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Recap

» Mendelian randomization is a technique that uses genetically informative observational data to inform
causality.

» Three core assumptions:
(1) Relevance assumption: SNP is associated with the exposure

(2) Independence assumption: SNP is NOT associated with confounding variables
- There are no confounders of the association between the instrumental variables (IVs) and the outcome.

(3) Exclusion restriction: SNP ONLY associated outcome through the exposure
» Pleiotropy: Genetic variant influences more than one trait

* One-sample MR is where the SNP, exposure and outcome are all available in the same study.

« Two-sample MR is where the SNP-exposure association is measured in one study and the SNP outcome
association is measured in a second study.
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Independence assumption (Second MR assumption)

There are no confounders of the association between the instrumental variables (IVs) and the outcome. As genetic
variants are determined at conception it is not possible for them to be affected by confounders of exposure-
outcome associations. When referring to the second MR assumption, factors that could influence the genetic
variants and outcome include population stratification or structure, intergenerational (dynastic) effects

and assortative mating. (MR Dictionary)

(@) Incorrect (b) Correct

Carter & Anderson (2024) International Journal of Epidemiology
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Delta method to estimate SE of Wald ratio

BETASNP—expos.ure= X
BETASNP—outcomez Y

Var(BETAWa|d ratio) = Var(Y/X)
~Var(Y)/X*2 + (Y 2/X*4)*Var(X) - 2*(Y/X*3)*Cov(X,Y) <= This is based on the Delta method

~Var(Y)/X"2

SE(BETAWaig ratio) = \/ Var(Y)/X"2
= SE(Y)/X

=S ESN P—outcome/ B ETASNP-exposure
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Outline

Set up a two-sample MR analysis using multiple genetic variants
Problems with pleiotropy and heterogeneity
15 minutes Break

Methods for handling pleiotropy
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PubMed search for Mendelian randomi[z/s]ation (title only)
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Jim Borgman (1997)
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Two-sample MR
Confounders
Single variant /\
?/Zzggf ., Risk factor _ Outcome
(£) IBASNP—Exposure - BZX X) ,éExposure—Outcome = ,éXY (Y)
J

\

Y
,BSNP—Outcome — ﬁZY

BSNP—Outcome

IBSNP—Outcome = ,BSNP—Exposure X IBExposure—Outcome

—~

Causal effect (Byy) by Wald estimator: 3

OSNP-Outcome

SNP—-Exposure
Can be estimated in different samples

Standard error (6xy) by Delta method: 3

SNP—Exposure (e'g' tWO'Sample MR)
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Two-sample MR

Confounders
Multiple variants
Genetic :
. ~ Risk factor ~ Outcome
Variants - — (X) A > Y)
(Zy) Bsnpy—Exposure = Bzyx BExposure—outcome = Pxy
\ . J
.BSNPk—Outcome — ﬁZkY
Causal effect by Wald estimator: Inverse variance weighted (IVW) average causal effect:

A BSNPk—Outcome 5 _ Yi=1Bxy Wk Where wy, = L =L
ﬁxyk = Prvw = SE_ Wy var(Byy ) Gxyr

the inverse variance of the
causal effect estimated from
the kih genetic variant

,BSNPk—Exposure

10
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Fixed effects IVW-MR and weighted linear regression

! i meghe « VW is equivalent to a weighted regression of
SNP-outcome effects on SNP-exposure effects
passing through the origin

« The weights are the inverse of the variance of the
1

var(ﬁ XYk)

o
S
h

individual causal effect estimates, i.e.,

o
=

» The slope is the estimate of the causal effect

SNP effect on Coronary heart disease Il id:7

.:‘i',*.
% Confounders
u SNP 1
' SNP 2 lg
00 01 02 03 0'4 o' SNP 3 __—r LDL CHD

SNP effect on LDL cholesterol Il id:300 /
SNP 4

11
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Assumptions for two-sample MR

If;

- The K genetic variants are perfectly uncorrelated (SNPs not in LD) and do not interact
- The two samples are homogenous (same underlying populations)
- No sample overlap (this could be relaxed if all IVs are “valid”)
- Constant causal effect at each level of the exposure
Then two-sample MR can consistently estimate the true causal effect.

