Molecules that are proximal (e.g. selective estrogen receptor modulators) and distal to gene expression
- Molecules whose targets are not expressed in the cell types being tested (COX2 inhibitors)

- Stably grown over long periods of time
- breast cancer epithelial cell line MCF7
 - extensively molecularly characterised,
 - used as a reference cell line
 - amenable to culture in 96-well plates
- prostate cancer epithelial cell line PC3
- nonepithelial lines HL60 (leukemia) and SKMEL5 (melanoma)
- Context-dependent gene signatures



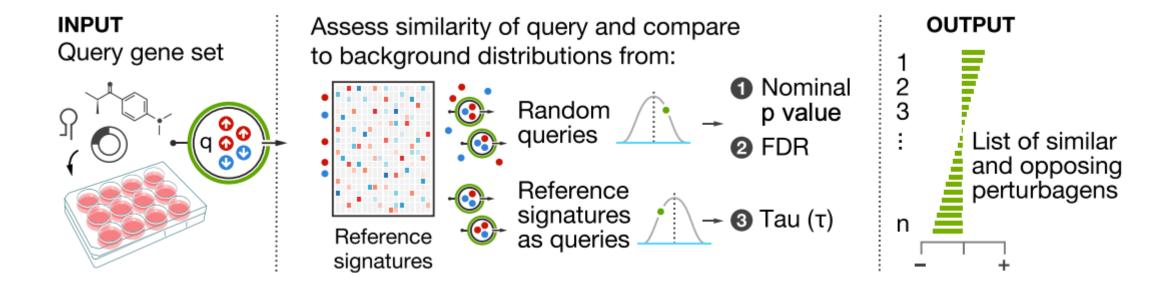
1st Generation CMAP – dose and duration

- 10uM optimal concentration is not known for many compounds
 - Toxicity studies required for proper optimisation of dose
- 6 and 12 hrs post-treatment
 - Profiles obtained too early might not yield robust signals—esp for perturbations that do not directly modulate transcription
 - Profiles obtained too late may reflect secondary and tertiary responses
 - obtain signatures related to direct mechanisms of action
- Dose and duration dependent on question of interest, but difficult to optimise in such high-throughput experiments.

Compound gene signature generation

- Control perturbations for each treatment (cells grown on the same plate treated with vehicle only)
 - minimize the impact of batch-to-batch
 - biological and technical variation
- Replicates
- Data were collected in multiple batches over a period of 1 year by Affymetrix GeneChip microarrays.
- DEG analysis compound-treated gene expression vs intra-batch vehicle-treated control
- For each treatment ~22,000 genes rank-ordered according to differential expression

Connectivity score



- Used non-parametric, rank-based pattern-matching strategy based on the Kolmogorov-Smirnov statistic (GSEA).
- Tau score fraction of reference gene sets with a greater similarity to the perturbagen than the current query.

Example results – HDAC inhibitors

- HDACs remove acetyl groups on histones and regulate gene expression
- Determine if a query signature can recover compounds from the same class (same MoA).
- Query derived from response of bladder and breast cancer cells treated with 3 HDAC inhibitors (vorinostat, MS-27-275, trichostatin)
 - 13-gene (8 up and 5 down-regulated) signature

