
Genome-wide Association Studies

Practical 2: Do a GWAS!

Running a GWAS

- In the practical this afternoon, we will use two programs (PLINK and GCTA) to run a GWAS, with a 3 different 'flavours'
 - unrelated individuals in PLINK for quantitative trait (+/- covariates)
 - unrelated individuals in PLINK for binary trait (+/- covariates)
 - Including relatives in GCTA for a quantitative trait
- We are assuming here that we are using QC'd genotype & phenotype files
- Look at output, generate Manhattan plots, qq-plots & calculate λ_{GC}

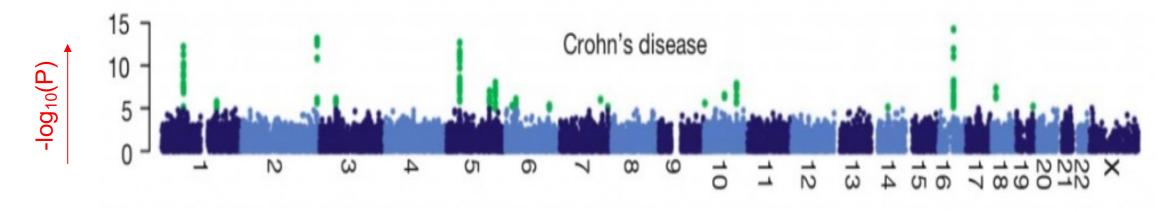
Unrelated quantitative trait in PLINK

In PLINK:

plink --bfile <geno file> --assoc --pheno <pheno file>

Unrelated quantitative trait in PLINK

[allan@analysis1 ~]\$ plink --bfile /data/module1/gwas/part2/gwas --assoc --pheno /data/module1/gwas/part2/Fasting Insulin QC.phen PLINK VI.9006.26 64-DIT (2 Apr 2022) www.cog-genomics.org/plink/1.9/ (C) 2005-2022 Shaun Purcell, Christopher Chang GNU General Public License v3 Logging to plink.log. Options in effect: --assoc --bfile /data/module1/gwas/part2/gwas --pheno /data/module1/gwas/part2/Fasting Insulin QC.phen 64141 MB RAM detected; reserving 32070 MB for main workspace. 277719 variants loaded from .bim file. 11780 people (5346 males, 6434 females) loaded from .fam. 11770 phenotype values present after --pheno. Jsing 1 thread (no multithreaded calculations invoked). Before main variant filters, 11780 founders and 0 nonfounders present. Calculating allele frequencies... done. Total genotyping rate is 0.995966. 277719 variants and 11780 people pass filters and QC. Phenotype data is quantitative. Writing QT --assoc report to plink.gassoc ... done.


Output, quantitative trait

delta	2:~/60days/UQWS	_2023/5_un	relGWAS\$	head raw.qa	SSOC			
CHR	SNP	BP	NMISS	BETA	SE	R2	Т	Р
1	rs12562034	768448	11683	0.2037	0.1314	0.0002056	1.55	0.1212
1	rs4040617	779322	11667	0.02397	0.1193	3.463e-06	0.201	0.8407
1	rs4970383	838555	11687	0.03148	0.09247	9.915e-06	0.3404	0.7336
1	rs950122	846864	11564	0.04572	0.1012	1.767e-05	0.452	0.6513
1	rs6657440	850780	11687	-0.06427	0.0819	5.271e-05	-0.7848	0.4326
1	rs13303101	862124	11689	0.09545	0.2875	9.434e-06	0.3321	0.7399
1	rs1110052	873558	11654	-0.01181	0.09043	1.464e-06	-0.1306	0.8961
1	rs3748592	880238	11697	-0.1481	0.1775	5.951e-05	-0.8343	0.4041
1	rs3748593	880390	11696	-0.5318	0.2519	0.000381	-2.111	0.03478
dol tor	Codeye (LOWS	2022 /E 110	mol CWAS¢					

