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• Why use GWAS summary statistics (SumStats)?
• Where to download?
• What should we check?

- About the study?
- About the data?

• What can we do with them?

Outline
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Sharing of GWAS summary statistics 
There is a consensus within the human genetics research community that it is standard to 
publicly share the summary-level data when publishing a GWAS study.

Introduction Methods Real Data Future Work References

Why do we consider single-SNP summary data?
Single-SNP GWAS summary statistics {�̂j, �̂2j } are widely available.

�̂j := (X¸j Xj)
�1X¸j y

�̂2j := (nX¸j Xj)
�1(y � Xj�̂j)¸(y � Xj�̂j)

Survey of GWAS summary statistics:
Page 4-12 of Alkes Price’s slides [link] at ASHG 2015

Xiang Zhu RSS JSM 2016, July 31 4 / 15

—Nat Genet editorial, July 2012 

Introduction Methods Real Data Future Work References

Why do we consider single-SNP summary data?
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• Access to large sample of individual level data is rare but publishing the summary statistics is a 
standard 

• Unless your phenotype is novel, it is likely a GWAS has already been performed
• Allows us to harness much larger sample sizes 

Why use GWAS SumStats? 

4
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What are GWAS SumStats?
The aggregate association data for every SNP analysed in a GWAS

Perspective

Workshop proceedings: GWAS summary
statistics standards and sharing
Jacqueline A.L. MacArthur,1,2,* Annalisa Buniello,1 Laura W. Harris,1 James Hayhurst,1 Aoife McMahon,1 Elliot Sollis,1

Maria Cerezo,1 Peggy Hall,3 Elizabeth Lewis,1 Patricia L. Whetzel,1 Orli G. Bahcall,4 Inês Barroso,5 Robert J. Carroll,6

Michael Inouye,7,8,9 Teri A. Manolio,3 Stephen S. Rich,10 Lucia A. Hindorff,3 Ken Wiley,3 and Helen Parkinson1,*
1European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
2BHF Data Science Centre, Health Data Research UK, London, UK
3Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
4Cell Genomics, Cell Press, 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA
5Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter, UK
6Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
7Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1
8RN, UK
8Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, 75 Commercial Rd., Melbourne 3004, VIC, Australia
9The Alan Turing Institute, London, UK
10Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
*Correspondence: jackie.macarthur@gmail.com (J.A.L.M.), parkinson@ebi.ac.uk (H.P.)
https://doi.org/10.1016/j.xgen.2021.100004

SUMMARY

Genome-wide association studies (GWASs) have enabled robust mapping of complex traits in humans. The
open sharing of GWAS summary statistics (SumStats) is essential in facilitating the larger meta-analyses
needed for increased power in resolving the genetic basis of disease. However, most GWAS SumStats are
not readily accessible because of limited sharing and a lack of defined standards. With the aim of increasing
the availability, quality, and utility of GWAS SumStats, the National Human Genome Research Institute-
European Bioinformatics Institute (NHGRI-EBI) GWAS Catalog organized a community workshop to address
the standards, infrastructure, and incentives required to promote and enable sharing. We evaluated the bar-
riers to SumStats sharing, both technological and sociological, and developed an action plan to address
those challenges and ensure that SumStats and study metadata are findable, accessible, interoperable,
and reusable (FAIR). We encourage early deposition of datasets in the GWAS Catalog as the recognized cen-
tral repository. We recommend standard requirements for reporting elements and formats for SumStats and
accompanying metadata as guidelines for community standards and a basis for submission to the GWAS
Catalog. Finally, we provide recommendations to enable, promote, and incentivize broader data sharing,
standards and FAIRness in order to advance genomic medicine.

INTRODUCTION

Genome-wide association studies (GWASs) have brought
enormous progress in mapping the genetic basis of com-
mon diseases or traits,1,2 where genetic predisposition is
shared across thousands of mostly common variants with
individually modest effects on population risk. Since 2005,3

GWASs have successfully identified thousands of genomic
regions significantly associated with common diseases,
with notable successes in type 2 diabetes (T2D)4 and coro-
nary artery disease.5 This approach was successfully
applied at the start of the coronavirus disease (COVID)
global pandemic in 2020, with newly established interna-
tional collaborations driving COVID-19 GWASs and making
all data publicly available.6 GWAS datasets are increasingly
publicly shared, and these datasets are widely used to

further basic research, as well as translation, including in
drug-discovery pipelines.7

