GWAS Experimental Design:
statistical tests
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* Types of tests, quantitative & binary traits
* Power to detect loci
* depends on LD, effect size, allele frequency, sample size
* Manhattan plots
* Other diagnostics
* QQ plot, genomic inflation and FDR

* Replication



Quantitative traits — linear regression

y=1la +xp + €

y = vector of (corrected) phenotypes

1 = vector of 1’s

a = intercept

x = vector of SNP ?enotypes, encoded as 0, 1 or 2

copies of ‘a’ allele fo
B = SNP effect

€ = vector of errors

r AA, Aa or aa genotypes

Null hypothesis, Hy: § = 0

Alternative hypothesis, Hy: f # 0
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Binary traits
* \Various options: chi-squared test, Armitage test,
logistic regression etc. Alleles
* Make different assumptions about the mode-of-action 1 2 | Total

of the allele -- this impacts power
Case n; n, |2N

Ctrl m; m, [2M

e.g. chi-squared test; 2x2 contingency table

Total ([T, [T, |2(N+M)

Hy: genotypes & case/control status are independent 2x2 contingency table

, O-E)?
O Y

H,: genotypes & case/control status are dependent

* Use logistic model if need to correct for covariates
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Power to detect locl

* Statistical power is the probability to correctly rejecting the null
hypothesis when it is true

*H, : there is no association between loci & trait

°H, : this is a true association between the loci & trait
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Power to detect locl

Power is a function of:

* LD between SNP and causal variant

* Proportion of phenotypic variance explained by causal variant
e Sample size

* Significance threshold («)



Power — LD between SNP and causal variant

Usually, we don'’t expect the most significant GWAS variant in a region to
be causal/functional

° j.e.tested SNP in LD with an ungenotyped ‘causal variant’

* this reduces statistical power

* Sample size must increase by 1/r? to detect an ungenotyped variant,
compared to sample size required for testing causal variant itself

* Hence increased SNP density (i.e. imputation, WGS) to maximise LD
between causal variants & genotyped SNP



Power — LD between SNP and causal variant

Example:

* The variance explained by a ‘causal variant’ is 1% of o7

°* How much variance does a genotyped SNP explain when the LD
between the causal variant and SNP is 0.2 or 0.8 ?

* r2=0.2 ; variance explained by SNP = 0.2 x 0.01 = 0.002 o5
* r2=0.8; variance explained by SNP = 0.8 x 0.01 = 0.008 o5

The r? between a SNP and a ‘causal variant’ is the proportion of the
phenotypic variance which can be observed at the SNP



Power — effect size

How much of o5 is a marker
expected to explain?

It is trait dependent
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Power — effect size

How much of ¢ is a marker
expected to explain?

It is trait dependent

For human height, the first detected
(i.e. largest) effect explained 0.3% o

namre |
genetlcs

THE UNIVERSITY
% OF QUEENSLAND

AUSTRALIA

LETTERS

Timothy M Frayling"22!

Human height is a classic, highly heritable quantitative trait.
To begin to identify genetic variants influencing height, we
examined genome-wide association data from 4,921
individuals. Common variants in the HMGA2 oncogene,
exemplified by rs1042725, were associated with height

(P= 4 x 107%. HMGAZ is also a strong biological candidate
for height, as rare, severe mutations in this gene alter body
size in mice and humans, so we tested rs1042725 in additional
samples. We confirmed the association in 19,064 adults from
four further studies (P =3 x 107", overall P = 4 x 107,
including the genome-wide association data). We also

- observed the association in children (P =1 x 1076, N = 6,827)
‘gand a tall/short case-control study (P = 4 x 10-5, N = 3,207).

=¥ We estimate that rs1042725 explains ~0.3% of population
variation in height (~0.4 cm increased adult height per
C allele). There are few examples of common genetic
variants reproducibly associated with human quantitative
traits; these results represent, to our knowledge, the

first consistently replicated association with adult and
childhood height.

