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General Information:

 We are currently located in Building 69

i@ Emergency evacuation point

 Food court and bathrooms are located
in Building 63

 If you are experiencing cold/flu

symptoms or have had COVID in the m
last 7 days please ensure you are @y m
wearing a mask for the duration of the .

module

&f




Data Agreement

To maximize your learning experience, we will be working with genuine human
genetic data, during this module.

Access to this data requires agreement to the following in to comply with human
genetic data ethics regulations

If you haven'’t done so, please email <ctr-pdg-admin@imb.uq.edu.au> with your
name and the below statement to confirm that you agree with the following:

‘| agree that access to data is provided for educational purposes only and that |
will not make any copy of the data outside the provided computing accounts.”



Learning materials

Instructions to access WiFi/desktop/server:

https://suave-pillow-de4.notion.site/Instruction-to-Computing-Resources-
dcbab658c9a584e6d80a443c5d64042d87?pvs=4

Slides and practical notes:

https://cnsgenomics.com/data/teaching/ GNGWS24/module[1-6]/



https://suave-pillow-de4.notion.site/Instruction-to-Computing-Resources-dcba658c9a584e6d80a443c5d64042d8?pvs=4
https://suave-pillow-de4.notion.site/Instruction-to-Computing-Resources-dcba658c9a584e6d80a443c5d64042d8?pvs=4
https://cnsgenomics.com/data/teaching/GNGWS24/module%5b1-6%5d/

Module 2 - running the learning materials

https://github.com/GenomicsMachinelLearning/qimr-teaching-2024/tree/main

Copy and paste each of the following lines into your terminal once you have logged into the workshop server:

e /software/bin/micromamba shell init

e source ~/.bashrc

e micromamba activate /software/conda—-envs/winter_school_2024

e git clone https://github.com/GenomicsMachinelLearning/qimr—-teaching-2024

e ~/qimr-teaching-2024/runme.sh

The output will look something like:

Port 3502 is available

Command to create ssh tunnel:

ssh -N -L 3502:10.10.10.10:3502 f00@10.10.10.10

Use a Browser on your local machine to go to:
localhost:3502 (prefix w/ https:// if using password)

[I 2024-06-20 ©5:57:41.633 ServerApp] Extension package jupyter_1lsp took 0.1372s to import
[I 2024-06-20 05:57:44.647 ServerAppl http://127.0.0.1:3502/tree?token=abc123

e Copy the line beginning with "ssh" into a new terminal, on your local computer, and hit [Enter].
e Copy the text beginning with "http://127.0.0.1" into a new tab in your browser, and hit [Enter].




Module 2 Cellular Omics

Room 314/315, Building 69

Aiming at interactive session, we provide the presence of a large teaching team for more
one-to-one discussion.

Lecturers/Instructors: Quan Nguyen, Andrew Causer, Levi Hocki, Onkar Mulay, Prakrithi
Pavithra, Andrew Newman, Xiao Tan, Feng Zhang



Module 2 Cellular Omics — Leaning Objectives

Technologies for generating single-cell and spatial transcriptomics data
Technologies for other spatial omics, focusing on proteomics
Exploratory visualisation to understand the data

Statistical analyses to discover new biological processes and biomarkers associated with disease, including cells,
genes and groups of cells within the tissue. This includes:

» Identifying cell types

» Finding gene markers

» Mapping cell neighbourhoods (cell communities)

» Analysing cell-cell interactions

Analysing spatial proteomics data and integration with spatial transcriptomics through imaging analysis
techniques

Machine learning analysis of sequencing and imaging data



Lecture Outline

Day 1
 Lecture 1: Introduction Single Cell and Spatial Transcriptomics

e Lecture 2: Defining Cell Types

e Lecture 3: Review Data Structure and Understand Spatial Concepts by Visualisation
e Lecture 4: Spatial DNA-level Analysis for Copy Number Variation

e Lecture 5: Cell Community ldentification

e Lecture 6: Cell-Cell Interactions

Day 2

* Lecture 7: Tissue Segmentation and Spatial Statistics
e Lecture 8: Spatial Proteomics

e Lecture 9: Machine Learning



file:///Users/quann/Library/CloudStorage/OneDrive-TheUniversityofQueensland/SharedLaptop/QuanLab/QuanLab/Teaching/WinterSchool2024/LectureNotes/Day2_Winter_School_GML_All_20240624.pptx
file:///Users/quann/Library/CloudStorage/OneDrive-TheUniversityofQueensland/SharedLaptop/QuanLab/QuanLab/Teaching/WinterSchool2024/LectureNotes/Day2_Winter_School_GML_All_20240624.pptx
file:///Users/quann/Library/CloudStorage/OneDrive-TheUniversityofQueensland/SharedLaptop/QuanLab/QuanLab/Teaching/WinterSchool2024/LectureNotes/Day2_Winter_School_GML_All_20240624.pptx

Lecture 1: Introduction Single Cell and Spatial
Transcriptomics



Single cell RNA sequencing
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* Single-cell RNA sequencing (scRNA-seq) measures thousands of genes in a separate cell
* How: 3 barcoding steps for sample, cell and RNA molecule

* Scale: bulk RNA-seq (5 samples) vs. scRNA-seq (45 K cells), a ~900 times bigger gene count matrix



Single cell informatics

Precision Genomics Medicine

% Regenerative Disease
{ I biology mechanisms
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Diagnostics
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Drug efficacy
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The Genomics and Machine Learning Team

Quan Nguyen, Andrew Causer, Levi Hocki, Onkar Mulay, Prakrithi Pavithra, Andrew Newman, Xiao Tan, Feng Zhang



Advanced genomics technologies

2018: Single Cell Transcriptomics 2019: Single Cell Multiomics 2020: Spatial Transcriptomics

Jarwsary 2020 Vol 17 No. 1

hods

nature methods

Method of the Year 2020:
Spatially resolved transcriptomics

nature met

METHOD OF THE YEAR 2019

BREAKTH ROUGH Localization microscopy twice as precise
ofthe YEAR A cryo-EM-based structural proteomics approach
Time-resolved crystallography at the European XFEL

RAVAAAS

Magnetic resonance at high speed




Increase single cell experiments to millions of cells
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Single cell data vs. bulk data

https://github.com/IMB-Computational-Genomics-Lab/sclVA

Upload Data ‘ Quality Control Single Gene Analysis Gene List Analysis About and Instruction

: ‘ Uploaded Expression Matrix © O
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https://github.com/IMB-Computational-Genomics-Lab/scIVA

Single cell data analysis
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Dimensionality reduction Clustering Trajectory analysis
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16 QC measures
10 scRNA-seq libraries

Data quality control: a range of QC measures
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Data Normalisation - Motivation

Batch effects: technical differences a b Design

induced by the operator or other Biological replicates Technical replicates Balanced Confounded

experimental artifacts A EE HEBN
/’\ EEE EEE
a A\ EEE NEEE

Often observe systematic differences in ‘/ ©

sequencing coverage between libraries

( or cells)

(o]

Well-normalized data

Normalization aims to remove these
differences

Such that they do not interfere with
comparisons of the expression
profiles between cells

Cells
OoON OO
.‘
v ©
Cells
OoON O

Global1 2 3 Globalt 2 3
Distribution Distribution

Ensure heterogeneity or differential
expression within the cell population
are driven by biology and not technical (Buttner et al, 2019)
biases.