The number of published GWASs has continually increased,
with 265 new publications in the first 6 months of 2021
compared with 209 in the same period of 2019. In addition,
the complexity and scale of the data grow. This includes the
interrogation of larger sample sizes, driven by prospective co-
horts and biobanks. Studies also increasingly include a broader
range of data types in a single publication, with deep phenotyp-
ing or health information, including newer -omic phenotypes
(e.g., lipidomic, proteomic, metabolomic, etc.).8–10 Recent pub-
lications have included GWASs of !4,000 brain-imaging
traits,11 !1,500 protein biomarkers,12 and 778 traits in the UK
Biobank (UKBB).13 Dense imputation panels have increased
the number of variants analyzed, with a typical GWAS now
including more than 8 million variants. GWAS analytical
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research or license restriction. Many of those restrictions are
participant or cohort centric and reflect an attempt to protect
research participants, for example, restrictions on attempting
to identify participants, research that may lead to stigmatizing in-
dividuals or groups, or the use of data for commercial purposes.
Attendees agreed that it would be useful to have a ‘‘recommen-
ded license,’’ which would enable reuse but protect research
participants (see Box 1, Workshop recommendations 7, ‘‘Diver-
sity and privacy’’ working group). On the other hand, some data
generators imposed investigator-centric restrictions that inher-
ently limit reuse, for example, by prohibiting redistribution.
Ways to overcome barriers for data generators who are reluctant
to share without such restrictions are discussed in more detail in
the Incentivization of sharing session section below.
We also agreed that improved linking among databases is

required, for example, linking among different datasets hosted
in different repositories for the same cohort or sample set (see
Box 1, Workshop recommendations 6).

Incentivization of sharing
The aim of this session, chaired by Orli Bahcall, was to identify
barriers to sharing of GWAS data and define strategies to over-
come those barriers, including identifying incentives for data
sharing. From her experience in working on the development
of data-sharing programs and with a broad range of GWAS pro-
ducers, she proposed that the barriers to sharing and the strate-
gies required to overcome them differ among GWAS producers
who want to share the dataset but meet challenges and those
who are reluctant to share from the outset.
Most of the challenges faced by GWAS producers who are

amenable to data sharing can be reduced or eliminated by the

Table 1. Recommended standard reporting elements for GWAS
SumStats

Data element Column header Mandatory/Optional

variant id variant_id One form of variant ID

is mandatory, either rsID

or chromosome, base pair

location, and genome builda

chromosome chromosome

base pair

location

base_pair_

location

p value p_value Mandatory

effect allele effect_allele Mandatory

other allele other_allele Mandatory

effect allele

frequency

effect_allele_

frequency

Mandatory

effect (odds

ratio or beta)

odds_ratio or

beta

Mandatory

standard error standard_error Mandatory

upper confidence

interval

ci_upper Optional

lower confidence

interval

ci_lower Optional

Data elements have been recommended as mandatory if >50% of pre-

workshop survey respondents indicated that preference.
aWe agreed that other variant ID formats should be supported. Imple-

mentation of those standards will be addressed by the working group

‘‘Data Content and Format.’’

Box 1. Workshop recommendations on sharing of GWAS sum-
mary statistics

We recommend these actions to enable broader sharing of GWAS

SumStats and to ensure that SumStats and study metadata are

FAIR. These recommendations were compiled by the organizers and

session chairs, with feedback gathered during the workshop and the

wider community in the pre-workshop survey.

1. Establish a comprehensive, central resource of GWAS
SumStats

We recommend establishing a comprehensive and sustainable

resource for all GWASs and propose that the GWASCatalog be recog-

nized as the central resource for all human GWASs.

2. Submit all GWAS SumStats to the GWAS Catalog
GWAS SumStats and supporting metadata should be submitted to

the GWAS Catalog at the time of submission of a manuscript to a

journal and/or a preprint server. Accession IDs for GWAS SumStats

should be cited in the relevant manuscript and any other relevant

material.

3. Promote or require submission to the GWAS Catalog

We call on journal editors, funders, and cohort representatives to pro-

mote or require early submission to the GWAS Catalog, pointing au-

thors to the GWAS Catalog and expecting submission before journal

submission (journal editors) or as a requirement for sample use (cohort

representatives) or funding (funders).

