
Mendelian Randomization 

Daisy Crick



The University of Queensland (UQ) acknowledges the 
Traditional Owners and their custodianship of the lands 
on which we meet.

We pay our respects to their Ancestors and their 
descendants, who continue cultural and spiritual 
connections to Country.

We recognise their valuable contributions to Australian 
and global society.

Acknowledgement  
of Country

Image: Digital reproduction of A guidance through time by Casey Coolwell and Kyra Mancktelow



General Information:

• We are currently located in Building 69

Emergency evacuation point

• Food court and bathrooms are located 
in Building 63

• If you are experiencing cold/flu 
symptoms or have had COVID in the 
last 7 days please ensure you are 
wearing a mask for the duration of the 
module



Data Agreement
To maximize your learning experience, we will be working with genuine human 
genetic data, during this module.

Access to this data requires agreement to the following in to comply with human 
genetic data ethics regulations

If you haven’t done so, please email <ctr-pdg-admin@imb.uq.edu.au> with your 
name and the below statement to confirm that you agree with the following:

“I agree that access to data is provided for educational purposes only and that I 
will not make any copy of the data outside the provided computing accounts.”



Learning materials
Instructions to access WiFi/desktop/server:

https://suave-pillow-de4.notion.site/Instruction-to-Computing-Resources-
dcba658c9a584e6d80a443c5d64042d8?pvs=4

Slides and practical notes:

https://cnsgenomics.com/data/teaching/GNGWS24/module[1-6]/

https://suave-pillow-de4.notion.site/Instruction-to-Computing-Resources-dcba658c9a584e6d80a443c5d64042d8?pvs=4
https://suave-pillow-de4.notion.site/Instruction-to-Computing-Resources-dcba658c9a584e6d80a443c5d64042d8?pvs=4
https://cnsgenomics.com/data/teaching/GNGWS24/module%5b1-6%5d/


•Understand the issues of observational epidemiology. 

•Understand how Mendelian randomization (MR) works, 
what its core assumptions and how to calculate causal 
effect estimates. 

•Understand what directed acyclic graphs (DAGs) are and 
how they can be used to inform study design. 

•Cover the basic limitations to Mendelian randomization.

Learning Objectives
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Vitamin E supplement use and risk of 
Coronary Heart Disease

7

0

0.5

1

1.5

2

0-1 year 2-4 years 5-9 years >10 years



Vitamin E supplement use and risk of 
Coronary Heart Disease
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Vitamin E supplement use and risk of 
Coronary Heart Disease
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Inferring causality using observational data
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•Results from observational studies can give the wrong 
answer.



Inferring causality using observational data

11

•Results from observational studies can give the wrong 
answer.



Classic limitations to observational science
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Confounding



Classic limitations to observational science
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Confounding

Reverse Causation



Classic limitations to observational science
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Confounding

Bias

Reverse Causation



Randomised Control Trials (RCTs)
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RANDOMIZATION METHOD

RANDOMISED 
CONTROLLED TRIAL

CONFOUNDERS 
EQUAL BETWEEN 

GROUPS

EXPOSED: 

INTERVENTION

CONTROL: 
NO INTERVENTION

OUTCOMES COMPARED BETWEEN GROUPS

•The gold standard in inferring 
causality!



Mendelian randomization!
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• A technique based on the idea that genetics can tell us about 
non-genetic factors and their effects on health and disease.

• MR uses genetic information as a proxy for non-genetic 
information. 

• The modifiable exposure on the outcome will be the same 
whether the exposure is influenced by the environment or 
genetics. 



Mendel’s Laws of inheritance
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1. Segregation: alleles separate at meiosis and a randomly 
selected allele is transmitted to offspring.

2. Independent assortment: alleles at different genetic loci (for 
different traits) are transmitted independently of one another.Gregor Mendel in 1862



Mendel’s Laws of inheritance
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RANDOMIZATION METHOD

RANDOMISED 
CONTROLLED TRIAL

CONFOUNDERS 
EQUAL BETWEEN 

GROUPS

MENDELIAN 
RANDOMIZATION

RANDOM SEGREGATION 
OF ALLELES

CONFOUNDERS 
EQUAL BETWEEN 

GROUPS

EXPOSED: 
FUNCTIONAL  

ALLELLES 

EXPOSED: 
INTERVENTION

CONTROL: 
NULL 

ALLELLES

CONTROL: 
NO INTERVENTION

OUTCOMES COMPARED BETWEEN GROUPS OUTCOMES COMPARED BETWEEN GROUPS

+ independent assortment



Mendel’s Laws of inheritance
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RANDOMIZATION METHOD

