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General Information:

• We are currently located in Building 69

Emergency evacuation point

• Food court and bathrooms are located 
in Building 63

• If you are experiencing cold/flu 
symptoms or have had COVID in the 
last 7 days please ensure you are 
wearing a mask for the duration of the 
module



Data Agreement
To maximize your learning experience, we will be working with genuine human 
genetic data, during this module.

Access to this data requires agreement to the following in to comply with human 
genetic data ethics regulations

If you haven’t done so, please email <ctr-pdg-admin@imb.uq.edu.au> with your 
name and the below statement to confirm that you agree with the following:

“I agree that access to data is provided for educational purposes only and that I 
will not make any copy of the data outside the provided computing accounts.”



Learning materials
Instructions to access WiFi/desktop/server:

https://suave-pillow-de4.notion.site/Instruction-to-Computing-Resources-
dcba658c9a584e6d80a443c5d64042d8?pvs=4

Slides and practical notes:

https://cnsgenomics.com/data/teaching/GNGWS24/module[1-6]/

https://suave-pillow-de4.notion.site/Instruction-to-Computing-Resources-dcba658c9a584e6d80a443c5d64042d8?pvs=4
https://suave-pillow-de4.notion.site/Instruction-to-Computing-Resources-dcba658c9a584e6d80a443c5d64042d8?pvs=4
https://cnsgenomics.com/data/teaching/GNGWS24/module%5b1-6%5d/


Module 2 - running the learning materials
https://github.com/GenomicsMachineLearning/qimr-teaching-2024/tree/main



Module 2 Cellular Omics

Room 314/315, Building 69

Aiming at interactive session, we provide the presence of a large teaching team for more 
one-to-one discussion.

Lecturers/Instructors: Quan Nguyen, Andrew Causer, Levi Hocki, Onkar Mulay, Prakrithi 
Pavithra, Andrew Newman, Xiao Tan, Feng Zhang 



Module 2 Cellular Omics – Leaning Objectives
• Technologies for generating single-cell and spatial transcriptomics data

• Technologies for other spatial omics, focusing on proteomics

• Exploratory visualisation to understand the data 

• Statistical analyses to discover new biological processes and biomarkers associated with disease, including cells, 
genes and groups of cells within the tissue. This includes: 
Ø Identifying cell types 
Ø Finding gene markers 
Ø Mapping cell neighbourhoods (cell communities) 
Ø Analysing cell-cell interactions 

• Analysing spatial proteomics data and integration with spatial transcriptomics through imaging analysis 
techniques

• Machine learning analysis of sequencing and imaging data



Lecture Outline

Day 1
• Lecture 1: Introduction Single Cell and Spatial Transcriptomics
• Lecture 2: Defining Cell Types 
• Lecture 3: Review Data Structure and Understand Spatial Concepts by Visualisation
• Lecture 4: Spatial DNA-level Analysis for Copy Number Variation
• Lecture 5: Cell Community Identification
• Lecture 6: Cell-Cell Interactions

Day 2 
• Lecture 7: Tissue Segmentation and Spatial Statistics
• Lecture 8: Spatial Proteomics
• Lecture 9: Machine Learning

file:///Users/quann/Library/CloudStorage/OneDrive-TheUniversityofQueensland/SharedLaptop/QuanLab/QuanLab/Teaching/WinterSchool2024/LectureNotes/Day2_Winter_School_GML_All_20240624.pptx
file:///Users/quann/Library/CloudStorage/OneDrive-TheUniversityofQueensland/SharedLaptop/QuanLab/QuanLab/Teaching/WinterSchool2024/LectureNotes/Day2_Winter_School_GML_All_20240624.pptx
file:///Users/quann/Library/CloudStorage/OneDrive-TheUniversityofQueensland/SharedLaptop/QuanLab/QuanLab/Teaching/WinterSchool2024/LectureNotes/Day2_Winter_School_GML_All_20240624.pptx


Lecture 1: Introduction Single Cell and Spatial 
Transcriptomics



• Single-cell RNA sequencing (scRNA-seq) measures thousands of genes in a separate cell
• How: 3 barcoding steps for sample, cell and RNA molecule
• Scale: bulk RNA-seq (5 samples) vs. scRNA-seq (45 K cells),  a ~900 times bigger gene count matrix

