
Expression quan.ta.ve trait loci mapping. 
 
Part 1: eQTL simula1on 

eQTLs are genetic loci (single nucleotide polymorphisms, SNP) whose alleles are associated 
with different expression levels of a specific gene. Different alleles can be associated with a 
decrease or increase in gene expression. Figure 1 displays how a SNP (in red) can influence 
gene expression.  

In this example, an A allele increases gene 
expression in a dose-response manner, with 
A homozygotes displaying higher levels of 
expression of a gene compared to G 
homozygotes. 

Most eQTLs are found outside of coding 
regions making their identifications harder 
due to the distance between the variant and the 
gene of interest.  

In this practical, we will investigate how to identify eQTLs. To understand eQTL analysis, we 
will start by simulating both genotype and expression data. This simulation approach will allow 
us to better understand the structure of the data used for eQTL mapping. Once we finish 
performing the simulation, we will investigate the GTEx website and see how eQTL can be 
used to investigate genome-wide association study (GWAS) results.  

Gene$c data: 
 
To iden(fy eQTLs, we need to know the individual’s genotype informa(on. This gene(c 
informa(on will then be used to test the associa(on between specific alleles and gene 
expression. Before simula(ng gene(c data, let’s look at how it is represented. 

 

Ques(on 1:  
Think about a single gene(c locus where the allele can either be A or T. 
How would you represent four individuals whose genotypes are respec(vely: 

• AA 
• AT 
• TA 
• TT 

Figure 1. Representa0on of an eQTL effect on a gene. Figure 
taken from Nica, A. C. & Dermitzakis, E. T. Expression quan>ta>ve trait 
loci: present and future. Philos. Trans. R. Soc. London. Ser. B, Biol.  Sci. 
368, 20120362 (2013). 

 



We represent gene(c informa(on based on the number of alleles an individual carries at a 
specific locus. Individuals described within ques(on 1 can therefore be represented based on 

the number of A alleles each individual possesses: !
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To simulate gene(c data, we, therefore, have to create several vectors containing 0, 1 or 2 
represen(ng the genotype of a single individual at different loci. Those vectors can then be 
accumulated into a matrix with the columns represen(ng different individuals and the row a 
specific gene(c locus. 
 

Connec$on to the cluster: 
 
To simulate the data, we will need to connect to the High-Performance Compu(ng (HPC) 
cluster set up for this class. You should have been given the creden(als necessary to connect 
to the cluster. Follow the informa(on presented in the introductory guide to connect to the 
HPC cluster.  
In this prac(cal, you can either use the command line or the interac(ve R session. If you are 
using the command line, you will have to download the plots to your local machine using the 
scp commands found within the text. If you are using an interac(ve R session, you can ignore 
those steps. 
 
Simula$on of genotypes: 
 
First, we will set up the HPC folders to keep your analyses organised. The following bash script 
allow you to create three folders: 

 

cd ~  
mkdir eQTLPrac 
cd eQTLPrac 
mkdir Genotype 
mkdir Expression 
mkdir eQTL 
 



You will now save and download files based on the folder that we created earlier. The following 
R code can be used to simulate gene(c data. Start your R session and , copy, and paste it within 
the interpreter. 

Note: The set.seed func-on allow the code to be reproducible, by fixing the random processes. A different 
seed would change the results. 

 
Now that we simulated genotype data, we can calculate the frequency of the alleles simulated 
with the following code:  
  
 
 
 
 
 
 
 
You can download the plot that you created by using the following command on your local 
machine:  

scp <username>@203.101.xxx.xxx: ~/eQTLPrac/Genotype/HistogramMAFsimulated.jpeg . 