4. Ensure GWAS SumStats and metadata meet FAIR indica-
tors

GWAS SumStats should be made available following the FAIR indica-

tors (Table 2). These FAIR indicators will be adopted by the GWAS

Catalog.

5. Adopt a standard format and elements for GWAS Sum-
Stats

GWAS SumStats should include these standard elements: variant ID

or chromosome plus base pair location, p value, effect allele, other

allele, effect allele frequency, effects (odds ratio or beta), and standard

error (Table 1).

6. Data should be versioned and linked to relevant resources
GWAS SumStats and accompanying metadata should be versioned to

enable users to identify the most recent dataset. The GWAS Catalog

will develop a data update and versioning strategy to meet those

needs. Linking from GWAS SumStats and metadata to relevant data-

sets in other databases (e.g., dbGaP, EGA, BioData Catalyst, and

AnVIL) should be improved. The GWAS Catalog will develop improved

cross-linking to relevant databases.

Areas for further discussion:

7. Diversity and privacy
To ensure the Catalog can meet the needs of all studies, including

those with more-sensitive datasets or alternative study designs, we

will convene working groups to gather additional evidence and identify

additional functionality required. We recommend that different data-

sharing requirements be considered for datasets determined to be

sensitive, where required for privacy or regulatory reasons. We are

convening a working group to provide guidance on communicating

and mitigating the risks associated with sharing of SumStats (‘‘Diver-

sity and privacy’’ working group).

8. Data content and format
To further assess and finalize metadata content, variant identification,

and file format requirements, including for association testing with

multiple variants in a region, we are convening a working group

(‘‘Data content and format’’ working group).
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Where to download GWAS SumStats?

6

Database Content

GWAS Catalog https://www.ebi.ac.uk/gwas/ GWAS summary statistics and GWAS lead SNPs reported in GWAS papers

GeneAtlas http://geneatlas.roslin.ed.ac.uk/ UK Biobank GWAS summary statistics

Pan UKBB https://pan.ukbb.broadinstitute.org/ UK Biobank GWAS summary statistics

GWAS Atlas https://atlas.ctglab.nl/ Collection of publicly available GWAS summary statistics with follow-up in silico 
analysis

FinnGen results
https://www.finngen.fi/en/access_results

GWAS summary statistics released from FinnGen, a project that collected 
biological samples from many sources in Finland

dbGAP https://www.ncbi.nlm.nih.gov/gap/ Public depository of National Institutes of Health-funded genomics data including 
GWAS summary statistics

OpenGWAS database https://gwas.mrcieu.ac.uk/ GWAS summary data sets

Pheweb.jp https://pheweb.jp/ GWAS summary statistics of Biobank Japan and cross-population meta-analyses

Genome- wide association studies (GWAS) aim to iden-
tify associations of genotypes with phenotypes by testing 
for differences in the allele frequency of genetic variants 
between individuals who are ancestrally similar but dif-
fer phenotypically. GWAS can consider copy- number 
variants or sequence variations in the human genome, 
although the most commonly studied genetic variants 
in GWAS are single- nucleotide polymorphisms (SNPs). 
GWAS typically report blocks of correlated SNPs that all 
show a statistically significant association with the trait 
of interest, known as genomic risk loci. After 15 years of 
GWAS1, many replicated genomic risk loci have been 
associated with diseases and traits1, such as FTO2 for 
obesity and PTPN22 (REF.3) for autoimmune diseases.  
These results have sometimes provided hints into dis-
ease biology; for example, a GWAS implicated the  
IL-12/IL-23 pathway in the development of Crohn’s 
disease4, which supported subsequent clinical trials for 
drugs targeting the IL-12/IL-23 pathway5.

Results from GWAS can be used for a range of appli-
cations. For example, trait- associated genetic variants 
can be used as control variables in epidemiology studies 
to account for confounding genetic group differences6. 
Further, results can be used to predict an individual’s risk 
for physical and mental disease based on their genetic 
profile. Indeed, a recent study showed that genomic 
risk prediction using genome- wide polygenic risk scores 
(PRSs) for coronary artery disease, atrial fibrillation, 
type 2 diabetes, inflammatory bowel disease and breast 
cancer can identify disease risk as well as monogenic 
risk prediction strategies based on rare, highly pene-
trant mutations7. Genomic risk prediction may soon 

be allowed for clinical use as a stratification tool and a 
genetically based biomarker7.