Three levels of single cell data normalization

Original Corrected

Three levels of technical variation in
scRNA-seq data:
* Gene-specific effects within a cell: GC
content, gene length

batch

GSE81076
GSE85241

batch

GSE81076
GSE85241

* Cell specific effects within a sample:
each cell is amplified separately, causing
amplification bias among cells

Dimension 2
o

Dimension 2
o

* Batch effects within a study: sample
preparation or technology-specific

effects P

0 20 -20 0 20 40
Dimension 1 Dimension 1



Cell to cell normalization: Library size normalization

Cell1 Cell2 Cell3 Cell4 Cell5

genel 0 0 0 0 0

gene2 0 0 0 0 0

gene3 3 0 1 0 1

gene4d 0 1 3 3 0

gene5 1 4 2 1 2
.COlsum./ 5 6 4 3 Total library size = 22
library size

factor 0.91 1.14 1.36 0.91 0.68 Nreells = 5
Normalized /5 4.39 4.41 4.40 4.41 Size factor= \12rary size -nrCells
library size Total library size

The mean size factor across all cells is equal to 1
Normalized expression values are on the same scale as the original counts,

Useful for interpretation especially when dealing with transformed data



Cell to cell normalisation: a pooling strategy to solve zero inflation

= chlll + chllz

Scaling factor of cell 1

E(V;) = A Z 0; X tj‘1 Vik is the sum of adjusted expression value across all cells in pool V_for gene i
JESk Ajp is the expected transcript count and 6; is the cell specific bias

S, is a pool of cell; 6; X tj'l is size factor for cell j

* Each cell is considered as a sequencing library, so the total reads per cell need to be normalised
* Pool cells to reduce the number of zeros

* Estimate the size factors for the pool
* Repeat many time and use deconvolution to estimate each cell size factor 6;

O O O O O O 04751ngle cell Sum(poolB)/
Sum(poolA)/ average
O O O O O O Al cells (averaged to make Pool A Pool B Sum(poolA) Sum(PoolB) average average
O @ ® O a reference pseudo-cell)
O O O O O Cell Cell Cell
0O — Celll 2 3 4
O ® O © 0O O Sji %ﬁ%; + 8, = 6, gl 0O 0 0 0 0 0 0 0 0
Ole ) 0 ® 0 O 0O g2 O 0 0 0 0 0 0 0 0
O O 0O 6 S’;‘;’:‘:;':‘;: °“”°2°"5: = [B 3 0 1 0 3 1 4/4 3/4/4 1/4/4
e 1 A

} Cell pool B: goeelil= g: 5 g: g4 0o 1 3 3 1 6 7/4 1/7/4 6/7/4
O+ 85+ 6, + By = 6, 01101100..|| 6 6| g5 1 4 2 1 5 3 8/4 5/8/4 3/8/4

(Lun et al, 2016) 1 1

- Ademo 0, 05



Batch normalisation: Mutual nearest neighbour (MNN)

Three assumptions in MNN
normalisation:

(i) thereis at least one cell
population that is present in
both batches,

(ii) the batch effect is almost
orthogonal to the biological
subspace, and

(iii) the batch-effect variation is
much smaller than the
biological-effect variation
between different cell types

Batch 1 Batch 2
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A

. &8
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reffect
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IV IMNN
[ , pairings

O O KNN of green ce|l __ ' O
S

0C o
0 oe—— %000
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Find KNN in
anther Batch

Red and green are MNN

i%,

c

assume batch effects

’y are mostly orthogonal
W to the biological manifold:

Nearest
in batch 2 ‘ y‘

< batch effect: vertical

%}/ & biological manifold:

horizontal

the cosine normalization

Batch 3

(Haghverdi et al, 2018)
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t-SNE 2

t-SNE 2

Batch normalisation: Mutual Nearest Neighbour (MNN)

Uncorrected
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Dimensionality reduction: linear techniques

: . : . Single cell
Why dimensionality reduction: = Bulk
* Filters out noise < Y
« Minimises curse of dimensionality =0
. . . . . . N w0 Y o
* Allows visualization with more separation of points 5§ =- " o >
. 2] o
* Reduces computational load 5 S- A®
a8 =» ®
S A
Q_

Linear approaches:

* PCA (Principal Component Analysis) 10 05 00 05 10 18 PC 1
* ICA (Independent Component Analysis) Dimension 1

 NMF (Non-negative Matrix Factorization)
10.04

. Variance explained
Linear approaches:

e Capture the dimensions with higher variance

* Quantitative way to assess the amount of retained
dimensions

* Preserve both long-range and short-range distance
(i.e. cells that are very different or very similar)

e Different to bulk RNAseq data, the first few
dimensions are not enough to capture scRNAseq 25 .
data structure well | | e -'

7.5

5.0+

Percent variance explained




Dimensionality reduction: nonlinear techniques

MDS (Multidimensional Scaling)
Uniform manifold approximation and projection (UMAP)
t-distributed Stochastic Neighbour Embedding (t-SNE)

UMAP and tSNE: nonlinear embedding (mapping) of data points from
high dimensional space to low dimensional space, so that the
probability distance between these two space (KL diverge " Cross
entropy) is minimised

Both methods: class of k-neighbour based graph learning algorithms,
strong influence of hyperparameters, non-deterministic (stochastic)

Nonlinear techniques solve the overcrowding representation, which is

often seen in linear approaches for large scRNA-seq data

UMAP preserves local & more of the global data structure than t-SNE

a

UMAP2

10 1

t-SNE
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tSNE2

40

-20

-40

Global vs local distance in low dimensional space

tSNE MNIST

Points within
clusters
are similar
PO

Hard to say if these
clusters
are less similar...