© 2007 Nature Publishing Group http://www.nature.com/naturegenetics

A common variant of HMGA? is associated with adult
and childhood height in the general population

Michael N Weedon!">2!, Guillaume Lettre>*2!, Rachel M Freathyl’ml, Cecilia M Lindgren5’6’21,
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Adult height is a classic polygenic trait. The genetics of height were
central to the mendelian versus biometrician debate in the early part
of the twentieth century that was resolved by Fisher, who proposed
that height and other human phenotypes showed multifactorial
inheritance'. Twin, family and adoption studies suggest that up to
90% of normal variation in human height within populations is due
to genetic variation’®. Severe mutations in several genes cause rare
syndromes with extreme stature; however, these cannot explain
normal population height variation’. Many regions of the genome
have been linked with height based on numerous genome-wide
linkage scans, with some overlap between studies®, but thus far
there have not been any examples of gene variants that are reprodu-
cibly associated with height variation in the general population.

The recent flood of data from many genome-wide association
(GWA) studies offers new opportunities to identify genes influencing
adult height. The identification of such genes will probably provide
important insights into how best to dissect the genetics of polygenic
quantitative traits. The identification of genes influencing growth may
also have important medical implications. Height is associated with
several common disorders, including a number of cancers®®.



Power — effect size

How much of ¢ is a marker
expected to explain?

It is trait dependent

For human height, the first detected
(i.e. largest) effect explained 0.3% o

Yengo et al. (2022) detected 12,111
SNP collectively explaining ~ 0.5 o
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i.e.0.004 % op per SNP |



Power — sample size

How big do sample sizes need to be?

For human height,

5K individuals to detect loci 0.3% o5

SampleSize,
thousands

5
== 50

power
o

w500
5000

5M to detect loci explaining ~ 0.004 % o5

0.0001 0.0010 0.0100 0.1000
marker heritability, %



Power - significance threshold

* GWAS performs millions of tests... many will be ‘significant’ (P < 0.05) by chance

* Easiest way to account for all these tests is to correct the significance threshold
(a) for number of independent tests

e correcting for the total number of tests is overly conservative due to the LD

* LD varies between populations, thus
* EUR: 1 million independent tests (0.05/1x108) = sig. threshold p = 5x10®
* AFR: 2 million independent tests (0.05/2x108) = sig. threshold p = 2.5x10-8

Pe’er et al. (2008) Genetic Epidemiology
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Power to detect locl

Power is a function of:

° LD between SNP and causal variant (dense SNPs to maximise LD)

* Proportion of phenotypic variance explained by SNP
* Typically: < 0.005 ¢4 for quantitative traits, OR 1.1-1.2 binary traits
* Can’t change genetic architecture

* Sample size (bigger is more powerful)

* Significance threshold («)



Manhattan Plots

* GWAS results are typically represented using a ‘Manhattan plot’

- genomic locations/order along the X-axis
- negative logarithm (base 10) of the p-value along the Y-axis
- each point is the result from a single SNP

* The SNPs with the strongest associations
will have the greatest negative logarithms,
and will tower over the background of et
unassociated SNPs

* ike skyscrapers in Manhattan -




Manhattan Plots

* A good Manhattan plot

* Wellcome Trust Case Control Consortium, Crohn's disease, Nature 2007

* Shows signals supported by many neighboring SNPs

15 1 .
13 Crohn’s disease

- annw
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Manhattan Plots

* A bad Manhattan plot

* Sebastiani et al. “Genetic signatures of exceptional longevity in humans”
Science July 2010

* Retracted July 2011 because of poor QC




Regional Association Plots
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Interpreting GWAS
signals & making
biological insights is
tricky, more on this
tomorrow

18
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Diagnostics (1) -- QQ Plot

* A QQ plot is a common way to demonstrate the lack of confounding effects

* The ordered observed negative logarithm of the p-values are plotted against
the expected distribution under the null hypothesis of no association