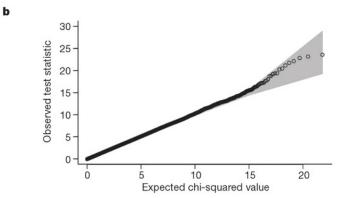
Output, quantitative trait

delta2	2:~/60days/UQW	IS_2023/5_un	relGWAS\$	head raw.aas	soc			
CHR	SNP	BP	NMISS	BETA	SE	R2	Т	Р
1	rs12562034	768448	11683	0.2037	0.1314	0.0002056	1.55	0.1212
1	rs4040617	779322	11667	0.02397	0.1193	3.463e-06	0.201	0.8407
1	rs4970383	838555	11687	0.03148	0.09247	9.915e-06	0.3404	0.7336
1	rs950122	846864	11564	0.04572	0.1012	1.767e-05	0.452	0.6513
1	rs6657440	850780	11687	-0.06427	0.0819	5.271e-05	-0.7848	0.4326
1	rs13303101	862124	11689	0.09545	0.2875	9.434e-06	0.3321	0.7399
1	rs1110052	873558	11654	-0.01181	0.09043	1.464e-06	-0.1306	0.8961
1	rs3748592	880238	11697	-0.1481	0.1775	5.951e-05	-0.8343	0.4041
1	rs3748593	880390	11696	-0.5318	0.2519	0.000381	-2.111	0.03478
dol±o?	• (60days (110)	15 2022 /E	nol CWAS¢					
				↑	Ť	↑ R ²	Ť	Ť
				SNP effect	(va	riance explai	ined)	P-value
		standard error T-test statistic (beta/se)						ic

Manhattan plot & genomic inflation factor (λ_{GC})

• Use R

library(qqman)
d = read.table("plink.qassoc", head=T)
manhattan(d)


• Genomic inflation factor - expected value of 1.0

qchisq(1-median(d\$P),1)/qchisq(0.5,1)

QQ plot & multiple testing

- QQ-plot is visual approach for comparing 2 distributions, in our case the expected & observed chi-squared distribution
 - i.e. does my test statistic deviate from the null?

```
library(qqman)
d = read.table("plink.qassoc", head=T)
qq(d$P)
```


Outside of human genetics, its often unclear what p-value threshold (α) to use. Two options:

- False-discovery rate (FDR), useful to gage how many false-positive you expect in your results.
 - If we test 1M loci with α = 0.0001, we expect

 $1 \times 10^{6} \times 0.0001 = 100$ sig. loci by chance

• Say we observe 150 sig. loci

FDR = expected/observed = 100/150 = 0.67

- Bonferroni correction, sometimes used but often too stringent as it assumes independent tests.
 - If we test 1M loci and we want $\alpha = 0.01$, then adjusted P-value threshold = $0.01/1 \times 10^6 = 1 \times 10^{-8}$

Unrelated quantitative trait in PLINK with covariates

Model: $y = W\alpha + x\beta + e$ phenotypes design matrix for intercept + covariates intercept + covariate effects

plink --bfile <geno file> --linear --covar <covar file > --pheno <pheno file>

Alternatives: regress the phenotype against the covariates in R and create a new phenotype file with the residuals OR use --fastGWA-lr with --covar in GCTA

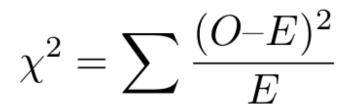
Binary trait in PLINK

To perform a standard case/control association analysis, use the option:

plink --file mydata --assoc

which generates a file

plink.assoc

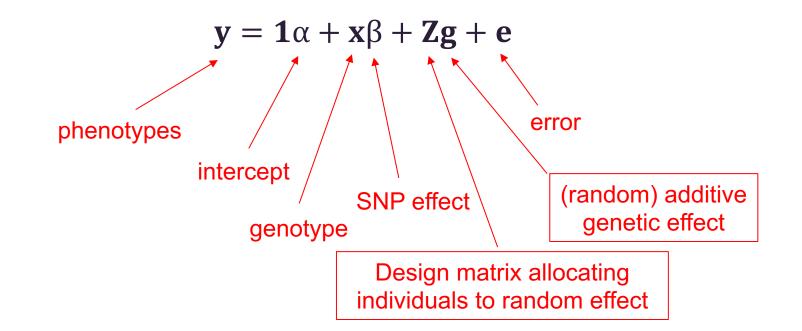

which contains the fields:

CHR	Chromosome
SNP	SNP ID
BP	Physical position (base-pair)
A1	Minor allele name (based on whole sample)
F_A	Frequency of this allele in cases
F_U	Frequency of this allele in controls
A2	Major allele name
CHISQ	Basic allelic test chi-square (1df)
Р	Asymptotic p-value for this test
0R	Estimated odds ratio (for A1, i.e. A2 is reference)

Alleles

	1	2	Total
Case	n ₁	n ₂	2N
Ctrl	m ₁	m ₂	2M
Total	T ₁	T ₂	2(N+M)

2x2 contingency table



GWAS with relatives

What if we have lots of close relatives ($\pi > 0.05$) and we lose too many records if we remove them all?