Single cell RNA sequencing



Scale

Resolution

Single cell informatics

The Genomics and Machine Learning Team

INFORMATICS
Precision Genomics Medicine

Quan Nguyen, Andrew Causer, Levi Hocki, Onkar Mulay, Prakrithi Pavithra, Andrew Newman, Xiao Tan, Feng Zhang 



2019: Single Cell Multiomics 2020: Spatial Transcriptomics 

Advanced genomics technologies

2018: Single Cell Transcriptomics 



Increase single cell experiments to millions of cells
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• Bulk RNA sequencing: no difference in mean expression
• Single-cell sequencing: can detect higher expression in cancer cells



Single cell data vs. bulk data 

Single cell Bulk

Noisy data Undetected genes (zero 
inflation)

Deep sequencing, most 
genes detected 

Cell-cell variation Measured Not measured

Data size Thousands of cells (1 cell ~ 
1 bulk sample)

10-100 samples

https://github.com/IMB-Computational-Genomics-Lab/scIVA

Bulk

Single cell

https://github.com/IMB-Computational-Genomics-Lab/scIVA


Single cell data analysis





Data quality control: a range of QC measures

UMI/Cell
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• 16 QC measures 
• 10 scRNA-seq libraries



Data Normalisation - Motivation

• Batch effects: technical differences 
induced by the operator or other 
experimental artifacts

• Often observe systematic differences in 
sequencing coverage between libraries 
( or cells)

• Normalization aims to remove these 
differences

• Such that they do not interfere with 
comparisons of the expression 
profiles between cells

• Ensure heterogeneity or differential 
expression within the cell population 
are driven by biology and not technical 
biases.

(Buttner et al, 2019)



Three levels of single cell data normalization

Three levels of technical variation in 
scRNA-seq data:
 
• Gene-specific effects within a cell: GC 

content, gene length 

• Cell specific effects within a sample: 
each cell is amplified separately, causing 
amplification bias among cells 

• Batch effects within a study: sample 
preparation or technology-specific 
effects 
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Cell to cell normalization: Library size normalization

Cell1 Cell2 Cell3 Cell4 Cell5
gene1 0 0 0 0 0
gene2 0 0 0 0 0
gene3 3 0 1 0 1
gene4 0 1 3 3 0
gene5 1 4 2 1 2

colsum / 
library size 4 5 6 4 3

factor 0.91 1.14 1.36 0.91 0.68
Normalized 
library size 4.40 4.39 4.41 4.40 4.41

Total library size = 22
Nrcells = 5

Size factor= library size ∗nrCells
Total library size

The mean size factor across all cells is equal to 1
Normalized expression values are on the same scale as the original counts,
Useful for interpretation especially when dealing with transformed data



Cell to cell normalisation: a pooling strategy to solve zero inflation 

• Each cell is considered as a sequencing library, so the total reads per cell need to be normalised
• Pool cells to reduce the number of zeros 
• Estimate the size factors for the pool 
• Repeat many time and use deconvolution to estimate each cell size factor 𝜃"

𝐸 𝑉#$ =	𝜆#%'
&'(!

𝜃" 	×	𝑡")* 𝑉#$ is the sum of adjusted expression value across all cells in pool 𝑉
!

for gene i
𝜆#% is the expected transcript count and 𝜃" is the cell specific bias
𝑆
!
 is a pool of cell; 𝜃" × 𝑡")* is size factor for cell j

(Lun et al, 2016)

Pool A Pool B Sum(poolA) Sum(PoolB) average
Sum(poolA)/
average

Sum(poolB)/
average

Cell 1
Cell
2

Cell
3

Cell
4

g1 0 0 0 0 0 0 0 0 0

g2 0 0 0 0 0 0 0 0 0

g3 3 0 1 0 3 1 4/4 3/4/4 1/4/4

g4 0 1 3 3 1 6 7/4 1/7/4 6/7/4

g5 1 4 2 1 5 3 8/4 5/8/4 3/8/4

𝜃+
= 𝜃,-..* + 𝜃,-../

𝜃0

Scaling factor of cell 1

à A demo



Three assumptions in MNN 
normalisation: 

(i) there is at least one cell 
population that is present in 
both batches, 

(ii) the batch effect is almost 
orthogonal to the biological 
subspace, and

(iii) the batch-effect variation is 
much smaller than the 
biological-effect variation 
between different cell types

Batch normalisation: Mutual nearest neighbour (MNN)