More than 5,700 GWAS have now been conducted 
for more than 3,300 traits8 and a push for more statistical 
power has thrust GWAS sample sizes well beyond a mil-
lion participants9,10, yielding numerous associated and 
replicable variants for many heritable traits. Now that 
reliable genetic associations for various phenotypes are 
known, we are faced with the next big challenge: inter-
preting these associations in a biological and genomic 
context. Previous GWAS have shown that most traits are 
influenced by thousands of causal variants11 that indi-
vidually confer very little risk, are often associated with 
many other traits8 and are correlated with causal and 
non- causal variants that are physically close as a result 
of linkage disequilibrium12, making direct biological, causal 
inferences complicated13. Further, genetic associations 
may differ across ancestries, complicating direct compar-
isons between groups of individuals. Some of these limi-
tations hamper drawing unambiguous conclusions about 
the biological meaning of GWAS results, sometimes lim-
iting their utility to produce mechanistic insights or to 
serve as starting points for drug development1.

In this Primer, we aim to provide the reader with a 
comprehensive overview of GWAS, covering practical 
considerations, such as experimental design, robust 
data analysis and data deposition, ethical implications 
and reproducibility of results. We also provide guidance 
on how to interpret results from GWAS using several 
post- GWAS strategies and functional follow- up exper-
iments, as well as a discussion of the above- mentioned 
limitations and future challenges of GWAS.

Polygenic risk scores
(PRSs). Scores that provide  
an indication of an individual’s 
genetic liability to a trait or 
disease, calculated using an 
individual’s genome, weighted 
by effect sizes obtained from 
genome- wide association 
studies (GWAS).

Linkage disequilibrium
The non- independent 
association of two alleles  
in a population.

Genome- wide association studies
Emil Uffelmann  1, Qin Qin Huang  2, Nchangwi Syntia Munung  3, Jantina de Vries3, 
Yukinori Okada  4,5, Alicia R. Martin6,7,8, Hilary C. Martin2, Tuuli Lappalainen9,10,12 and 
Danielle Posthuma  1,11�ᅒ

Abstract | Genome- wide association studies (GWAS) test hundreds of thousands of genetic 
variants across many genomes to find those statistically associated with a specific trait or  
disease. This methodology has generated a myriad of robust associations for a range of traits  
and diseases, and the number of associated variants is expected to grow steadily as GWAS 
sample sizes increase. GWAS results have a range of applications, such as gaining insight into  
a phenotype’s underlying biology, estimating its heritability, calculating genetic correlations, 
making clinical risk predictions, informing drug development programmes and inferring potential 
causal relationships between risk factors and health outcomes. In this Primer, we provide the 
reader with an introduction to GWAS, explaining their statistical basis and how they are 
conducted, describe state- of- the art approaches and discuss limitations and challenges, 
concluding with an overview of the current and future applications for GWAS results.

ᅒe- mail: d.posthuma@vu.nl

https://doi.org/10.1038/ 
s43586-021-00056-9
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There are lots of consortia..

PGC (https://pgc.unc.edu)
• Psychiatric disorders

GIANT (https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files)
• Anthropometric traits

ENIGMA (http://enigma.ini.usc.edu/research/download-enigma-gwas-results/)
• Subcortical brain and hippocampal volumes

GLGC (http://lipidgenetics.org/)
• Global lipids genetics consortium

SSGAC (https://www.thessgac.org/data)
• Social Sciences Genetic Association Consortium - social and psychological traits 

EGG (https://egg-consortium.org/)
• Traits related to early growth. 

Large GWAS Consortia

7
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Critical information from the study
• What is the phenotype?

• How was it measured?
• How was it treated e.g. transformed? 

• What QC has been done? Covariates?
• What sample was this performed in?

• Sample size
• Genetic ancestry 

• If you plan to use sumstats from more than one study, is there sample 
overlap?
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Critical information from GWAS SumStats
Is there a ReadMe?
• SNP name/position
• Effect allele and alternate allele (A1 and A2)
• Effect allele frequency
• Marginal SNP effect
• Standard error
• P-value
• (Per-SNP) GWAS sample size
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Convert to correct format and filter/impute missing data.Some data field has NA and is non-numeric.Incorrect data field 
format.