RANDOMISED 
CONTROLLED TRIAL

CONFOUNDERS 
EQUAL BETWEEN 

GROUPS

MENDELIAN 
RANDOMIZATION

RANDOM SEGREGATION 
OF ALLELES

CONFOUNDERS 
EQUAL BETWEEN 

GROUPS

Heavy Smokers: 
C/C

EXPOSED: 
SMOKERS

Light/Non 
Smokers:
C/T or T/T

CONTROL: 
NON SMOKERS

LUNG CANCER COMPARED 
BETWEEN GROUPS

LUNG CANCER COMPARED 
BETWEEN GROUPS

+ independent assortment

CHRNA5 gene 
(rs16969968)



What is a DAG
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• Directed Acyclic Graph.

• Systematic representation of causal relationships.

• Displays assumptions about the relationship between 
variables.

• Clarify study design.



What is a DAG
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SNP
(Z)

Exposure
(X)

Outcome
(Y)

Confounders

✕

✕



DAG Rules
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• They have to be directed.

• They have to be acyclic.

• All common causes must be represented.

• Time flows from left to right.



DIRECTED RULE
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DAG Rules
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• They have to be directed.

• They have to be acyclic.

• All common causes must be represented.

• Time flows from left to right.



ACYCLIC RULE
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DAG Rules

26

• They have to be directed.

• They have to be acyclic.

• Common causes of two variables must be represented.

• Time flows from left to right.



COMMON CAUSE RULE
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DAG Rules
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• They have to be directed.

• They have to be acyclic.

• All common causes must be represented

• Time flows from left to right.



Glossary
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• Parent: a direct cause of a 
particular variable.

• Ancestor: a direct cause or indirect 
cause of a particular variable. 

• Child: The direct effect of a 
particular variable. 

• Descendant: a direct effect or 
indirect effect of a particular 
variable.

• Common cause: A variable that is 
an ancestor of two other variables. 

Exposure Outcome

Z

Confounder

Common cause

Grandparent

Ancestors

Offspring

Descendants

Parent



How to construct a DAG

30

• Start with the exposure/treatment and the outcome/endpoint.



31

Exposure Outcome



How to construct a DAG

32

• Start with the exposure/treatment and the outcome/endpoint.

• Consider variables embedded in the question (e.g. 
mediators/moderators).
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Exposure Outcome

Mediator

Moderator
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Sleep quality Academic achievement

Alertness

Mental health



How to construct a DAG
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• Start with the exposure/treatment and the outcome/endpoint.

• Consider variables embedded in the question (e.g. 
mediators/moderators).

• Consider confounding variables and add to the DAG.  
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Exposure Outcome

Mediator

Moderator

Confounders
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Exposure Outcome

Mediator

Moderator

Confounders

Unmeasured
Confounder



How to construct a DAG

38

Must be included Not required
All common causes of any 2 variables 
(confounders)

Variables that cause Y but not A 
(moderators)

Unmeasured and unmeasurable 
common causes (use U notation)
Selection variables (i.e. inclusion 
criteria)

Remember:
• Assumptions must be made.
• There are often more than 1 appropriate DAG
• Alternative DAGs can make excellent sensitivity analyses. 



How to Determine Covariates for Adjustment
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Glossary
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• Back door path: A connection between X and Y that 
does not follow the path of the arrows. 

• Collider: A variable that is a descendant of two other 
variable. The term collider is used because the arrows 
“collide” at the descendant node. 

• Conditioning: Conditioning on a variable means using 
either sample restriction, stratification, adjustment to 
examine the association of X and Y. 



Back door path
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Exposure Outcome

C

• Back door path: A connection 
between X and Y that does not follow 
the path of the arrows. 



Back door path
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Exposure Outcome

C

• Back door path: A connection 
between X and Y that does not follow 
the path of the arrows. 



Collider
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Obesity Mortality

• Collider: A descendant of two other 
variables (where two arrows collide). 

• Collider Bias: A phenomenon 
involving conditioning on common 
effects. 



Collider
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Obesity MortalityCVD

• Collider: A descendant of two other 
variables (where two arrows collide). 

• Collider Bias: A phenomenon 
involving conditioning on common 
effects. 



Collider
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Obesity MortalityCVD

Genes

• Collider: A descendant of two other 
variables (where two arrows collide). 

• Collider Bias: A phenomenon 
involving conditioning on common 
effects. 