(Haghverdi et al, 2018)

assume batch effects 
are mostly orthogonal 
to the biological manifold: 
ß batch effect: vertical
ß biological manifold: 
horizontal

Batch 1 Batch 2

KNN of red cell 

KNN of green cell

Red and green are MNN

Find KNN in 
anther Batch



Batch normalisation: Mutual Nearest Neighbour (MNN)



Dimensionality reduction: linear techniques 

Why dimensionality reduction: 
• Filters out noise
• Minimises curse of dimensionality 
• Allows visualization with more separation of points
• Reduces computational load 

Linear approaches: 
• PCA (Principal Component Analysis)
• ICA (Independent Component Analysis)
• NMF (Non-negative Matrix Factorization)

Linear approaches:
• Capture the dimensions with higher variance
• Quantitative way to assess the amount of retained 

dimensions 
• Preserve both long-range and short-range distance 

(i.e. cells that are very different or very similar) 
• Different to bulk RNAseq data,  the first few 

dimensions are not enough to capture scRNAseq 
data structure well

Bulk Single cell
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Dimensionality reduction: nonlinear techniques

• MDS (Multidimensional Scaling)

• Uniform manifold approximation and projection (UMAP) 

• t-distributed Stochastic Neighbour Embedding (t-SNE)

• UMAP and tSNE: nonlinear embedding (mapping) of data points from 
high dimensional space to low dimensional space, so that the 
probability distance between these two space (KL divergence or cross 
entropy) is minimised 

• Both methods: class of k-neighbour based graph learning algorithms, 
strong influence of hyperparameters, non-deterministic (stochastic)

• Nonlinear techniques solve the overcrowding representation, which is 
often seen in linear approaches for large scRNA-seq data

• UMAP preserves local & more of the global data structure than t-SNE



Global vs local distance in low dimensional space 

(Oskolkov N, 2019)



tSNE

tSNE does not preserve long distance - KL divergence

(Oskolkov N, 2019)
• The embedding minimizes the Kullback-Leiber divergence of the 

distribution from Q to P calculated as: 𝐾𝐿(𝑋, 𝑌) =
∑#1" 𝑝#" log

2"#
3"#

≈ 

• The probability distance between two neighbouring cells is the 
joint probabilities 𝑝#" =

2#|" 4 2"|#
/5

• Conditional probability of cell 𝐶
"

given cell 𝐶
#

is calculated as: 

𝑝"|# =
-72

%& '",'#
)

)*"
)

8+," -72
%& '",'+

)

)*"
)

• For large distances X in high dimensions, the exponential term 
approaching 0, so Y can be basically any value from 0 to ∞ and 
KL remains small

• For small X, to minimise KL (cost/penalty), Y is small 

• Pairwise similarity in t-SNE space: 𝑞#" =
*4 9") 9#

) %-

∑+,. *4 9+) 9. ) %- , 

𝑦
#

and 𝑦" are corresponding mapped points of cells 𝐶
#

and 𝐶
"
to

t-SNE space, and  𝒒𝒊𝒋 𝐟𝐨𝐥𝐥𝐨𝐰𝐬 𝒕 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧 to avoid 
crowding

tSNE minimises Kullback-Leiber divergence KL(X,Y)



UMAP

UMAP preserves long distance - cross entropy

When X small, Y is also approaching 0 to minimize CE

UMAP minimises cross entropy CE(X,Y)

When X large, Y is also large to minimize CE

(Oskolkov N, 2019)

tSNE:



More about UMAP vs tSNE 

• To learn low-dimensional embeddings, UMAP assigns 
initial low-dimensional coordinates using Graph 
Laplacian (force directed graph layout algorithm) in 
contrast to random normal initialization used by 
tSNE. Therefore, UMAP is less dependent on random 
state (not changing from run to run)

• UMAP proceeds by iteratively applying attractive 
(among edges) and repulsive forces (among vertices) 
at each edge or vertex. Convergence is guaranteed 
by slowly decreasing the attractive and repulsive 
forces of the neighbour graph.