Off-target effects

Α					
1	rank	perturbagen	dose	cell	score
'	1	vorinostat [1000]	10 µM	MCF7	1
	2	trichostatin A [873]	1 µM	MCF7	0.969
	3	trichostatin A [992]	100 nM	MCF7	0.931
	4	trichostatin A [1050]	100 nM	MCF7	0.929
	5	vorinostat [1058]	10 µM	MCF7	0.917
	6	trichostatin A [981]	1 µM	MCF7	0.915
1000	7	HC toxin [909]	100 nM	MCF7	0.914
	8	trichostatin A [1112]	100 nM	MCF7	0.908
	9	trichostatin A [1072]	1 µM	MCF7	0.906
	10	trichostatin A [1014]	1 µM	MCF7	0.893
	11	trichostatin A [332]	100 nM	MCF7	0.882
	12	trichostatin A [331]	100 nM	MCF7	0.846
	13	trichostatin A [448]	100 nM	PC3	0.788
	14	valproic acid [345]	10 mM	MCF7	0.743
	15	valproic acid [23]	1 mM	MCF7	0.735
	16	valproic acid [1047]	1 mM	MCF7	0.733
	17	trichostatin A [413]	100 nM	ssMCF7	0.725
	18	valproic acid [410]	10 mM	HL60	0.725
	19	valproic acid [458]	1 mM	PC3	0.680
	33	valproic acid [409]	1 mM	HL60	0.634
	39	valproic acid [1020]	500 μM	MCF7	0.619
	52	valproic acid [346]	2 mM	MCF7	0.582
	61	valproic acid [1078]	500 μM	MCF7	0.563
453	71	valproic acid [629]	1 mM	SKMEL5	0.539
	72	valproic acid [347]	500 μM	MCF7	0.539
	73	valproic acid [989]	1 mM	MCF7	0.538
	76	valproic acid [433]	1 mM	PC3	0.528
	89	trichostatin A [364]	100 nM	HL60	0.507
	92	valproic acid [497]	1 mM	ssMCF7	0.501
	297	valproic acid [348]	50 μM	MCF7	0
	388	valproic acid [994]	200 μM	MCF7	0
	403	valproic acid [1002]	50 μM	MCF7	0
	419	valproic acid [1060]	50 μM	MCF7	-0.537

Example - Estrogens

- Estrogen modulates nuclear hormone signaling by binding to estrogen receptor.
- Query signature MCF7 cells treated with 17beta-estradiol
 - 129-gene signature (40 up and 89 down-regulated)

rank	perturbagen	dose	cell	score
2	estradiol [988]	100 nM	MCF7	0.936
3	estradiol [373]	10 nM	ssMCF7	0.918
4	genistein [1015]	10 μM	MCF7	0.913
5	estradiol [1079]	10 nM	MCF7	0.899
6	estradiol [1021]	10 nM	MCF7	0.813
8	alpha-estradiol [990]	10 nM	MCF7	0.809
9	alpha-estradiol [403]	10 nM	ssMCF7	0.807
= 10	estradiol [414]	10 nM	ssMCF7	0.794
11	estradiol [121]	10 nM	MCF7	0.758
12	genistein [1073]	10 µM	MCF7	0.753
13	genistein [638]	10 µM	MCF7	0.730
17	alpha-estradiol [1048]	10 nM	MCF7	0.646
20	genistein [268]	1 µM	MCF7	0.619
21	estradiol [365]	100 nM	MCF7	0.610
25	genistein [382]	10 µM	MCF7	0.561
27	genistein [267]	1 µM	MCF7	0.552
46	alpha-estradiol [122]	10 nM	MCF7	0.435
51	estradiol [387]	10 nM	HL60	0.421
64	estradiol [782]	10 nM	HL60	0.376
148	alpha-estradiol [702]	10 nM	PC3	0
152	genistein [703]	10 µM	PC3	0
162	alpha-estradiol [762]	10 nM	MCF7	0
278	estradiol [665]	10 nM	PC3	0

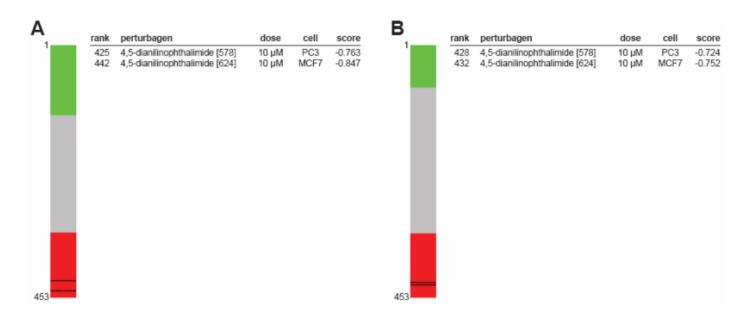
rank	perturbagen	dose	cell	score
171	fulvestrant [704]	1 µM	PC3	0
261	fulvestrant [523]	1 µM	ssMCF7	0
447	fulvestrant [367]	1 µM	MCF7	-0.749
450	fulvestrant [310]	10 nM	MCF7	-0.843
451	fulvestrant [985]	1 µM	MCF7	-0.961
452	fulvestrant [1076]	10 nM	MCF7	-0.989
453	fulvestrant [1043]	1 µM	MCF7	-1