0 20 40

(Oskolkov N, 2019)



tSNE does not preserve long distance - KL divergence

(Oskolkov N, 2019)

tSNE

i

tSNE minimises Kullback-Leiber divergence KL(X,Y)
2
KL(X,Y) ~ —P(X)log Q(Y) = e~ X log(1+Y?)

The embedding minimizes the Kullback-Leiber divergence of the
distribution from Q to P calculated as: KL(X,Y) =
p.. == 2
Ziijpij ]ogﬁ ~ e X log(1+Y?)
tj
The probability distance between two neighbouring cells is the
Pjii t Pijj
2N
Conditional probability of cell C] given cell C is calculated as:

exp <—_d(ci'zc . )2>

joint probabilities Dij =

—d(Ci'Ck)2>
207
For large distances X in high dimensions, the exponential term
approaching 0, so Y can be basically any value from 0 to e= and
KL remains small

For small X, to minimise KL (cost/penalty), Y is small

oy —1

o (v

Pairwise similarity in t-SNE space: q;; = 5 A+Y =yl -1
k+zm k= Ym

y, and y; are corresponding mapped points of cells . and C] to
t-SNE space, and q;; follows t distribution to avoid

crowding

Pjii =
)y, exp<




UMAP preserves long distance - cross entropy

UMAP

(Oskolkov N, 2019)
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UMAP minimises cross entropy CE(X,Y)

CE(X,Y) = P(X) log(%) + (1 - P(X)) log(

-X? _Xx? 1+Y?
~e X log(l+Y2)+<l—e - )log( = )

1 - P(X)
1-Q(Y)

)

X - 0:CE(X,Y) ~log(1+Y?)
When X small, Y is also approaching 0 to minimize CE

1+Y2)

X 5> 0:CEX,))Y)~ log( v

When X large, Y is also large to minimize CE

: : 2
tSNE: KL(X,Y) ~ —P(X)log Q(Y) = e~ X log(1 + Y?)




More about UMAP vs tSNE

To learn low-dimensional embeddings, UMAP assigns
initial low-dimensional coordinates using Graph
Laplacian (force directed graph layout algorithm) in
contrast to random normal initialization used by
tSNE. Therefore, UMAP is less dependent on random
state (not changing from run to run)

UMAP proceeds by iteratively applying attractive
(among edges) and repulsive forces (among vertices)
at each edge or vertex. Convergence is guaranteed
by slowly decreasing the attractive and repulsive
forces of the neighbour graph.

UMAP has no computational restrictions on
embedding dimension, making it viable as a general-
purpose dimension reduction technique for machine
learning (tSNE can only embed to 2-3 dimensions)

UMAP on Cancer Associated Fibroblasts (CAFs): Programmed from Scratch

UMAP2

. o s se AP

oprs (X8

001
UMAP1

(Oskolkov N, 2019)




Single Cell Clustering Analysis

Clustering in scRNAseq is a data-driven way to find cell (sub)types at single-cell resolution



Graph-based Clustering

Two main steps:

1) Embed cells in a graph structure:
* K-nearest neighbour (KNN) graph (cells with similar
expression patterns identified by Euclidean

distance in PCA space)
* Edge weights between any two cells based on the

shared overlap in their local neighbourhoods
(Jaccard similarity)

301 o P
2) Community detection to partition cells in graph into i—éﬁ%
groups of cells ) w

* Modularity optimization techniques such as the

Louvain algorithm ' 20]

 Modularity: measures the density of edges inside 3 T R
communities to edges outside communities EIIR (7. 2A e oo f’*

« Louvain iteratively groups cells together, with the mj‘t FOGRGAFeno
goal of optimizing the standard modularity 101 ,,..g;g; Platelet
function 0 5 %0 % 30



a b

Graph-based Clustering  »1 & 09 o
0| L
v g “ A
5 . 'y 3 O g A
* Build shared-nearest-neighbour graph connecting the cells 07 . 07
and finds tightly connected communities . .
10 '@ 10 A
* Increasing the number of neighbours when constructing S0 20 -0 0 10 30 0 4o 0 10
PC1 PC1

the cell-cell graph indirectly decreases the resolution of
graph-based clustering

(2]

Ry @
W —&"’,\'4 o
Nature Reviews Genetics, 20, (2019)



Visualise clustering results
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Spatial transcriptomics approach

Single cell Spatial

Lego:
(@boxia)

Fruit salad:
(@LGMartelotto)




Spatial Transcriptomics Data (seqFISH): expression + location

Field

(2050 cells and ~10,000 genes)

of cfg X Y Aanat Aasdh Aatf Abat Abca16 Abcal7
View
© 0 0 1 1766.40 283.42 0 0 2 0 0 0
% 1 0 2 189140 348.38 0 0 0 0 2 0
g 2 0 3 1548.70 351.11 0 0 0 0 0 0
> 3 0 4 1657.60 357.37 0 0 0 2 0 0
4 0 5 1767.40 392.22 0 0 0 0 0 0
X-coordinate
Fluorescence single molecule counts Example of seqFISH RNA in a cell: 3247 genes
Gene ID 1 19 23 44 53 57 63 70 71 72

X-coordinate COO rd i n ates

0 653.00 675.24 687.21

733.85 615.16 663.99 611.06 669.65 638.03 601.10

1 434.34 428.89 479.06 472.43 469.95 464.81 443.74 417.42 430.46 472.07



Spatial proteomics

No. of
targets

Primary antibody Secondary antibody
[
>
= 1 s
g mIHC @ IS 1o Y ;; 30
2 |
Primary antibody HRP-conjugated SA Tyramide fluorophore Microwave treatment
OPAL 1 — o — > — ’ 10
i |
Direct IF Indirect IF: PA Indirect IF: SA Fluorophore bleaching
CyclF or 4 — 4 — . }2’ ~ 60
\ 4 4 4 b 7 T I
4 |
> Primary antibody Fluorophore release Fluorophore bleaching
o
< REAdye_ 1 - 100
@ A o Vs
9 lease and e S 400
€  REAfinity L 4 O 4 o o> (400)
E|
E dsDNA-conjugated PA pool  Extension with fluorophore Fluorophore cleavage Extension with fluorophore
B
= CODEX —> 60
Pl — gl Lelngt » Xl
ssDNA-conjuagated PA pool ~ Concatemer hybridization Fluorescent probe hybridization Reporter removal
o Lo Al BHgl o BHpHE e
£%r ey LT xJ e r )
Barcoded PA pool Barcode amplification Fluorescent probe hybridisation Reporter removal
siuplex Sl o Bl o AL 10
Y N 47 & »J 7
Metal-conjugated PA pool UV laser ablation TOF mass spectrometry
T S ] v 4 40
= ‘ N
S IMC X% g 11\4’j‘1 | (100)
2
] Metal-conjugated PA pool lon beam gun TOF mass spectrometry
i SR N 40
= — 100
S MIBI Py T 2X% 1 0 | (100)
= Stain + oligonucleotide-conjugated PA pool Oligonucleotide cleavage Quantitative analysis
S
5 b% \ e e 44
0] DSP 5:' £ NP ~
2 S ST AP ¢4 » il (100)
(%)
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prep.