Collider
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Collider
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Collider
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Sporting ability Academic ability

Admittance to school 

Sporting ability and admittance 
to the school are dependent

Academic ability and 
admittance to the school are 
dependent

Sporting ability and academic 
ability are independent

BUT

Sporting ability and academic 
ability are dependent 
conditional on the school!



Conditioning
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Draw a box around the conditioned variables. 

1.Conditioning on a variable in an open backdoor path 
removes the non-causal association (controls for 
confounding).

2.Conditioning on a collider opens the path that the collider 
was blocking.

3.Conditioning on a variable in the causal pathway 
(mediator) removes part of the causal effect. 



Conditioning
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Exposure Outcome

C



Conditioning
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Draw a box around the conditioned variables. 

1.Conditioning on a variable in an open backdoor path 
removes the non-causal association (controls for 
confounding).

2.Conditioning on a collider opens the path that the collider 
was blocking.

3.Conditioning on a variable in the causal pathway 
(mediator) removes part of the causal effect. 



Conditioning
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Exposure Outcome

C



Conditioning
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Draw a box around the conditioned variables. 

1.Conditioning on a variable in an open backdoor path 
removes the non-causal association (controls for 
confounding).

2.Conditioning on a collider opens the path that the collider 
was blocking.

3.Conditioning on a variable in the causal pathway 
(mediator) removes part of the causal effect. 



Conditioning
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Exposure Outcome

Mediator



DAG elements
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Element Description

Boxed elements indicate that the 
variable is conditioned on.
An arrow with a solid line indicates 
direct association between two 
variables.
An arrow with a dashed line 
indicates indirect association 
between two variables

C Confounders.

U Unmeasured confounders



Assumptions underlying MR
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SNP
(Z)

Exposure
(X)

Outcome
(Y)

Confounders

✕

✕



Assumptions underlying MR
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SNP
(Z)

Exposure
(X)

Outcome
(Y)

Confounders

✕

✕

1

(1) Relevance assumption: SNP is associated with the exposure



Assumptions underlying MR
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SNP
(Z)

Exposure
(X)

Outcome
(Y)

Confounders

✕

✕

1

2

(1) Relevance assumption: SNP is associated with the exposure

(2) Independence assumption: SNP is NOT associated with confounding 
variables



Assumptions underlying MR
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SNP
(Z)

Exposure
(X)

Outcome
(Y)

Confounders

✕

✕

1

2

3

(3) Exclusion restriction: SNP ONLY associated outcome through the exposure

(1) Relevance assumption: SNP is associated with the exposure

(2) Independence assumption: SNP is NOT associated with confounding 
variables



One-Sample MR
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Genotypes, exposure and outcome are available on 
individuals from the same sample.

Confounders 
(C)

Genetic 
variant (Z)

Exposure 
from one 

sample (X)

Outcome from 
the same 

sample (X)



Two sample MR
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SNP-exposure and SNP-
outcome association estimates 
from two independent 
samples from the same 
underlying population.

Confounders 
(C)

Genetic 
variant (Z)

Exposure 
from one 

sample (X)

Outcome 
from 

another 
sample (X)



Generate causal estimate

1. The association of the SNP and the outcome Test for existence of an effect



Generate causal estimate

1. The association of the SNP and the outcome

2. Two-stage least squares

3. The Wald estimator

Test for existence of an effect

Estimate the size of the effect



Calculating causal effect estimates
Two-Stage Least Squares
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A single sample of individuals with data on the SNP, the exposure 
and the outcome. Also known as “One sample MR”.

Manual calculation:
1. Regress exposure on SNP to get predicted values.
2. Regress outcome on predicted exposure (from 1st stage 

regression).

The regression coefficient from the second stage is the estimate of 
the causal effect of the exposure on the outcome. 



Calculating causal effect estimates
Two-Stage Least Squares
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A single sample of individuals with data on the SNP, the exposure 
and the outcome. Also known as “One sample MR”.

Manual calculation:
1. Regress exposure on SNP to get predicted values.
2. Regress outcome on predicted exposure (from 1st stage 

regression).

The regression coefficient from the second stage is the estimate of 
the causal effect of the exposure on the outcome. 