В

Connections with Disease States

- Query DEGs from a rat model of diet-induced obesity
- Several differences in exp design: Rat vs human, exposure duration 65 days vs 6 hrs, adipose tissue vs cell lines

Fig. S4. PPAR γ Agonists are Connected with Diet-induced Obesity in Rats. Barview (as Fig. 2) showing all instances of troglitazone (n=2), rosiglitazone (n=1), indometacin (n=1) and 15-delta prostaglandin J2 (n=1) in PC3 cells. Unabridged results from this query are provided as Result S8.



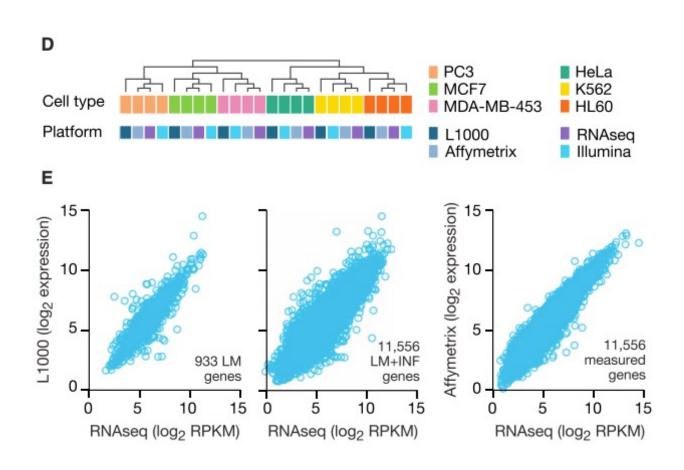
Findings from CMap pilot study

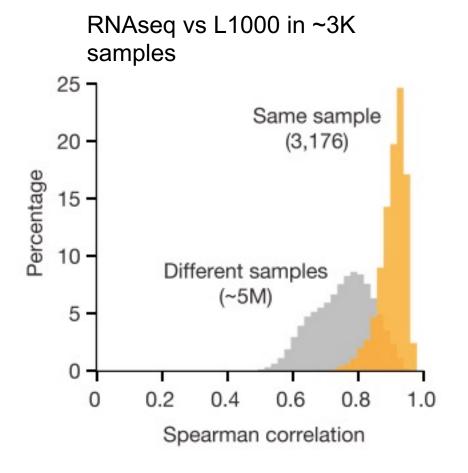
- Genomic signatures can identify drugs with common MoA
- Discover unknown MoA e.g. HDAC activity of valproic acid (initially developed as an antiseizure drug)
- Identify potential new therapeutics using a disease-associated gene query signatures
- Signatures are often conserved across diverse cell types and settings
 - Drug target needs to be expressed in that cell line e.g estrogen receptor
- Not highly sensitive to the precise concentration of drug

2nd Generation CMAP - LINCS1000

- Library of Integrated Network-Based Cellular Signatures
- 1000-fold scale up of the CMAP more compounds and cell lines plus genetic perturbations.
- Capture cellular state at low cost by measuring a reduced representation of the transcriptome.
 - Analysed 12K Affy HGU133A expression profiles in GEO
 - Identified the optimal N of informative transcripts ("landmark" transcripts)
 - Cost vs information captured
 - 1000 landmarks enough to capture 82% of full transcriptome
 - No substantial enrichment of particular protein class or developmental lineage in landmark list.