FFPE

FFPE

FFPE

FFPE

FF*
FFPE

Whole-mount
FF*
FFPE

FFPE

FF
FFPE

FF
FFPE

FF*
FFPE



Spatial transcriptomics (sequencing)

Image, laser capture Tissue digestion,
mRNA collection,
cDNA synthesis

LCM based
(e.g., LCM-seq)

Stain, image Permeabilize tissue,
mRNA capture,
in situ cDNA synthesis
mRNA capture
(e.g., spatial <

transcriptomics)

Permeabilize tissue, In situ cDNA synthesis

microfluidic barcoding, image

Microfluidics based
(e.g. DBIT-seq) {

Round 1 Round 2

cDNA
~~ —~-"-RNA

O Padlock probe hybridization

Round n

Sequence cDNA

Sequence cDNA

Barcode

00

and ligation

1SS cDNA

NEA, NN
_— _
cDNA
S~ —~-""RNA
cDNA cross-linking,
circularization and ligation
FISSEQ

d- Do
Formamide Q—Q&‘ Formamide LQQ
| —

1. 0000000
2.0 000
n 0000000

No. of
targets

10,000+

10,000+

10,000+

31
(256)

10,000+

Tissue
prep.

FF

FF
FFPE

FF
FFPE

FF
FFPE

FF
FFPE



Spatial transcriptomics (FISH)

smFISH

Spectral
barcoding

Spatial
barcoding

osmFISH

MERFISH

seqFISH

seqgFISH+

RNAscope

==

e —

O o—"* S~e—a—_ ~

Round 1

—e - —e i -
et T, 0y et SIS, e e

——

L

———

\ \ k Photobleach

)\ 1. 1 i Tl
! i‘l‘X i

I

I3
\ Formamide

e

YTy Yy
YTy YYy
"‘:§;£g;—~”"

DNase
e

Round 2

\ \ k Photobleach
\ s _—
\/-

L)

Formamide
_

Round n

Wit h
g

./ W1
=4 2=

\\—A/-

Barcode

NA

®:0:0-0

NA

NA

No. of
targets

<10

32
(792)

<10

33

10,000

249

10,000

12

Tissue
prep.

FF
FFPE

NA

NA

FF

FF

FF

FF
FFPE



Spatial transcriptomics adds spatial dimension and tissue morphology

Spatial spots on a slide f I
- Spatia

) 4x26 | 3x26 | ...
oo

Fam234 | 0 1
Nefl 3 0
SemaSa | 0 1

Spatial Expression

el 2

Color image intensity
e On-tissue expression profiling (>20,000 genes); each spot contains ~1-9 cells; tissue < 6.5 mm x 6.5 mm
Other spatial technologies are different (complementary) in resolution, throughput, scale, sensitivity ect.



Analysis landscape

Sample processing

Tissue preparation (FF/FFPE)

- @ R N Y LY E - B Il IMC, MERSCOPE, Xenium, CosMx, ..

Je —
AR \
SRR =

N NN\ B - >/

Library design

Hybridization

Image acquisition

Slide-SeqV2, Stereo-seq, VisiumHD, ...

I
ACACATA AwA

Sequencing

. MRNA capture |

preparation

Data processing + ana|ysis Cell type and expression profiling + Tissue microenvironment characterizations

30 20 -0 0 0 20 30
+SNE1

combine as cell metadata for mapping
(single cell masks/expression profiles)

.
Label o =

:. . IEER_NEN

| i
Cell Ms

Typical single cell
transcriptome analysis

e [
® Label -

cellular neighborhood/interaction analysis

(Park et al, 2022)




Lecture 2: Defining Cell Types
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Module 2 — Part 2: Defining Cell Types

Andrew Causer

(R package 10X Visium




Module 2 — Part 2: Overview B or aurevetans

1. Data Pre-Processing

* General QC - remove low quality spots/cells and genes
* Data Normalisation
2. Clustering and Cell Typing
* Perform Unsupervised Clustering — group similar spots/cells together based on transcriptome

* Cluster Annotation — use marker genes to cell type clusters

3. Spot Deconvolution and Single-Cell Label Transfer

* Visium Spot Deconvolution — infer the cellular composition of each spot

e Xenium Label Transfer — matches cells from a reference dataset based on genetic similarities

44



Datasets — Melanoma (Skin) B o

Visium

Xenium

45



Datasets — Melanoma (Skin) B o

Visium
’ Visium Spatial Capture Area with Visium Gene
¢ Gene Expression ~5000 Barcoded Expression Barcoded
Slide Spots Spots
EE —

«— 6.5 mm—

Partial Read 1

Visium

«—6.5 Mm—

Xenium

1 spot = ~2-10 cells
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Datasets — Melanoma N Or QuEmELAND

Xenium

Sample Preparation Probe Hybridization, Ligation, & Amplification
e
FF or FFPE Tissue Sections Fixation & Permeabilization (FF) or
on Xenium slides Deparaffinization & Decrosslinking (FFPE)

Xenium Slide

XN L. @

I'T Probe Hybridization Rolling Circle Amplification
l I l‘ Product

7 | — — —
l I |

|
B O
— Sample Area

(do not cover fiducials) Ligation &

Primer Hybridization for Amplification

Data Visualization

2. Probe . 1
Hybridization
M
Cycle —
1 Fluorescent 3 Automated Slide
Xenium Probes Imaging 3
Analyzer .
\ :
§ " @
4. Probe
Removal
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Datasets — Melanoma (Skin) B By

Spot-Based

#DataPoints | _# Gones _

iSi 923 spots 18,085
Visium

Xenium

#DataPoints | _# Gones __

21,596 cells 260

Single Cell

48



1. Data QC and Normalisation (IR

Factors of Technical Noise

Living Cells Dying Cells

high

low

#genes  #MT-genes #genes #MT-genes
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1. Data QC and Normalisation (IR
Factors of Technical Noise