This gives you: difference in outcome per unit change in (genetically-predicted) exposure
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SNP Exposure Outcome

Confounders

βSNP-Exposure

βSNP-Outcome

? βCausal Exp-Out

βSNP-Outcome

βSNP-Exposure

Where there is a linear relationship between 
SNP, exposure and outcome:

βSNP-Outcome = βCausal Exp-Out x βSNP-Exposure

Calculating Causal Effect Estimates
Wald Estimator (Wald Ratio)
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Calculating Causal Effect Estimates
Wald Estimator (Wald Ratio)

SNP Weight Blood 
pressure

Confounders

βSNP-Weight
(0.5 kg)

βSNP-Blood Pressure
(0.9 mmHg)

? βCausal Weight-BP

βSNP-Outcome

βSNP-Exposure

Where there is a linear relationship between 
SNP, exposure and outcome:

βSNP-Outcome = βCausal Exp-Out x βSNP-Exposure

βCausal effect (Wald estimator) =

βCausal effect Weight-BP =                           = 1.8 mmHg/kg  
0.9 mmHg/allele
0.5 kg/allele

Wald estimator can be used 
in one sample (“One sample 
MR”) as well as different 
samples (“Two sample MR”)



MR example:  THE GOOD
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BMI 
genotype BMI CRP serum 

levels

Confounders



MR example:  THE GOOD
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CRP 
genotype CRP BMI

Confounders
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Effect estimates

Exposure ➜ Outcome Observational 
association

Instrumental 
variable (MR) PIV Pdiff Ffirst

BMI ➜ CRP 1.075 
(1.073, 1.077)

1.06
(1.02, 1.11) 0.002 0.6 50.2

CRP ➜ BMI 1.58 
(1.53, 1.63)

-0.30
(-0.78, 0.18) 0.2 <0.00001 78.3
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Effect estimates

Exposure ➜ Outcome Observational 
association

Instrumental 
variable (MR) PIV Pdiff Ffirst

BMI ➜ CRP 1.075 
(1.073, 1.077)

1.06
(1.02, 1.11) 0.002 0.6 50.2

CRP ➜ BMI 1.58 
(1.53, 1.63)

-0.30
(-0.78, 0.18) 0.2 <0.00001 78.3



MR Example: THE BAD
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MR Example: THE BAD
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MR Example: THE BAD
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MR Example: THE BAD
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MR Example: THE BAD
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Limitations of MR
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Reasons for failing to observe a SNP-outcome 
association despite a real causal association existing 

Power and weak instrument bias

Power:
• Genetic variants explain very small amounts of phenotypic variance in a given trait.
• VERY large sample sizes are generally required.

Weak instruments: 
• Genetic variants that are weak proxies for the exposure.
• Results in biased causal estimates from MR.

Different impact of the bias from weak instruments:
• One-Sample MR: to the confounded estimate.
• Two-Sample MR: to the null.
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Reasons for failing to observe a SNP-outcome 
association despite a real causal association existing 
Power
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Using Multiple Genetic Variants as Instruments

Creating allelic scores using multiple genetic variants.
Testing multiple variants individually and then meta-analysing individual SNPs.
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Reasons for detecting a causal SNP-outcome when 
it does not exist

Population Stratification:
• Creates genetic confounding.
• Assumption 2 is violated.

Overlapping discovery GWAS and MR estimation samples.

Pleiotropy
• Multiple phenotypic effects. 
• Assumption 3 is violated.
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Pleiotropy: Genetic variant influences more than one trait

SNP

Exposure

Outcome

Vertical 
pleiotropy

SNP

Outcome

Horizontal 
pleiotropy

Exposure

SNP
(Z)

Exposure
(X)

Outcome
(Y)

Confounders

✕

✕

1

2

3
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Horizontal Pleiotropy
Pleiotropy only violates MR’s assumptions if it involves a pathway
outside that of the exposure and is a pathway that affects your
outcome.

Outcome

SNP

Exposure
B1 B2

Exposure
B1

SNP

B2

Outcome
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Horizontal Pleiotropy
Pleiotropy only violates MR’s assumptions if it involves a pathway
outside that of the exposure and is a pathway that affects your
outcome.

Outcome

SNP

Exposure
B1 B2

Exposure
B1

SNP

B2

Outcome

Violation



MR Base
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MR Dictionary

86
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Conclusion
• MR uses genetic variants as proxies of modifiable exposures and can 

overcome some key limitations of observational studies.

• MR can reliably test for causal relationships, provided that three key 
assumptions are met.

• SNPs with known functional consequences increase the value of MR 
studies:

– Less likely to violate the assumptions.

– Increased biological understanding of the SNP -> exposure associations.

• Effect sizes are likely to be small, so sample sizes need to be very large.
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