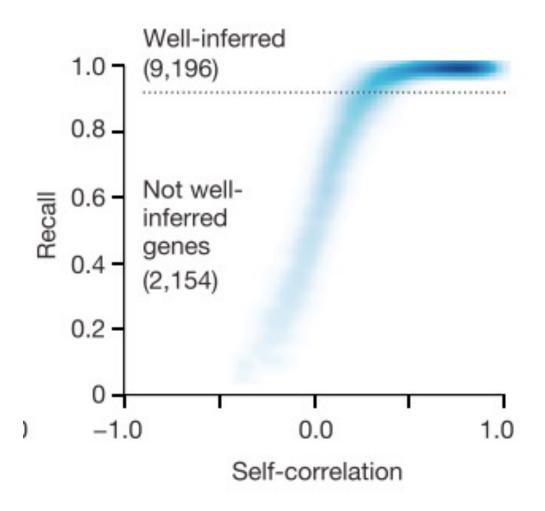
Comparison of L1000 with RNAseq





strong degree of similarity of profiles across L1000 and RNA-seq platforms.

Imputation of GTEx data



- ~1000 landmark genes
- ~9200 well-inferred genes
- ~2000 (not well-)inferred genes

Only landmark and well-inferred genes used in analyses.

CMap-L1000v1

- 19,811 compounds profiled in triplicate (at 6 and/or 24 hrs)
- Genetic perturbation (KD or overexpression) of 5075 genes measured after 96 hrs (triplicates)
- 77 cell lines
- 470K gene signatures from ~42K perturbagens 1000-fold increase of CMap pilot dataset.
- All data (at multiple processing levels) available in GEO (GSE92742)
- Web-based tool to query database https://clue.io

Generating disease gene expression signatures for querying CMap

1. Your own experiments

Gene expression differences in cases vs controls

2. Gene Expression Omnibus

- https://www.ncbi.nlm.nih.gov/geo/
- Public repository of microarray, next-generation sequencing, and other forms of high-throughput functional genomic data
- Allows differential gene analysis of data
 - · Select significance threshold, fold change threshold, multiple correction method
- Provides R-script for analysis

3a. Gene expression signature prediction from individual-level GWAS data using PrediXcan

- A gene-level association approach that tests the mediating effects of gene expression levels on phenotypes.
- Requires 3 datasets
 - a) GWAS data for phenotype of interest
 - b) Expression QTL training set e.g. GTEx
 - c) Population reference (e.g. 1000 Genomes)

	Trait	g1	g2	g3
ind1				
ind2				
ind3				

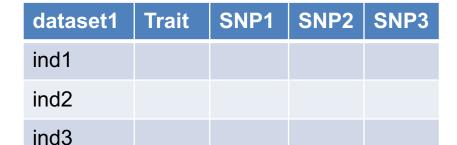
3a. Gene expression signature prediction from individual-level GWAS data using PrediXcan

dataset1	Trait	g1	g2	g3
ind1				
ind2				
ind3				

	b	se	pval
g1			
g2			
g3			

Gene expression associated with trait

dataset 2
eQTL data,
training data for
prediction model



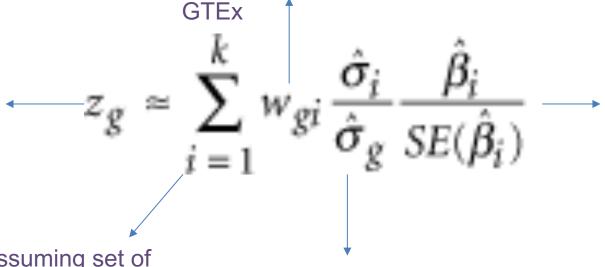
	Trait	ĝ1	ĝ2	ĝ3
ind1				
ind2				
ind3				

Geneticallypredicted gene expression

3b. Gene expression signature prediction from GWAS summary data using S-PrediXcan

Gene expression change associated with phenotype: z-score for gene *g*

 w_{gi} weight given to each SNP for predicting expression level of g Precomputed weights derived from a reference eQTL dataset e.g.