• UMAP has no computational restrictions on 
embedding dimension, making it viable as a general-
purpose dimension reduction technique for machine 
learning (tSNE can only embed to 2-3 dimensions) (Oskolkov N, 2019)



Single Cell Clustering Analysis

Clustering in scRNAseq is a data-driven way to find cell (sub)types at single-cell resolution 



Graph-based Clustering

Two main steps: 

1) Embed cells in a graph structure: 
• K-nearest neighbour (KNN) graph (cells with similar  

expression patterns identified by Euclidean 
distance in PCA space)

• Edge weights between any two cells based on the 
shared overlap in their local neighbourhoods 
(Jaccard similarity)

2) Community detection to partition cells in graph into 
groups of cells 
• Modularity optimization techniques such as the 

Louvain algorithm
• Modularity: measures the density of edges inside 

communities to edges outside communities
• Louvain iteratively groups cells together, with the 

goal of optimizing the standard modularity 
function
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Graph-based Clustering

Nature Reviews Genetics, 20, (2019)

• Build shared-nearest-neighbour graph connecting the cells 
and finds tightly connected communities

• Increasing the number of neighbours when constructing 
the cell–cell graph indirectly decreases the resolution of 
graph-based clustering

K=5 K=10



Visualise clustering results



(@boxia)

(@LGMartelotto)

Spatial transcriptomics approach

Lego: 

Fruit salad: 

Bulk Single cell Spatial



Spatial Transcriptomics Data (seqFISH): expression + location

Cell centroids

(2050 cells and ~10,000 genes)

Example of seqFISH RNA in a cell: 3247 genes

Coordinates

Gene ID

Fluorescence single molecule counts









Spatial transcriptomics adds spatial dimension and tissue morphology

Spatial spots on a slide                            
Spatial 
Probe

Spatial Expression

Color image intensity

Imaging

Sequencing

• On-tissue expression profiling (>20,000 genes); each spot contains ~1-9 cells; tissue < 6.5 mm x 6.5 mm
• Other spatial technologies are different (complementary) in resolution, throughput, scale, sensitivity ect.
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Analysis landscape

(Park et al, 2022)
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Lecture 2: Defining Cell Types 



Module 2 – Part 2: Defining Cell Types
Andrew Causer

package 10X Visium 10X Xenium



1. Data Pre-Processing
• General QC – remove low quality spots/cells and genes

• Data Normalisation

2. Clustering and Cell Typing
• Perform Unsupervised Clustering – group similar spots/cells together based on transcriptome

• Cluster Annotation – use marker genes to cell type clusters

3. Spot Deconvolution and Single-Cell Label Transfer

• Visium Spot Deconvolution – infer the cellular composition of each spot

• Xenium Label Transfer – matches cells from a reference dataset based on genetic similarities  

Module 2 – Part 2: Overview

44



Datasets – Melanoma (Skin)

45

H&E

Visium

Xenium



Datasets – Melanoma (Skin)
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H&E

Visium

Xenium

Visium



Datasets – Melanoma (Skin)
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H&E

Visium

Xenium

Xenium



Datasets – Melanoma (Skin)
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H&E

Visium

Xenium

Single Cell

Spot-Based

# Data Points #  Genes

923 spots 18,085

# Data Points #  Genes

21,596 cells 260



1. Data QC and Normalisation
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Factors of Technical Noise

#genes #MT-genes#genes #MT-genes

Living Cells Dying Cells

high

low



1. Data QC and Normalisation
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Factors of Technical Noise

#genes #MT-genes#genes #MT-genes

Living Cells Dying Cells

high

low

Tissue Folding

#genes #genes



1. Data QC and Normalisation
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Factors of Technical Noise

#genes #MT-genes#genes #MT-genes

Living Cells Dying Cells

high

low

Tissue Folding

#genes #genes

Remove Outliers



1. Data QC and Normalisation
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Data Normalisation 

Why we normalize - Ensures comparability of gene expression between spots/cells:



1. Data QC and Normalisation
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Data Normalisation 

Why we normalize - Ensures comparability of gene expression between spots/cells:

• Technical noise: capture efficiency/sequencing depth



1. Data QC and Normalisation
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Data Normalisation 

Why we normalize - Ensures comparability of gene expression between spots/cells:

• Technical noise: capture efficiency/sequencing depth

• Biological effects: Spots may contain varying numbers of cells

**?



1. Data QC and Normalisation
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Data Normalisation 

Why we normalize - Ensures comparability of gene expression between spots/cells:

• Technical noise: capture efficiency/sequencing depth

• Biological effects: Spots may contain varying numbers of cells

Need for Downstream Analyses!