* [deally, the points in the plot should align along the X =Y line, with deviation at
the end for the significant associations

19
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Diagnostics (1) -- QQ Plot
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Diagnostics (2) -- Genomic Inflation

* One way to quantify the lack of global inflation in the QQ plot is the genomic inflation factor (Acc)

* This is calculated by:

- determining the median p-value of GWAS test statistics

- calculating the quantile in a chi-squared distribution with
one degree of freedom that would give this p-value

- divide this by the median of a chi-squared distribution with
one degree of freedom (0.4549)

* Deviations of this value away from 1.0 indicate genome-wide confounding in the data.

21



Diagnostics (2) -- Genomic Inflation
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Diagnostics (3) -- FDR

Non-human species might use a False Discovery Rate (FDR), thus
at a given significant threshold («) the FDR is

FDR = # expected ‘significant’ SNP / # observed ‘significant’' SNP

e.g. If we test 1M loci with « = 0.0001, we expect 1x10% X 0.0001 = 100 sig. loci by chance
Say we observe 150 sig. loci at « = 0.0001
FDR = expected/observed = 100/150 = 0.67



Replication

« GWAS potentially have many false-
positives

» Replication in an independent cohort
Is required

« Be mindful of sample size (is there
enough power to replicate?)

* Replicate size and direction of effect

 Question: What does ‘Winner’s
curse’ refer to in GWAS?

Meta-analysis of CHARGE and Global BPgen of Top 10 Loci for Systolic and Diastolic Blood Pressure and Hypertension in CHARGE
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Alleles

Freq. of

SNP (coded/ coded discove i repl ication
identifier Chr Position Nearest Gene other)  allele Beta SE p-value Beta SE p-value
Systolic blood pressure

1512046278 1 10,722,164 CASZI T/C 0.64 -0.84 0.18 1.84E-06 -0.29 0.15 5.71E-02
157571613 2 190,513,907 PMSI A/G 0.82 -096 0.19 7.28E-07 -0.23 0.16  1.59E-01
15448378 3 170,583,593 MDSI A/G 0.52 -0.71  0.15 1.28E-06 -0.36 0.13  4.76E-03
152736376 8 11,155,175 MTMR9 C/IG 0.13 -1.08 023 1.90E-06 -0.06 0.19  7.36E-01
151910252 8 49,569,915 EFCABI T/C 0.18 -093 0.19 1.70E-06 -0.07 0.17  6.80E-01
1511014166 10 18,748,804 CACNB2 A/T 0.66 074 0.16 2.11E-06 0.33 0.13  1.31E-02
rs1004467 10 104,584,497 CYP17A1 A/IG 0.90 120 025 1.99E-06 0.94 0.21 1.08E-05
rs381815 11 16,858,844 PLEKHA7 T/C 0.26 084 0.17 5.76E-07 0.52 0.14 2.72E-04
rs2681492 12 88,537,220 ATP2BI1 T/C 0.80 126 0.19 3.01E-11  0.50 0.17  4.07E-03
rs3184504 12 110,368,991 SH2B3 T/C 0.48 075 0.15 5.73E-07 045 0.13  6.36E-04

Levy et al. (2009) Nature Genetics



Replication

« GWAS potentially have many false-
positives

» Replication in an independent cohort
Is required

« Be mindful of sample size (is there
enough power to replicate?)

* Replicate size and direction of effect

* ‘Winner's curse’ -> effect size
overestimated in discovery phase
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Summary

* Different types of statistical tests, but all generate P-value per SNP

* Linear model is the most common for quantitative traits
* Power considerations...
* How many individuals? As many as you can
* How many SNP? As many (good quality) SNP as you can

* Diagnostics (QQ-plots and genomic inflation) important but not perfect

* Replication is essential why?



Practical Session

Choose either Part 1, or Parts 2a & 2b

Part 1: power to detect loci
Part 2a: conduct a small GWAS in R
Part 2b: make a QQ-plot