Living Cells Dying Cells Tissue Folding

high

low

#genes  #MT-genes #genes #MT-genes
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1. Data QC and Normalisation

Factors of Technical Noise

Living Cells

#genes  #MT-genes

Dying Cells Tissue Folding

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Remove Outliers

OUTLIERS ﬂ

#MT-genes

51



1. Data QC and Normalisation B or aurevetans

Data Normalisation

Why we normalize - Ensures comparability of gene expression between spots/cells:

Unnormalized: Normalized:
4 b

52



1. Data QC and Normalisation B or aurevetans

Data Normalisation

Why we normalize - Ensures comparability of gene expression between spots/cells:

« Technical noise: capture efficiency/sequencing depth

Sequencing Depth

53



1. Data QC and Normalisation (IR

Data Normalisation

Why we normalize - Ensures comparability of gene expression between spots/cells:

« Technical noise: capture efficiency/sequencing depth

» Biological effects: Spots may contain varying numbers of cells

C
.8 sk ?
(7]
o
Q.
x
L
o
C
(O}
O
I
X
[
O Spot 1 Spot 2
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1. Data QC and Normalisation

Data Normalisation

Why we normalize - Ensures comparability of gene expression between spots/cells:

Genes

Need for Downstream Analyses!

[ L[ [T TTIH ]
HIESEN'E E Em
slI®D

1

[ healthy
[ diseased

o
anjea d gL6oj-

1

J

—_

Gene expression

<00

258 )
=

oo on"m

L X I n¥p =

°.0, mE <
* K >
¥ x K
* X

h 2dvINN

55
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2. Clustering and Cell Typing

Groups Spots/Cells together based on similar transcriptional patterns

KNN graph Initial partition Final partition

Find Aggregate

network ASfine

—_—
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2. Clustering and Cell Typing

Groups Spots/Cells together based on similar transcriptional patterns

KNN graph Initial partition Final partition

Find Aggregate

network Rehns

S

o MW cos

57
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3. Spot Deconvolution/Label Transfer

Spot Deconvolution

Annotated Single Cell

Reference Data

c".
o e

. Celltype1

M Cell type 2

009,

M Cell type 3

0,0,0,0.0,0
0502020202020,
0%0%%

B Cell type 4

Cell type 3

N
()]
o
=
L
O
o

0,050,0,0,9,0,0,0,0,0.0,0,0,

99502825

7 cells overlapping

a single spot

.°
o o%0
%
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Running the Practical

Terminal PowerShell

L N @ andrewca — -bash — 151x47

Last login: Thu Jun 20 89:24:33 on ttyseee

The default interactive shell is now zsh.

To update your account to use zsh, please run ‘chsh -s /bin/zsh’.

For more details, please visit https://support.apple.com/kb/HT208050.
(base) QIMR20118:~ andrewca$

(base) QIMR20118:~ andrewca$

(base) QIMR20118:~ andrewca$

(base) QIMR20118:~ andrewca$

(base) QIMR20118:~ andrewca$

(base) QIMR20118:~ andrewca$ ssh ancause@203.101.225.57l

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

1. Log into your account:
ssh {username}@203.101.225.57

*username & password from winter school email*

2. Follow these commands:

= /software/bin/micromamba shell init
= source ~/.bashrc
= micromamba activate /software/conda-envs/winter_school_2024

= git clone https://github.com/GenomicsMachinelLearning/qimr-teaching-2024
/scratch/SUSER/qgimr-teaching-2024
= /scratch/SUSER/qgimr-teaching-2024/runme.sh

3. Open JuperterNotebook:

/software/002-clustering-cell-typing/2.1_ST_Cell_Typeing_Tutorial.ipynb
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1. Data QC and Normalisation

Data Normalisation - SCTransform

Leg-normalization

UMAP 2

® Original @ Downsampled

-log10(p-value)

Log-normalization Log-normalization
200 4 e . . ' . . - -
2 1509 -
a .
£ 1004 ° R T e
@ CD16+ high 2 _ /CD14+ high
€ 07 ‘as,. 6620
3 o (-9a%) . (+516%)
& -0.5 0.0 0.5 1.0
2 Pearson Residuals
S z200{ .
E -
Pearson Residuals p Gl - :
30 y 3 e 1 00 p g " o a .
11 DE genes 2 CD16+ high..” . : @m high
. L 50‘ 573 .‘ ., '--:. ‘? '\ ! 2 A 771
201 o4 _1-59%) - -4? u  (-50%)
1.0 0.5 0.0 0.5
Group mean difference
101 y after downsampling
y :}.' " > « *
0- U * DE classification of genes in monocytes

01 00 01 02 03
Group mean difference

before downsampling CD16+ group
@ HighinCD16+ @ not DE @ Highin CD14+
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Lecture 3: Review Data Structure and

Understand Spatial Concepts by Visualisation
Levi Hocky and Quan Nguyen
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Definition Data ”

- Data: Collection of raw facts (hnumeric, categorical, etc.)

- Data structure: specialized format for organizing and storing data in memory that contains not only the
elements stored but also their relationship to each other



scRNAseq or spatial transcriptomics data B S ammmaians

AUSTRALIA

Gene expression matrix:

1

3

- Row: cells/spots gene_ids  feature_types genome
- Column: genes ., MIR1302-2HG ENSG00000243485 Gene Expression GRCh38
- Cells/spots metadata: ancng array ([[-3.8268683e+02, 2.4569946e+02, 2.9572031e+0l, ...,
- Cell type -7.4096527e+00, -1.3591890e+01, -1.5226344e+00],
Batch [ 8.5815186e+02, 4.6844845e+01, -5.8959357e+02, ...,
) atc AAACA -9.1535692e+00, 4.7668648e+01, 8.6046457e+00],
- Spatial coordinates AAACAC [-5.3620459e+02, -1.2136969e+02, 8.0695274e+01, ...,
i AAACAG -3.3967710e+00, 1.3312209e+00, -7.4527483e+00],
AAACA( ..y
- Genes metadata: rr—— [ 1.8189459e+02, -4.6680363e+01, -2.7038712e+02, ...,
Reference -6.4620590e+00, 2.2010189e+01, -1.4795618e+01],
S [-1.9071545e+02, 3.6853920e+01, -5.3436691e+01, ...,
- Ensembl ID p— 3.2471569e+00, -1.2807763e+00, 6.4047074e+00],
) [-1.1925542e+02, -1.2490373e+02, 1.5722610e+02, ...,
| TrerT 3.9003084e+00, -2.4630415e+00, 7.5943404e-01]], dtype=float32)
- mage.: TTGTTI
H&E image TTGTTTGTGTAAATTC FAM231C ENSG00000268674 Gene Expression GRCh38 8 basal like_1
. 3813 rows x 9 columr
- Embedding et | 933938 rows x 3 columns
PCA [0:7499196 i 0Q./508b2/b, Y./4>09505]],