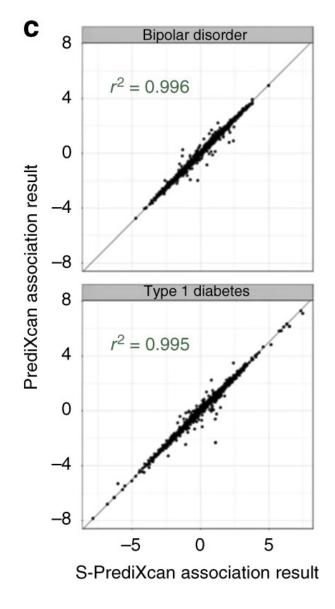


Summary z-statistic of SNP_i for the disease trait obtained from GWAS

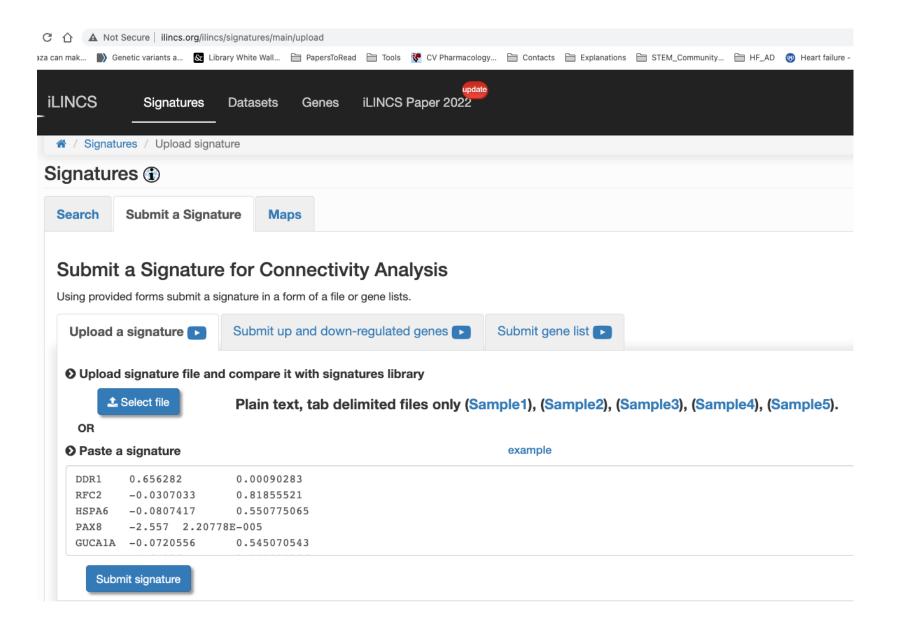
Assuming set of SNP_{1..k} contribute to the expression of gene *g*

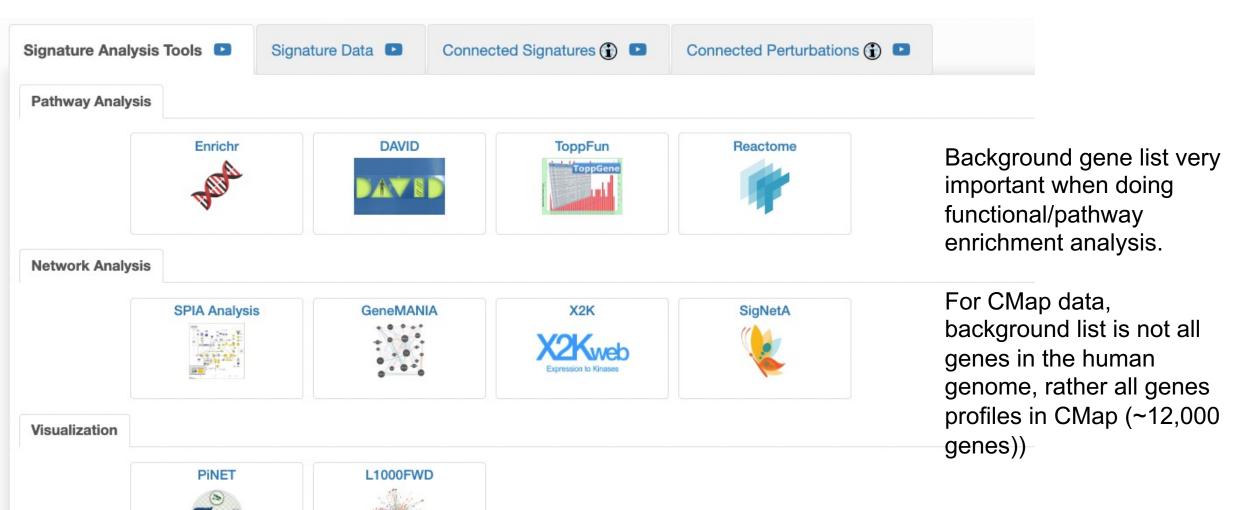
Variance of SNP_i and gene *g* estimated from reference genotype