Check publication/ReadMe file. Some methods require
total sample size, while some requires effective sample size. 

Missing data. Separate values in cases and 
controls.

Sample size (N)

SE = b/Z if b is provided,
or 𝑆𝐸 = 1/ 2𝑝 ( 1 − 𝑝) (𝑁 + 𝑍 2 ) given unit variance.

Missing data.Standard error (SE)

b = Z/SE if SE is provided, 
or 𝑏 = 𝑍 / 2𝑝 ( 1 − 𝑝) (𝑁 + 𝑍 2 ) given unit variance.
b = log(OR).

Provided data are Z-score or odds ratio (OR).Marginal effect (b)

Use data from LD reference. 
Impute by summary data 2𝑝𝑞 = 1/ (𝑁 ∗ 𝑆𝐸 + 𝑁 ∗ 𝑏2 ) .
Compute 𝑝 =

𝑁𝑐𝑎𝑠𝑒 𝑝𝑐𝑎𝑠𝑒 +𝑁𝑐𝑡𝑟𝑙 𝑝 𝑐𝑡𝑟𝑙
𝑁𝑐𝑎𝑠𝑒 +𝑁𝑐𝑡𝑟𝑙

.

Missing data. Provided data are minor allele 
frequency (MAF). Separate values in cases and 
controls.

Effect allele frequency 
(p)

Check ReadMe file. Check if the predictor is 
negatively correlated with the phenotype. 

Lower/upper case.
Unknown effect allele (A1/A2, REF/ALT).

Alleles

Use chromosome and position information to find 
their rsID (from LD reference file).

rsID not provided.SNP ID

Lift up to the same genome build using liftoverInconsistent coordinates among GWAS summary 
data and LD reference.

Genome build

10

What should we check prior to the analysis?
Raw data file

How to fix?What could be wrong?Item
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Lift up to the same genome build using liftoverInconsistent coordinates among GWAS summary 
data and LD reference.

Genome build

11

What should we check prior to the analysis?
Raw data file

How to fix?What could be wrong?Item
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Use chromosome and position information to find 
their rsID (from reference file).

rsID not provided.SNP ID

12

What should we check prior to the analysis?
Raw data file

How to fix?What could be wrong?Item
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Use data from LD reference. 
Impute by summary data 2𝑝𝑞 = 1/ (𝑁 ∗ 𝑆𝐸 + 𝑁 ∗ 𝑏2 ) .
Compute 𝑝 =

𝑁𝑐𝑎𝑠𝑒 𝑝𝑐𝑎𝑠𝑒 +𝑁𝑐𝑡𝑟𝑙 𝑝 𝑐𝑡𝑟𝑙
𝑁𝑐𝑎𝑠𝑒 +𝑁𝑐𝑡𝑟𝑙

.

Missing data. Provided data are minor allele 
frequency (MAF). Separate values in cases and 
controls.

Effect allele frequency 
(p)

Check ReadMe file. Check if the predictor is 
negatively correlated with the phenotype. 

Lower/upper case.
Unknown effect allele (A1/A2, REF/ALT).

Alleles

13

What should we check prior to the analysis?
Raw data file

How to fix?What could be wrong?Item
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Convert to correct format and filter/impute missing data.Some data field has NA and is non-numeric.Incorrect data field 
format.

Check publication/ReadMe file. Some methods require
total sample size, while some requires effective sample size. 

Missing data. Separate values in cases and 
controls.

Sample size (N)

SE = b/Z if b is provided,
or 𝑆𝐸 = 1/ 2𝑝 ( 1 − 𝑝) (𝑁 + 𝑍 2 ) given unit variance.

Missing data.Standard error (SE)

b = Z/SE if SE is provided, 
or 𝑏 = 𝑍 / 2𝑝 ( 1 − 𝑝) (𝑁 + 𝑍 2 ) given unit variance.
b = log(OR).

Provided data are Z-score or odds ratio (OR).Marginal effect (b)

Use data from LD reference. 
Impute by summary data 2𝑝𝑞 = 1/ (𝑁 ∗ 𝑆𝐸 + 𝑁 ∗ 𝑏2 ) .
Compute 𝑝 =

𝑁𝑐𝑎𝑠𝑒 𝑝𝑐𝑎𝑠𝑒 +𝑁𝑐𝑡𝑟𝑙 𝑝 𝑐𝑡𝑟𝑙
𝑁𝑐𝑎𝑠𝑒 +𝑁𝑐𝑡𝑟𝑙

.