2. Clustering and Cell Typing

56

Groups Spots/Cells together based on similar transcriptional patterns



2. Clustering and Cell Typing
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Groups Spots/Cells together based on similar transcriptional patterns

Cell 1

Cell 2

Cell 3



3. Spot Deconvolution/Label Transfer

58

Spot Deconvolution 



Running the Practical

59

Terminal PowerShell

1. Log into your account:

ssh {username}@203.101.225.57
*username & password from winter school email* 

2. Follow these commands:
§ /software/bin/micromamba shell init
§ source ~/.bashrc
§ micromamba activate /software/conda-envs/winter_school_2024
§ git clone https://github.com/GenomicsMachineLearning/qimr-teaching-2024 

/scratch/$USER/qimr-teaching-2024
§ /scratch/$USER/qimr-teaching-2024/runme.sh

3. Open JuperterNotebook:
/software/002-clustering-cell-typing/2.1_ST_Cell_Typeing_Tutorial.ipynb



1. Data QC and Normalisation

60

Data Normalisation - SCTransform
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Lecture 3: Review Data Structure and 
Understand Spatial Concepts by Visualisation

Levi Hocky and Quan Nguyen 



Definition

- Data: Collection of raw facts (numeric, categorical, etc.)

- Data structure: specialized format for organizing and storing data in memory that contains not only the 
elements stored but also their relationship to each other

Data



- Gene expression matrix:
- Row: cells/spots
- Column: genes

- Cells/spots metadata:
- Cell type
- Batch
- Spatial coordinates
- …

- Genes metadata:
- Reference
- Ensembl ID
- …

- Image:
- H&E image

- Embedding
- PCA
- UMAP

scRNAseq or spatial transcriptomics data



Popular data structures

AnnData SeuratObject

Popular data 
structures



AnnData (Annotated data) - Python
Raw counts

Normalized counts

Observations 
(cell/spots) 
metadata

Variables (genes) 
metadata

Image data
Unstructured data

Embedding
Features



SeuratObject - R



67

SeuratObject - R



Use case: 
Perform K-means clustering and store to AnnData

How?

1. Extract the PCs components from AnnData for every cells/spots
2. Using external scikit-learn package for K-means clustering
3. Get the K-means clustering results
4. Add results to observation annotation of AnnData object



Use case: 
Plotting Kmeans results for spatial transcriptomics

AnnData: 
anndata

.uns: image

.obs: spatial 
coordinate

.obs: 
kmeans



1. Extract the PCs components from AnnData for 
every cells/spots

anndata.obsm[“X_
pca”]

AnnData: 
anndata



anndata.obsm[“X_
pca”]

2.   Using external scikit-learn package for K-means 
clustering

sklearn.clust
er.KMeans



3.   Get the K-means clustering results

anndata.obsm[“X_
pca”]

sklearn.clust
er.KMeans

List clusters of 
every cells/spots



4.   Add results to observation annotation of AnnData 
object

List clusters of 
every cells/spots

AnnData: 
anndata.obs
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Analysis landscape

(Marcorano et al., 2024)



Spatial Single Cell Data

Essentially, spatialdata is an extension of AnnData that allows for more advanced plotting and image transformations.





Lecture 4: Spatial DNA-level analysis for Copy 
Number Variation



Module 2 – Part 4: Spatial DNA-level analysis 
for Copy Number Variation

Prakrithi– prakrithi.pavithra@uq.edu.au

10X Visiumpackage 10X Chromium



Module 2 – Part 4: Copy Number Variations

79

A Copy number variation (abbreviated as CNV) refers to an instance in which the number of copies
of a specific DNA segment varies among different individuals' genomes. These variations can
involve deletions or duplications of segments of the genome and can range from a few kilobases to
several megabases in size.



How are CNVs related to cancer?

80

• Oncogene Amplification
• Tumor Suppressor Gene Deletion
• Genomic Instability

A. Shlien et al., 2008

https://www.semanticscholar.org/author/A.-Shlien/2331769


How can we make use of this DNA profile 
information for RNA-seq data?

81

Identification of Malignant cells
Analysis of sub-clones



Data Requirement
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Gene 1

Gene 2

Gene N

.

.

.

Chr Pos
Gene annotation file



Tools for CNV profiling : CopyKAT
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Ruli Gao et al., 2021
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https://github.com/broadinstitute/infercnv/wiki/images/InferCNV_procedure.png

• Gene ordering based on chromosomal coordinates

• The moving average is calculated by taking the mean 

of a fixed number of consecutive data points

• InferCNV takes in metadata of cell types and needs 

you to define the normal cells. If you don't know that, it 

uses an inbuilt normal profile reference. 