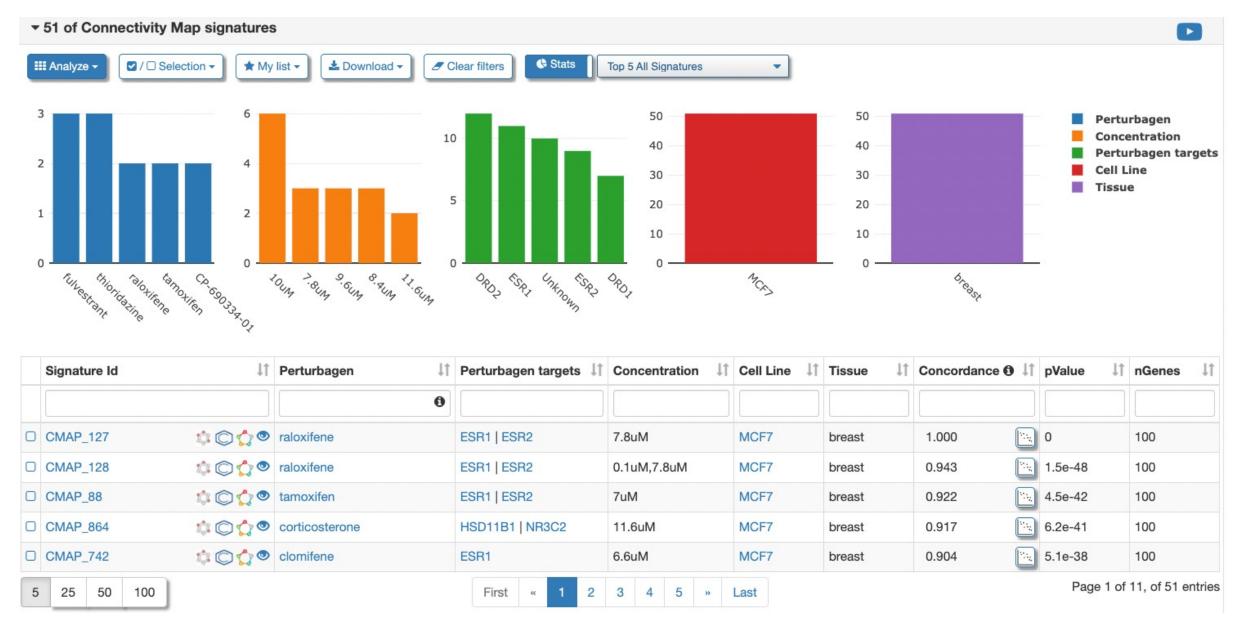
Comparison of PrediXcan and S-PrediXcan gene z-scores