Missing data. Provided data are minor allele 
frequency (MAF). Separate values in cases and 
controls.

Effect allele frequency 
(p)

Check ReadMe file. Check if the predictor is 
negatively correlated with the phenotype. 

Lower/upper case.
Unknown effect allele (A1/A2, REF/ALT).

Alleles

Use chromosome and position information to find 
their rsID (from LD reference file).

rsID not provided.SNP ID

Lift up to the same genome build using liftoverInconsistent coordinates among GWAS summary 
data and LD reference.

Genome build

14

What should we check prior to the analysis?
Raw data file

How to fix?What could be wrong?Item
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For SBayes, we recommend using the total sample size. Total sample size (Ncase + Nctrl) or effective
sample size - which one to use?

Sample size for disease

Visualise the distribution. Remove long tail/minor mode/
outliers, e.g., > 3*SD. 
Impute N = 1/(2pq(SE+b2)) if necessary.

Dispersed/skewed/multimodal distribution. 
Only overall sample size provided in meta-
analysis. 

Variable per-SNP sample sizes 

Choose a better LD reference.
Remove SNPs with LD heterogeneity (DENTIST).

LD reference does not match LD in the 
GWAS sample.

LD differences

Remove SNPs with large difference, e.g., > 0.2.Large differences between GWAS and LD 
reference data.

Allele frequency differences

Flip the alleles in GWAS and take the opposite sign 
of the marginal effect size.

Discordant alleles between data sets, 
e.g., A/T in GWAS but T/A in LD reference.

Allele discordance

For applications requiring a perfect match, filter 
SNPs or impute their marginal effects (e.g., ImpG). 

SNPs in GWAS are missing in the LD 
reference, or in reverse.

Mismatched SNPs

Impute the missing data or remove SNPs.Some SNPs have missing data.Missing data

15

What should we check prior to the analysis? (cont’)
Quality control (QC)

How to fix?What could be wrong?Item
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• Meta-analysis: METAL, MTAG 
• Finding independent association loci: PLINK-clumping, GCTA-COJO
• Fine-mapping causal variants: SuSiE, FINEMAP
• Variant annotation: ANNOVAR
• Exploring pleiotropic effects (PheWAS)
• Gene-based test: MAGMA, fastBAT, mBAT-combo
• Integrating with functional data: coloc, SMR, TWAS, OPERA
• Inferring trait-relevant tissues/cell types: LDSE-SEG, MAGMA-gene-set, scDRS
• Estimating SNP-based heritability: LDSC, SBayesR
• Estimating genetic correlation: Popcorn, MiXeR
• Predicting polygenic score (PGS/PRS): PRScie, LDpred2, PRScs, SBayesR
• Inferring causal relationship between traits: GSMR, LCV
• …  

What can we do with them?

These will be covered on 
Tuesday 
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Linkage disequilibrium (LD) correlations
Usually obtained from a reference population
LD correlation matrix

𝐑 = !
"
𝐗′𝐗

assuming 𝐗 is standardised 
with mean zero and variance 
one
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Match in ancestry

LD reference needs to match with GWAS sample in genetics
• No systematic differences in LD à same ancestry and population structure

• Minimum sampling variance in LD à LD ref sample size cannot be too small

PERSPECTIVE NATURE GENETICS

and heterogeneity of sub-phenotypes among countries must also be 
considered.