We can use the -- fastGWA-mlm and --grm-sparse flags in GCTA to fit a <u>sparse</u> genomic relationship matrix (GRM) to model the covariance between closely related individuals

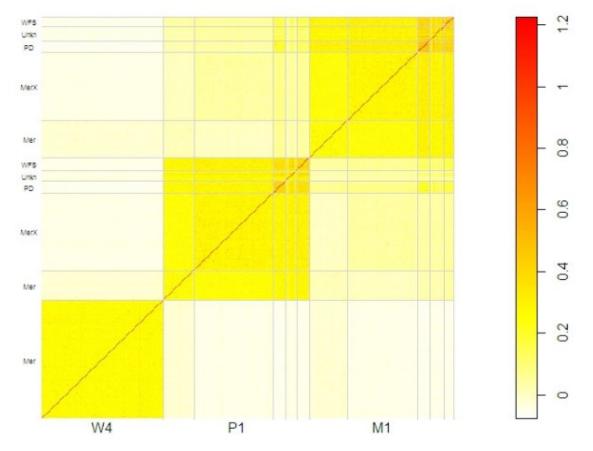
Model:

step 1 - making GRM

Use GCTA at the command line with the --make-grm-bin flag, e.g.

gcta64 --bfile data --make-grm-bin data2 --out data_grm

Three files produced:


- data_grm.grm.bin
- data_grm.grm.N.bin
- data_grm.id
- data_grm.log

- \rightarrow binary file with lower triangle elements of GRM
- \rightarrow binary file with number of SNPs in GRM
- \rightarrow list of IDs corresponding to GRM order
- \rightarrow log file

step 1 - making GRM

- square matrix
- off-diagonal elements of the GRM estimate the genomic relationship (π) between pairs [i.e. average allele sharing]
- diagonal has mean 1
- off-diagonals have mean 0
- In human genetics, 'close relatives' are pairs with π > 0.05

Example GRM from sheep with 1/2 sib families

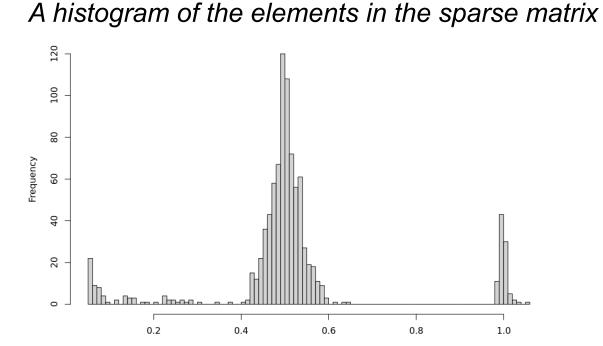
Kemper et al. (2011) Genetics Research

step 2 - making a sparse GRM

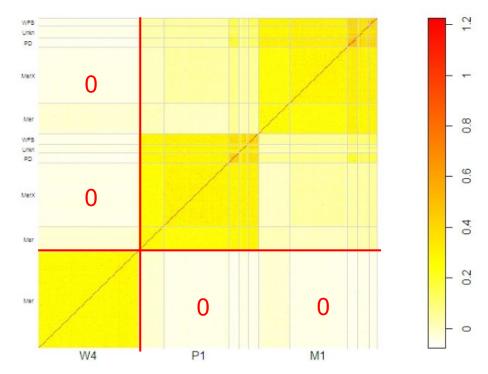
Use GCTA at the command line with the --make-bK-sparse flag to set GRM values < 0.05 to zero, e.g.

gcta64 --grm data2 --make-bK-sparse 0.05 --out data2_sparse

Three files produced:


- data2_sparse.grm.sp \rightarrow index and relationships over 0.05 from GRM
- data2_sparse.grm.id \rightarrow corresponding ID file
- data2_sparse.grm.log \rightarrow log file

step 2 - making a sparse GRM


test_sp_grm.grm.sp (columns are the indexes of a pairs of individuals and the corresponding GRM value)

0 0 0.999106 1 1 0.993465 ...

Note: "0" indicates the first individual in the *.grm.id file.

Sheep example

step 3 - running fastGWA

• Use GCTA at the command line with the --fastGWA-mla and --grmsparse flag, e.g.

gcta64 --bfile data --fastGWA-mlm --grm-sparse data2_sparse
--pheno simData3.phen --out assocSparse