Querying CMap data with iLINCs http://www.ilincs.org/ilincs/



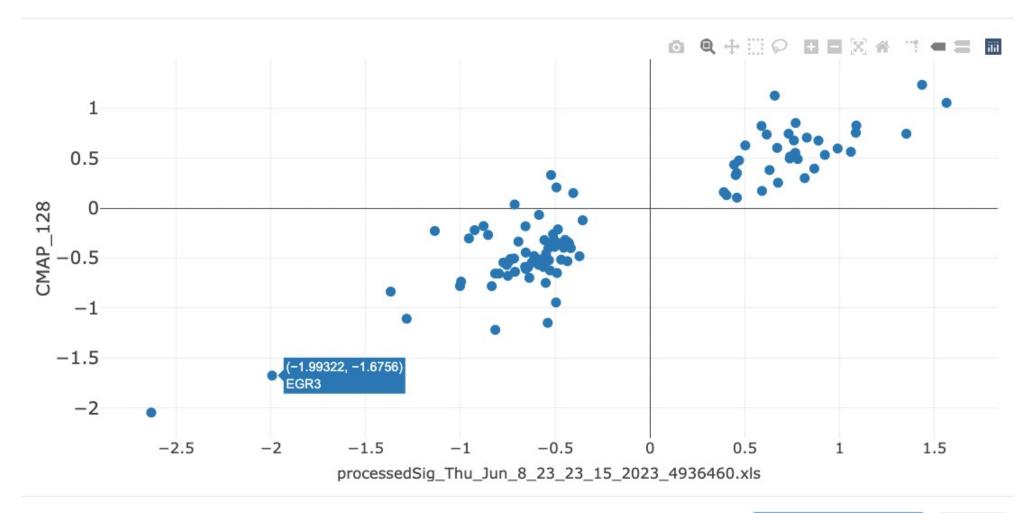




Correlation plot

Weighted Pearson correlation: 0.943

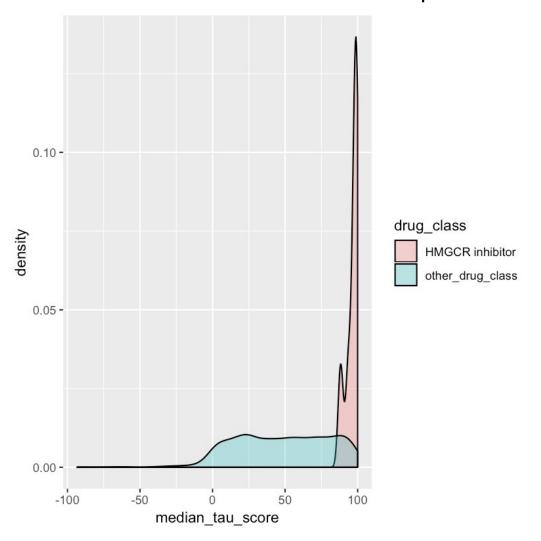
Pearson correlation: 0.913



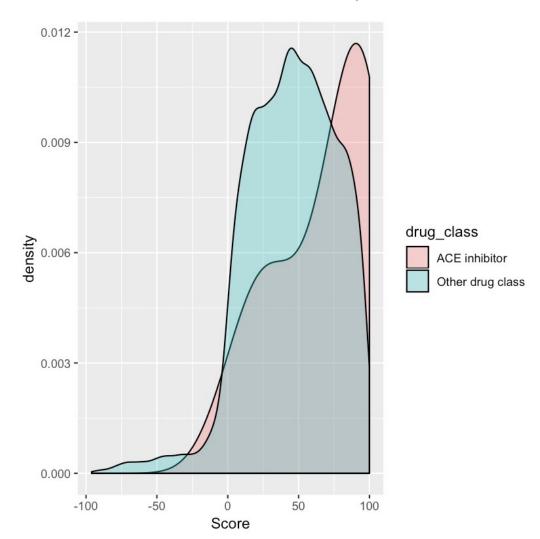
Take home messages

- iLINCS is a useful resource but requires careful manual curation
 - Check connectivity between gene knockdown/overexpression and drug
 - Check specificity of the gene signature
 - Check connectivity between compounds with same MoA

Connectivity of rosuvastatin with other HMGCR-inhibitors and all other compounds



Connectivity of enalapril with other ACE inhibitors and all other compounds



Take home messages

- iLINCS is a useful resource but requires careful manual curation
 - Check connectivity between gene knockdown/overexpression and drug
 - Check specificity of the gene signature
 - Check connectivity between compounds with same MoA
 - Check connectivity across cell lines
 - Drugs may not be in an active form. Need to check this from other sources e.g. DrugBank
 - Check if target is expressed in cell line before interpreting results (human protein atlas)