- UMAP
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POpUIar data StrUCtU reS THEUNIVERSITY

Popular data
structures

AnnData SeuratObject




AnnData (Annotated data) - Python

Raw counts
Normalized counts

{..}

layers

Observations
(cell/spots)
metadata

Variables (genes)
metadata

Image data
Unstructured data

Embedding
Features

THE UNIVERSITY
OF QUEENSLAND
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SeuratObject - R e

Assays

Raw counts
Normalised Quantitation

AUSTRALIA

Seurat Object

Metadata Embeddings Variable Features

Experimental Conditions Nearest Neighbours Variable Gene List
QC Metrics Dimension Reductions

Clusters




SeuratObject - R

Feature Primary and
metadata | transformed data

@ A . N DD M
Q 0 '. \ \ \ \ -.
P NS S < S

Gene 1
Gene 2
Gene 3

rowData

______

-+

Cell Dimension
metadata reductions
O X - NVD -
W el o
RSP RRC

. A

colData

reducedDims
Rows = cells

SingleCellExperiment

Cell 3

THE UNIVERSITY
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Use case: O mmman o

AUSTRALIA

Perform K-means clustering and store to AnnData

How?

Extract the PCs components from AnnData for every cells/spots
Using external scikit-learn package for K-means clustering

Get the K-means clustering results

Add results to observation annotation of AnnData object

RON=



Use case:

Plotting Kmeans results for spatial transcriptomics

.uns: image

AnnData:
anndata

.0bs: spatial

coordinate

.0bs:
kmeans

THE UNIVERSITY
OF QUEENSLAND
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1. Extract the PCs components from AnnData for

every cells/spots

AnnData:
anndata

anndata.obsm[X

pca’]

THE UNIVERSITY
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2. Using external scikit-learn package for K-means

clustering

anndata.obsm[“X
pca’

/ sklearn.clust

/ er.KMeans




0F QuEBLAG
3. Get the K-means clustering results

anndata.obsm[“X_ / sklearn.clust / ~ List clusters of
pca’] / er.KMeans / every cells/spots
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4. Add results to observation annotation of AnnData

object

List clusters of
every cells/spots

».0bs

AnnData:
anndata




Analysis landscape

a Storage format

Tables ([

Points |, .::. OME
Shapes :?3

b Python library

Spatially aligned
datasets

Spatial
queries

s NGFF g”
Labels ﬁ 7
apezzenn| e : =
Images | Zarr v,
— — |- [l
€ Convenient readers | Transforms ! Eﬁ;
- e Ay A ﬁ KNA Observation
~ ' aggregation
. : Translate Scale Rotate Chain
rd Interactive annotation @ Deep learning § Ecosystem
and visualization interface integration
o ® —®, ¢
@f? O PyTorch | :
S MONA

(Marcorano et al., 2024)
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Spatial Single Cell Data
SpatialData object with:

Images
—— 'HE': SpatialImagelcyx] (3, 4633, 14747)
—— 'morphology_focus': MultiscaleSpatialImage[cyx] (1, 37441, 11479), (1, 18720, 5739), (1, 9360, 2869),
(1, 4680, 1434), (1, 2340, 717)
| L— 'morphology_mip': MultiscaleSpatialImage[cyx] (1, 37441, 11479), (1, 18720, 5739), (1, 9360, 2869), (1,
4680, 1434), (1, 2340, 717)
Labels
F—— 'cell_labels': MultiscaleSpatialImage([yx] (37441, 11479), (18720, 5739), (9360, 2869), (4680, 1434), (2

340, 717)
| L— 'nucleus_labels': MultiscaleSpatialImage[yx] (37441, 11479), (18720, 5739), (9360, 2869), (4680, 1434),
(2340, 717)
—— Points
L— 'transcripts': DataFrame with shape: (4062390, 10) (3D points)
—— Shapes
— 'cell_boundaries': GeoDataFrame shape: (21596, 1) (2D shapes)
— 'cell_circles': GeoDataFrame shape: (21596, 2) (2D shapes)
—— 'nucleus_boundaries': GeoDataFrame shape: (21596, 1) (2D shapes)
—— Tables

L— 'table': AnnData (21593, 260)
with coordinate systems:

» 'global', with elements:
HE (Images), morphology_focus (Images), morphology_mip (Images), cell_labels (Labels), nucleus_labels (La

bels), transcripts (Points), cell_boundaries (Shapes), cell_circles (Shapes), nucleus_boundaries (Shapes)

Essentially, spatialdata is an extension of AnnData that allows for more advanced plotting and image transformations.



PMEL expression over H&E image
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Transcripts over H&E image
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Lecture 4: Spatial DNA-level analysis for Copy
Number Variation



Module 2 — Part 4: Spatial DNA-level analysis

for Copy Number Variation

Prakrithi— prakrithi.pavithra@uq.edu.au

10

GENOMICS
R package 10X Chromium 10X Visium




Module 2 — Part 4: Copy Number Variations & oo

AUSTRALIA

A Copy number variation (abbreviated as CNV) refers to an instance in which the number of copies
of a specific DNA segment varies among different individuals' genomes. These variations can

involve deletions or duplications of segments of the genome and can range from a few kilobases to
several megabases in size.

Copy Number Alteration

Deletion Duplication

Gene A

Gene B

}— Gene C —{ ‘

Gene C —i
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How are CNVs related to cancer? B ey

AUSTRALIA

» Oncogene Amplification
* Tumor Suppressor Gene Deletion

« Genomic Instability

VR R WAL AR R

Sporadic Cancer

Blood DNA Tumor DNA
showing inherited CNVs showing inherited
and tumor-specific CNVs

YROL AR YRR SRR,

m-'—m. m’.‘.-_m

YRR AR —_— e TRURA,
O R LR T —

Y R —_— YRR T MW
YRRy RERIRN - YRO,

- _ VY RGN . R :WTW\
it T R YRS RO
RRY, RO, 2 YRR, A

AL TR,

Blood DNA Blood DNA Tumor DNA
showing inherited CNVs showing inherited showing inherited, acquired
and acquired CNVs and tumor-specific CNVs
L ] 1 ]
Low B Medium C High
Number of copy variable regions

Inherited Cancer
(TP53 mutation carrier)

>

A. Shlien et al., 2008 80



https://www.semanticscholar.org/author/A.-Shlien/2331769

How can we make use of this DNA profile ) S
information for RNA-seq data?