• InferCNV constructs the CNV profile of a known 

normal sample, and then for each gene and each cell, 

the normal sample is subtracted from the tumor 

sample to determine the final tumor CNV profile of the 

tumor. 

Tools for CNV profiling : InferCNV

https://github.com/broadinstitute/infercnv/wiki/images/InferCNV_procedure.png


Analysis of an In-house scRNA-Seq Melanoma dataset

• CopyKAT and InferCNV already run on this dataset – Output files are preloaded
• Visualization of results with UMAP plots

Analysis of a publicly available Spatial Melanoma dataset

• Dataset link https://www.10xgenomics.com/datasets/human-melanoma-if-stained-ffpe-2-standard
• Identification of tumor region and tumor sub-clones

Practical Session

https://www.10xgenomics.com/datasets/human-melanoma-if-stained-ffpe-2-standard


Lecture 5: Cell Community Identification



Module 2 – Part 5: Cell community identification
Feng Zhang and Dr Quan Nguyen

package CosMxpipeline



1. Introduction of cell community

2. HoodscanR workflow

3. NeighborhoodCoordination workflow

4. The downstream analysis of cell community identification

Module 2 – Part 5: Overview of cell community

88



Cell community: 
Cell community analysis characterizes the community or niche in which cells reside, which may harbor 
a critical tissue micro-environment that influences disease development, progression, and response to 
therapy.

The biological questions to answer:
• How do the cell communities change under different conditions?

• What is the heterogeneity of cell communities?

• What is the composition of cell communities?

• How do cells within the cell community contribute to disease development, progression, and 
response to therapy?

• …

Cell community identification



• assays containing expression counts

• rowData containing information on features, i.e. 
genes

• colData containing information on spots or cells, 
including nonspatial and spatial metadata

• spatialCoords containing spatial coordinates

• imgData containing image data.

SpatialExperiment

[Presentation Title] | [Date] 906/24/24



• findNearCells(): to identify K nearest cells for each cell

• scanHoods(): to generate a matrix with the probability of 
each cell associating with their K nearest cells

• clustByHood(): to cluster the cells by their neighborhood
probability distribution

hoodscanR R package 

ProfileNing Liu (2024)



• For every cell in the tissue, its K nearest spatial 
neighbors, which we labeled its ‘‘window’’ were 
identified (Figure A.1). 

• The cell type composition was determined per window 
(Figure A.2)

• All windows were clustered into different communities 
(Figure A.3). 

• Identification of distinct cell communities based on the  
original cell types and their respective frequencies 
within each cell community (Figure B)

NeighborhoodCoordination python pipeline

Christian M. Schürch (2020)



Downstream analyses

Christian M. Schürch (2020)
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Autocrine signalling - Intracellular signalling
Paracrine signals - Between nearby cells 
Juxtacrine signals    - Contact-dependent or 

gap-junction
Endocrine signals - Long-distance intercellular 

signalling.

All cells depend on cell-to-cell interactions to identify and respond to stimuli in their
surroundings and therefore share a microenvironment.



Importance of CCI

97

• CCI is essential for the functioning of an individual cell
and allows groups of cells to communicate and
coordinate to maintain homeostasis.

• When cells fail to interact correctly or misunderstand
signals, it can lead to disease.

Erick Armingol et al., 2021



Pre-requisite: Permutation Testing
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Common Techniques for CCI
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Common Techniques for CCI
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Data Requirement for CCI
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1. CellChat

102

Suoqin Jin et al., 2021



2. stLearn
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Cell-cell InteractionLigand-Receptor Interaction
Duy Pham et al., 2023



3. MMCCI
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Sample 1 Sample 2

Sample 3 Sample 4

Integrated

Thickness indicates strength of interaction

• CCI results can vary highly across individual 
samples, especially when using multiple 
modalities.

• MMCCI is a method to integrate CCI results 
across replicates from multiple modalities.



Applications of CCI
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Cell-Cell Interactions Healthy vs Disease

H
ea

lth
y

D
is

ea
se

Block interactions
MMCCI

Using CCI for prognosis

LR Interaction Clustering

TimiGP - (Chenyang Li et al., 2023)
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Cell-Cell Interactions Healthy vs Disease
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Block interactions
MMCCI

Using CCI for prognosis

TimiGP - (Chenyang Li et al., 2023)