 

Ques(on 2:  
• How many SNPs were simulated? 
• How many individuals were simulated? 
• Given that the SNP3 reference allele is G and the alternate allele C, what is the 

genotype of individual 5? 

set.seed(6543456) 
frequency <- 0.5 
SNP <- rbinom(5000, size = 2, frequency)  
SNP_number <- 10000 
indv_number <- 5000  
p <- runif(SNP_number, min = 0, max = 0.9) # probability of each alleles. 
genotypes <- replicate(indv_number, rbinom(SNP_number, 2, p)) # Generate our genotype matrix 
rownames(genotypes) <- paste0('SNP', seq(1, nrow(genotypes))) 
colnames(genotypes) <- paste0('Indv', seq(1, ncol(genotypes))) 
print(nrow(genotypes)) 
print(ncol(genotypes)) 
print(genotypes[1:10,1:10]) 

library(MASS) 
maf = rowMeans(genotypes)/2 
maf <- pmin(maf, 1-maf) 
 
jpeg('~/eQTLPrac/Genotype/HistogramMAFsimulated.jpeg',width = 21, height = 12, res = 300, units = 
'cm') 
truehist(maf, main = "Histogram of minor allele frequency", col = "light grey") 
lines(density(maf), lty = 2, col = "dark red", lwd = 3) 
dev.off() 

Ques(on 3:  
Look at the allele frequency of the genotype data you simulated. 

• What is the allele frequency occurring more oZen? 
• Why is allele frequency important for eQTL analysis? 



Allele frequency is important during eQTL analysis due to the lack of representa(on of some 
genotype.  
For eQTL analysis to be possible, it needs to include individuals with all possible genotypes (0, 
1 or 2 alleles). If we consider a gene(c locus with a minor allele frequency (MAF) of 1%, we 
will have the following propor(ons of individuals: 
 
Table 1. Propor0on of the possible genotypes for a gene0c loci with a minor allele frequency of 0.01 (Calcula0on based on 
the Hardy–Weinberg principle) 

 Propor(on 1,000 
individuals 

10,000 
individuals 

100,000 
individuals 

AA 0.9801 980.1 9801 98010 
AT 0.0198 19.8 198 1980 
TT 0.0001 0.1 1 10 

 
To iden(fy eQTL with a minor allele frequency of 1%, we would therefore need a popula(on 
larger than 100,000 individuals. Current large gene(c studies such as the eQTLgen 
consor(um1 contain 31,684 individuals, we therefore need to pay aaen(on to the allele 
frequency before performing eQTL mapping.  
 
 
 
  



 
Simula$on of gene expression data: 
 
Now that we simulated gene(c data, we need to create matching gene expression data. 
While gene expression is not normally distributed, most analyses will start by normalising 
the data. As such, simula(ng gene expression data can be performed either at the discrete 
level or at the normalised level. 

 

 
The following code will generate plots showing the associa(on between SNPs and genotypes: 
 
 
 
 
 
 
 
 

set.seed(58944) 
genesTotal <- 5000 
geneswithQTL <- 2000 
geneswithoutQTL <- genesTotal - geneswithQTL 
# Select the SNPs associated with each of the gene: 
SNPs <- rownames(genotypes) 
SNPswithQTL <- sample(SNPs, size = geneswithQTL) 
SNPswithoutQTL <- SNPs[-which(SNPs %in% SNPswithQTL)] 
# Create the expression matrix for associated SNPs 
expMatrixNotAssociated <- do.call(cbind, lapply(SNPswithoutQTL, function(x) { 
  meanForAlleles <- c(rnorm(1,10)) 
  yWithQTL <- rnorm(indv_number, meanForAlleles) 
  return(yWithQTL)})) 
#Associated genes: 
expMatrixAssociated <- do.call(cbind, lapply(SNPswithQTL, function(i) { 
  meanForAlleles <- c(rnorm(1,5), rnorm(1,8), rnorm(1,10)) 
  yWithQTL <- rnorm(indv_number, meanForAlleles[factor(genotypes[i,])]) 
  return(yWithQTL) 
})) 
colnames(expMatrixAssociated) <- paste0('Gene', 1:ncol(expMatrixAssociated)) 
 
print(geneswithQTL) 
print(geneswithoutQTL) 
print(ncol(t(expMatrixAssociated))) 

Ques(on 5:  
• How many genes were simulated? 

o How many of those were associated with SNPs? 