Multiple patients:Tumor

Patient-specific CNV pattern CHVHPSSSIE. [FINOr

Clonal heterogeneity
Multiple patients: Normal —

o AR L BB R i
No CNV pattern i i “"‘ Ar I
bttt 4. |2 |
} { " ' |‘;! !-1 I'; ::i  § ’\;, i’___|‘[“1 ig
. 0 5 - e I
i ‘I - ] ! | : 1 §
: | i : g ERE L
el i) TR AR
0 0 i 54 ) B 1
Ganomic Regon
Identification of Malignant cells
20
10
& !!
<
5 o ¢
-10
0 10 20 81

UMAP_1



Data Requirement

Gene Expression Matrix e
Spot-1
Spot-2

THE UNIVERSITY
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©

Cell-type Annotation Gene annotation file

Spot-1 - Chr Pos
Spot-2 .-

Gene 1
Gene _2

Spot-N '
Gene'N



Tools for CNV profiling : CopyKAT

Ruli Gao et al., 2021

genes

gene expression matrix
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Tools for CNV profiling : InferCNV 8 G uransians

AUSTRALIA

Centering

NCG"
TAD L BE N BT S P
) et te 3 B
\ !
% N

« Gene ordering based on chromosomal coordinates g

« The moving average is calculated by taking the mean

of a fixed number of consecutive data points

» InferCNV takes in metadata of cell types and needs

you to define the normal cells. If you don't know that, it " S:.;".‘:’T‘u‘i“,:,“é’;.“.f/
uses an inbuilt normal profile reference. " E g(‘ “ I

* InferCNV constructs the CNV profile of a known I : ﬁ i:!} ooees |3 Vi
normal sample, and then for each gene and each cell, || 4 ﬂ-i il — sl i

the normal sample is subtracted from the tumor

sample to determine the final tumor CNV profile of the

i i

https://qgithub.com/broadinstitute/infercnv/wiki/images/InferCNV_procedure.png

tumor.

A.-.s\.,‘»\



https://github.com/broadinstitute/infercnv/wiki/images/InferCNV_procedure.png

Practical Session G QuENSLAND

AUSTRALIA

Analysis of an In-house scRNA-Seq Melanoma dataset

CopyKAT and InferCNV already run on this dataset — Output files are preloaded
Visualization of results with UMAP plots

Analysis of a publicly available Spatial Melanoma dataset

Dataset link https://www.10xgenomics.com/datasets/human-melanoma-if-stained-ffpe-2-standard
|dentification of tumor region and tumor sub-clones



https://www.10xgenomics.com/datasets/human-melanoma-if-stained-ffpe-2-standard
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Module 2 — Part 5: Cell community identification

Feng Zhang and Dr Quan Nguyen

R package @ pipeline




Module 2 — Part 5: Overview of cell community & oromi

AUSTRALIA

1. Introduction of cell community

2. HoodscanR workflow

3. NeighborhoodCoordination workflow

4. The downstream analysis of cell community identification
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Cell community identification 8 G uransians

AUSTRALIA

Cell community:

Cell community analysis characterizes the community or niche in which cells reside, which may harbor
a critical tissue micro-environment that influences disease development, progression, and response to
therapy.

The biological questions to answer:

* How do the cell communities change under different conditions?
* What is the heterogeneity of cell communities?

* What is the composition of cell communities?

* How do cells within the cell community contribute to disease development, progression, and
response to therapy?



SpatialExperiment

* assays containing expression counts

* rowData containing information on features, 1.e.
genes

* colData containing information on spots or cells,
including nonspatial and spatial metadata

» spatialCoords containing spatial coordinates

e 1mgData containing image data.

[PresEHiatbrite] | [Date]

SingleCellExperiment

features (rows)

rowData

assays
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/’_(: SpatialExperiment object 7]
: (CosMx,Xenium,STOmics,...)

hoodscanR R package . B or QuesNsLaND
‘ rowEl)IZta S e
ﬂsay (counts)

kNC Cell type

* findNearCells(): to identify K nearest cells for each cell

sl Calculate
. . eye Euclidean k-nearest cells
* scanHoods(): to generate a matrix with the probability of doaess ! ° (NC)
each cell associating with their K nearest cells % ]
ell-level
celli"‘,f,»\ ® annotation
@ ©

scanHoods ()

e clustByHood(): to cluster the cells by their neighborhood
probability distribution

Cell group
PHONIO

Probability matrix

‘ |H_= [ |
| I}
HE_N EEI
L [
]

n Visualization
Heatmap
ProfiIeNing Liu (2024) Downstream analyses
eg., differential expression, GSEA,...

Tissue 'éraph



NeighborhoodCoordination python pipeline OF QUEENSLAND
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A 1 2 ; 3 4

Sliding windows ‘Cell types ‘;'“ 71 'i“g“ per "D w| Cluster windows Neighborhood mapping
%Window1 0.3 0.2 02 01 .

01 01 05 01 .. | e
* For every cell in the tissue, its K nearest spatial 010002 00. | /7 @WM &
. . . . 0.1 0.1 0.0 00.. |\
neighbors, which we labeled its “window’ were 02 00 07 00 ﬁm I
identified (Figure A.1). |G Windows 03 04 08 00 -
B C
.. . . : Cellular

e The cell type composition was determined per window 111 Neighborhood

T cell
enr?ched .

Bulk
tumor

Immune-
infiltrated
stroma |
Macrophage
enr%c?\%d 9

(Figure A.2)

* All windows were clustered into different communities
(Figure A.3).
&

5 }l Follicle

 Identification of distinct cell communities based on the ®
original cell types and their respective frequencies
within each cell community (Figure B)
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Downstream analyses
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Module 2 — Part 6: Cell-Cell Interactions

Onkar Mulay — o.mulay@ug.edu.au

. ST MMCCI
CellChatDB LEARN ~+

®

B8

# python




Module 2 — Part 6: Cell-Cell Interactions B or quesysiav
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All cells depend on cell-to-cell interactions to identify and respond to stimuli in their
surroundings and therefore share a microenvironment.

Autocrine signalling - Intracellular signalling

Paracrine signals - Between nearby cells

Juxtacrine signals - Contact-dependent or
gap-junction

Endocrine signals - Long-distance intercellular
signalling.