Differences in environmental exposure, gene–gene interactions, 
gene–environment interactions, historical population-size dynam-
ics, statistical noise, some potential causal effect differences and/or 
other factors further limit the generalizability of PRS in an unpre-
dictable, trait-specific fashion46–49. Complex traits do not behave in 
a genetically deterministic manner: some environmental factors 
dwarf individual genetic effects, thus creating outsized issues of 
comparability across globally diverse populations. Among psychi-
atric disorders, for example, schizophrenia has a nearly identical 
genetic basis across East Asians and Europeans (rg = 0.98) (ref. 40),  
whereas the substantially different rates of alcohol-use disorder 
across populations are partially explained by differences in avail-
ability and genetic differences affecting alcohol metabolism50. 
Although nonlinear genetic factors explain little variation in com-
plex traits beyond a purely additive model51, some unrecognized 
nonlinearities and gene–gene interactions can also induce chal-
lenges to genetic-risk prediction, because pairwise interactions 
are likely to vary more across populations than individual SNPs. 
Mathematically, this scenario can simplistically be considered in 
terms of a two-SNP model, in which the sum of two SNP effects 
is likely to explain more phenotypic variance than the product of 
the same SNPs. Some machine-learning approaches may thus mod-
estly improve PRS accuracy beyond current approaches for some 
phenotypes52, but improvement is most likely for atypical traits with 
simpler architectures, known interactions and poor prediction gen-
eralizability across populations, such as skin pigmentation53.

Limited generalizability of PRS across diverse populations
To date, multi-ancestral work has been slow in most disease areas54, 
thus limiting even the opportunity to assess PRS in non-European 
cohorts. Nonetheless, some previous work has assessed prediction 
accuracy across diverse populations in several traits and diseases 
for which GWAS summary statistics are available and has identified 

large disparities across populations (Supplementary Note). These 
disparities are not simply methodological issues, because various 
approaches (for example, pruning and thresholding versus LDPred) 
and accuracy metrics (R2 for quantitative traits and various pseudo-
R2 metrics for binary traits) illustrate this consistently poorer per-
formance in populations distinct from discovery samples across a 
range of polygenic traits (Supplementary Table 1). These assess-
ments are becoming increasingly feasible with the growth and pub-
lic availability of global biobanks as well as diversifying priorities 
from funding agencies55,56. We assessed how prediction accuracy 
decayed across globally diverse populations for 17 anthropometric 
and blood-panel traits in the UK Biobank (UKBB) when European-
derived summary statistics were used (Supplementary Note). In 
agreement with findings from previous studies, we found that the 
genetic prediction accuracy was far lower for other populations 
than for European populations: 1.6-fold lower in Hispanic/Latino 
Americans, 1.6-fold lower in South Asians, 2.0-fold lower in East 
Asians and 4.5-fold lower in Africans, on average (Fig. 3).

Prioritizing diversity shows early promise for PRS
Early diversifying GWAS efforts have been especially productive 
in addressing questions surrounding risk prediction. Rather than 
varying the prediction target dataset, some GWAS in diverse popu-
lations have increased the scale of non-European summary statistics 
and also varied the study dataset in multi-ancestral PRS studies23,24,40. 
These studies have shown that even when non-European cohorts 
are only a fraction of the size of the largest European study, they are 
likely to have disproportionate value for predicting polygenic traits 
in other individuals of similar ancestry.

Given this background, we performed a systematic evaluation 
of polygenic prediction accuracy across 17 quantitative anthropo-
metric and blood-panel traits and five disease endpoints in British 
and Japanese individuals23,57,58 by performing GWAS with the exact 
same sample sizes in each population. We symmetrically demon-
strate that prediction accuracy is consistently higher with GWAS 
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Fig. 2 | Demographic relationships, allele frequency differences and local LD patterns between population pairs. Data analyzed from 1000 Genomes. 
Population labels: AFR, continental African; EUR, European; EAS, East Asian. a, Cartoon relationships among AFR, EUR and EAS populations. b, Allele 
frequency distributions in AFR, EUR and EAS populations of variants from the GWAS catalog. c–e, Color axis shows LD scale (r2) for the indicated LD 
comparisons between pairs of populations; the same region of the genome for each comparison (representative region is chromosome 1, 51572–52857 
kilobases) among pairs of SNPs polymorphic in both populations is shown, illustrating that different SNPs are polymorphic across some population pairs 
and that these SNPs have variable LD patterns across populations.
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1000 Genomes Project (1KGP)
Individual sequence data
https://www.internationalgenome.
org

Where to find LD reference data?

UK Biobank (UKB)
We provide LD matrices computed from a 
subset of UKB samples
https://cnsgenomics.com/software/gctb/#LDma
trices
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• GWAS summary statistics are publicly available for almost every trait you could think of

• Before using publicly available data make sure you understand how it was created and 

what it is comprised of

• The checks you will want to do will depend on what you plan to do with the data

Summary
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