 

 
Download the plot created using the following command: 

scp <username>@203.101.229.143:~/eQTLPrac/Expression/AssociaKonPlot.jpeg . 
 

You can change the previous code (by change the name of the SNPs in red) to visually inspect 
the associa(on between different SNPs and genes.  
 
While iden(fying SNP and gene expression pair visually is already (me-consuming, the human 
genome is composed of 3.2 billion base pairs and roughly 20,000 genes rendering it impossible. 
 
eQTL mapping, simple linear regression: 
 
The most common way of tes(ng the associa(on between a SNP and gene expression is to 
perform a linear regression. This linear regression of the form: 

𝑦 = 𝛽! + 𝛽"𝐺# + 𝜀,  
With 𝑦 being a vector containing the expression of a gene for all individuals, 𝛽" the effect of 
an allele on gene expression, 𝐺#  a vector containing the genotype of each individual for a 
specific gene(c loci and 𝜀 being an error term. 
 
To find the associa(on between a specific gene and gene(c loci we need to es(mate 𝛽", the 
effect of each SNP on gene expression. The following code will perform a linear regression on 
for all SNPs and gene2: 
  

Ques(on 6:  
Based on the plot that you generated answer the following ques(ons: 

• What is the mean expression of the gene you simulated? 
• Which SNP (if any) is associated with the expression of Gene2 ? 

o How would you iden(fy SNP sta(s(cally associated with gene 
expression? 

library(ggplot2);library(cowplot) 
SNPassociationPlot <- function(SNPID, GeneID) { 
  ggplot(data.frame(snp=genotypes[SNPID,], y=expMatrixAssociated[,GeneID]), 
         aes(x = factor(snp), y = y)) + 
  ggtitle(paste0('Association between Gene 2 and ', SNPID)) + 
  geom_boxplot(fill='dark red') + geom_point(col='dark grey') + xlab("Reference allele count") + 
  theme_minimal()+  theme(plot.title = element_text(hjust = 0.5)) 
} 
p1 <- SNPassociationPlot(SNPID = 'SNP8621', GeneID = 'Gene2') 
p2 <- SNPassociationPlot(SNPID = 'SNP2044', GeneID = 'Gene2') 
p3 <- SNPassociationPlot(SNPID = 'SNP9521', GeneID = 'Gene2') 
p4 <- SNPassociationPlot(SNPID = 'SNP5564', GeneID = 'Gene2') 
p <- plot_grid(p1,p2,p3,p4) 
ggsave(p, filename = '~/eQTLPrac/Expression/Associa-onPlot.jpeg', width = 14, height=14, dpi = 
300) 
 



 

 
 
The associa(on test between Gene 2 and 10,000 SNPs that we just performed took a few 
minutes. We can see how eQTL analyses quickly result in an exponen(al computa(on (me as 
we increase the number of SNPs and individuals tested. SoZware such as matrixeQTL2 and 
fastQTL3 have been developed to decrease the computa(onal resources and (me necessary 
for eQTL analyses. While we will not go into details on their working here, the underlying 
mechanisms of that soZware remain similar to the analysis performed within this prac(cal. 
Methodology used to improve computa(onal efficiency range from limi(ng the SNPs tested 
for a gene to the closest SNPs to developing mathema(cal approxima(ons to computa(onally 
heavy calcula(ons.   
 
  

library(Kdyverse) 
GeneID='Gene2' 
 
# Set the first test: 
AssociaKon <- summary(lm(expMatrixAssociated[,GeneID]~genotypes['SNP1',])) 
AssociaKon <- as.data.frame(AssociaKon$coefficients)[2,] 
rownames(AssociaKon) <- SNPID 
 
for(SNPID in rownames(genotypes)){ 
  test <- summary(lm(expMatrixAssociated[,GeneID]~genotypes[SNPID,])) 
  test <- as.data.frame(test$coefficients)[2,] 
  rownames(test) <- SNPID 
  AssociaKon <- rbind(AssociaKon, test) 
} 
colnames(AssociaKon) <- c("EsKmate", "Std.Error", "t_value", "P") 
AssociaKon %>% arrange(P) %>% head() 

Ques(on 7:  
 

• What SNP is significantly associated with Gene 2? 
o Let’s assume that the reference allele of that SNP is A and alternate allele is T 

§ What will be the expected gene expression of an individual with a 
genotype of AA? 