Juxtacrine

Autocrine

09

Endocrine

IL-10, TGF-B
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Importance of CCI B or Qe

Cell
development

« CCl is essential for the functioning of an individual cell
and allows groups of cells to communicate and
coordinate to maintain homeostasis.

 When cells fail to interact correctly or misunderstand
signals, it can lead to disease.

Immune interaction in disease

Tissue homeostasis

Erick Armingol et al., 2021

97



Pre-requisite: Permutation Testing

counts in bins of width 1

20

15 |

10 ¢

Treatment and control samples

58696455 5141517142

Original méans and differer'\ce
61.50-51.20=10.30

*

-20 -10 0

10 20

difference of means
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Common Techniques for CCI

Bulk, scRNA

\ J
Ligand * Receptor

Permutation test

scRNA

TPM > tresh.
(1 or0)
€ ¥

Cell-type A
Ligands}/.?.

2*(CT-A * CT-B)

(CT-A)*2 + (CT-B)*2

Cell-type B
Receptors....

scRNA

Hypothetical Interactions

Q;LJ_
o

Permutation test
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Common Techniques for CCI B or cumerans

Spatial Wasserstein  Permutation test

° Distance
—_ e —_
Spatial . W . ;
O Spatial Distance = Gene Expression

Spatial XK.\ . * md Features [

O Differential Expression Stats test
Bulk, Spatial, % " t-test
scRNA c £ — wald test
O O

100
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Data Requirement for CCI

0 Gene Expression Matrix
Spot-1
Spot-2

e Ligand-Receptor Database

@ Spatial Coordinates

Spot-1
Spot-2

Spot-N

o Cell-type Annotation
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1. CellChat

Suoqin Jin et al., 2021

P tManuaI curation of CellChat database
gonis .
' Ligands KE,GG ba-se
'Antagonist . Prlmary literature
>
g - \ | %
1= O T o
<45 S = S Sk
PR eichat
9%l 5 S |2« _Q m Secreted Signaling
5 Sl 1o 3 m ECM-Receptor
@ ] s m Cell-Cell Contact
< Y
O
oo M Heterodimers
& g 52%. Others
Receptors t

scRNA-seq data input and processing

GBIl ey it i o oo o
T ey Option 1

M Gene

S Expressmn == Cell group

O - Proﬂle : information

Identification of over-expressed genes per cell group

|

Cellular communication visualization

Hierarchy plot Circle plot Bubble plot
Source Target SourceSource Target Source @ . °
® o0 T
Y ieoeo
. e - 00
X k-]
LIPS o © g (Y X )
. / 0 0o
M Cell groups

Cellular communication modeling

* Quantification of communication probability using
the law of mass action

* Inference of statistically and biologically significant
cellular communications

l

Identification of signaling roles for cells
using network centraility analysis

Outdegree|Indegree; Betweenness | Information

XK

Receiver :
[~ -

Patterns

Cell groups

Cellular communication analysis
Discovery of dominant cell
communication patterns

. :

§9
m BN R
B R

Signaling

Classification of signaling pathways
Topological and functional similarity

Identification of shared and context-specific
signaling across distinct conditions

®® o %° I eDataset 1
#"  Signal. Group Specific signaling B ODataset2
MK £ . o ]
o ncWNT 3 P -5 $ < )
ElL Comm Prob. £ Shared & —
OSe 0 O Specific 2 ]
WNT 8 Shared ? -%
& [—
Dim 1 Dim 1 Information flow
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2. stLearn
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Spatial ligand-receptor expression
0R3R0
0306930
Ilgand OO..OOO
rece;p{(-)rOOOOOOO
0088800

l

=
0%2e%
eg02000
Score .‘. ..‘
000,000
eg0o000
4

Ligand-receptor score

frequency

Lo

Iugand expression

Background generation

L

frequency

background genes

Igene 1. I gene n Igene 1. I gene n

random palrs

frequency

Background distribution of score

receptor expression

Cell-cell interaction backgrounds

significant score

cell types o @
o .0
hgand
receptor ¢
/ o \
count SCTP permutations

02 :%:qrol__

0 s
ole iHiecl

Ligand-Receptor Interaction

Level 2 permutation testing

o9

frequency

Background counts

ol =3

e
Spatial cell-cell interactions

Cell-cell Interaction

Duy Pham et al., 2023
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i Thickness indicates strength of interaction
Sample 1 Sample 2

38 e 4
Integrated
W »

« CCl results can vary highly across individual
samples, especially when using multiple
modalities.

« MMCCI is a method to integrate CCI results
across replicates from multiple modalities.
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Applications of CCI
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Cell-Cell Interactions Healthy vs Disease

Block interactions

Cell-Cell
Interaction
Network

@

Favorability
Score

Favorable

Score

Unfavorable

Cell
Type

..o~ High (n=93
TimiRS 2 [ ((n=1oJ )

HR=1.02
p<0.0001

0 2 4 6 8 1012 14 16
Years

TimiGP - (Chenyang Li et al., 2023)

Cell-Type Network

Clustering
Cluster-1

MMCCI
2 Overall-1 Query LRs
> * for B>A
;g / .g’ AQ@<«—@s
S5 @ E Ranked LRs
8 8 by proportion:
© Overall-2 @ LR
b= - LR,
8 LzR3
D L4R4
C=R 0.0 03
(] Proportion

LR Interaction Clustering
Proportion

Oligos|

Neuronslllll WH
Vascular

Astrocytes
Ependymal
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Applications of CCI
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Cell-Cell Interactions Healthy vs Disease
Block interactions

B

1.00
High (n=93
‘@ ‘ TimiRs - High (n=50)
. » 0.75 HR=1.02
Ce]l-Ct.ell = p<0.0001
Interaction B sl
Network Z
o S 025
@ 1 Tel 1
o
& o] | |

0 2 4 6 8 1012 14 16
Years

Favorability g
Score 2

Unfavorable
3

3

TimiGP - (Chenyang Li et al., 2023)

MMCCI

Pathway-1
Pathway-2

Pathway-3

GSEA Pathway Analysis

-—log adj. P-value

Pathway-2 Pathway-3

@ \“o ;‘00—‘\&

Pathway-1

® o o o0

LR, (LR — LR, | —
LR, [N 1L2R2 *Lsz _
L3R3 L3R3 I L3R3

| L4R4 | L4R4

|

LR,

0.0 03 02 : 0.0 05
Proportion f Proportlon , Proportion
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