§ With a genotype of TT? 
• Use the code used previously to plot the associa(on between the significant SNP 

and Gene 2 and save it in the eQTL folder 



Part 2: Real world eQTL: 
 
Genotype-Tissue Expression (GTEx): 
 
We will now inves(gate real-world eQTLs data. For this, we will go to the GTEx website. You 
can access it through this link (haps://gtexportal.org/home/).  
The GTEx consor(um collected post-mortem samples for 948 donors. We know that eQTLs 
are dynamic and evolve over (me and with exposure to the environment. Characteris(cs such 
as sex, age or disease status can influence eQTL associa(on and are therefore important.  

 
eQTL are influenced by both age4, sex5 and ancestry6; the observed unbalanced number of 
males and females, as well as a largely white and aging (84.6% white, 68.1% of samples older 
than 50) cohort, therefore, need to be taken into account when performing eQTL analysis. 
Addi(onally, the cohort can be split in half with younger donors succumbing to trauma(c 
injury while older donors displaying non-trauma(c pathologies.  

Sample characteristics, therefore, need to be considered when performing QTL mapping. You 
can read the landmark GTEx publication in 20207 to observe which sample characteristics were 
corrected for when testing for QTL associations. 

Inves$ga$on of GWAS signal: 

We will now investigate a real example of an eQTL association. For this, we will start by 
looking at a genome-wide association study of lipids published in 20138: 

Discovery and refinement of loci associated with lipid levels 
(h7ps://www.nature.com/ar<cles/ng.2797) 

This paper aimed to identify the genetic control of blood lipid levels. As such, they identified 
associations between SNP and blood lipid levels. They then mapped those SNPs to the closest 
genes, concluding on their role on blood lipid levels. 

We will investigate how eQTL can give us more information regarding the genetic control of 
blood low-density lipoprotein (LDL) cholesterol. 

Ques(on 8:  
• On the GTEx website, look for the sample characteris(cs that could influence eQTL 

associa(on study. 
o Hint: Navigate to the Tissue & Sample sta<s<cs page 

Ques(on 9:  
• Read the abstract of the GWAS paper, what is the goals of this paper?    



Open the Supplementary figures from the paper and go to the supplementary table 3. 

 

Let's investigate the effect of rs6511720, the genetic loci associated with the highest decrease 
in LDL blood levels. Search the GTEx website for rs6511720 and answer the following 
question: 

 

We will now look at genetic loci associated with LDL cholesterol levels. rs12916 is associated 
with HMGCR, a gene coding for HMG-CoA reductase an enzyme playing a central role in 
cholesterol synthesis. Let’s investigate eQTL associated with rs12916, search the GTEx 
website for rs12916. 

 

In conclusion, eQTL can help interpreting the functional significance of GWAS signals. They 
can provide biological interpretation of non-coding variants helping to hint at the mechanisms 
underlying complex traits and diseases. 

  

Ques(on 10:  
• Finds the gene with the strongest nega(ve effect on LDL blood levels. 

o What is the impact of each alternate allele? 
o If the average person has an LDL blood level of 209.7mg/dL, what would be 

the expected LDL level of an individual with a genotype of GG at locus 
rs6511720? 

Ques(on 11:  
• With which genes is rs6511720 associated? 
• In which (ssues are those associa(on located? 
• Do you think that a change in gene expression is responsible for the associa(on 

observed between LDL levels and rs6511720? 

Ques(on 12:  
• In which (ssue is rs12916 associated with HMGCR? 
• Where does the SNP fall? (hint: open the IGV browser) 
• Do you think that a change in gene expression is responsible for the associa(on 

observed between LDL levels and rs12916? 
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