Two-sample MR is still vulnerable to weak instrument bias
- Bias towards the null effect, not the observational estimate

- If approximate F-statistic (,[?ékx /0z2kx) is greater than 10, then the expected dilution Exykof towards zero
is less than 10%

12
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Performing two-sample MR with summary statistics

A convenient approach when sharing individual level data is impractical

Obtain instruments from 5
exposure GWAS R Q  of ]

LD Proxies \
If an exposure instrument

is not available in the

outcome GWAS then look

for LD proxies in 1000
genomes

Extract SNP effects from

outcome GWAS O—Target SNP

(O—Best LD proxy

/

13



Harmonise exposure and outcome effects
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Exposure GWAS Outcome GWAS
Effect Other |Effect allele Effect Other |Effect allele
SNP Effect allele allele frequency | Effect allele allele frequency
rs12345 0.132(A G 0.28 0.022(A G 0.26
rs23456 -0.485|G T 0.41 0.056|T G 0.61
rs34567 0.203|G C 0.11 -0.046(G C 0.88
Exposure GWAS Outcome GWAS
Effect Other Effect allele Effect Other Effect allele
SNP Effect allele allele frequency |Effect allele allele frequency
rs12345 0.132(A G 0.28
rs23456 -0.485|G i B 0.41
rs34567 0.203(G C 0.11




The issue of strand (palindromic variant)
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Exposure GWAS Outcome GWAS
Effect Other |Effect allele Effect Other |Effect allele
SNP Effect allele allele frequency |Effect allele allele frequency
rs12345 0.132|A G 0.28 0.022|A G 0.26
rs23456 -0.485|G i 0.41 0.056 (T G 0.61
rs34567 0.203|G C 0.11 -0.046|G C 0.88 -‘
Palindromic

5 3 5 3 5 3 5 3 Genotype of the forward strand (5’ > 3’) A/G C/IG

- .- - S Genotype of the reverse strand (3’ > 5) T/C G/C

Az==T Gzt 232G G:::

S L L S Exposure GWAS and outcome GWAS may be based on the
3 - - 3 - - 3 - - 5 3 - - genotypes of different strands. When there are palindromic

SNPs, simply merging datasets based on effect alleles may

(Not palindromic) result in the effect being the opposite.

(Palindromic)

Hartwig et al 2016



Harmonise exposure and outcome effects
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Exposure GWAS Outcome GWAS
Effect Other |Effect allele Effect Other |Effect allele
SNP Effect allele allele frequency | Effect allele allele frequency
rs12345 0.132(A G 0.28 0.022(A G 0.26
rs23456 -0.485|G T 0.41 0.056|T G 0.61
rs34567 0.203(G C 0.11 -0.046(G C 0.88
Exposure GWAS Outcome GWAS
Effect Other Effect allele Effect Other Effect allele
SNP Effect allele allele frequency |Effect allele allele frequency
rs12345 0.132(A G 0.28 0.022(A G 0.26
rs23456 -0.485|G T 0.41 -0.056|G T 0.39
rs34567 0.203|G C 0.11 0.046 (G C 0.12

ALTA

.

Palindromic

16



Strand issue exercise (5 mins)

Study 1 alleles | Study 1 allele | Study 2 alleles | Study 2 allele | Verdict?
freq freq
rs1 A/G 0.2 A/G 0.2

rs2
rs3
rs4
rsd
rs6

G/T
G/C
AT
AT
AlIG

0.3
0.65
0.49
0.12
0.4

T/G
G/C
AT
AT
AT

0.72
0.62
0.5
0.89
0.4

THE UNIVERSITY
OF QUEENSLAND

17
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WHAT IS THE PROBLEM WITH MR?

MR uses genetic variants to test for causal relationships between phenotypic
exposures and disease-related outcomes

* Due to the proliferation of GWAS, it is increasingly common for MR analyses
to use large numbers of genetic variants

 Increased power but greater potential for horizontal pleiotropy

 Pleiotropic variants affect biological pathways other than the exposure under
investigation and therefore can lead to biased causal estimates and false
positives under the null

18
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Three core MR assumptions

. Confounders
- ///’X///
L
SNP » EXxposure »  Outcome
- B e
___________________________ é

(1) Relevance assumption: SNP is associated with the exposure
& (2) Independence assumption: SNP is NOT associated with confounding variables
(population stratification, assortative mating, dynastic effects).
@~ (3) Exclusion restriction: SNP ONLY associated outcome through the exposure

19
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MR methods for

handling horizontal

pleiotropy

Table 1| List of MR estimation methods

Category Core IV assumption

relaxed
‘Basic’ MR method None

IV1; allows for weak
instruments

Weak instrument
robust methods

IV3; allows for
balanced/sparse
pleiotropy

Outlier/variant
selection and
removal

IV3; allows for (some)
directional pleiotropy

Outlier/variant
selection and
removal

IV3; allows for
balanced pleiotropy

Outlier/variant
adjustment

Outlier/variant IV3; allows for (some)

adjustment directional pleiotropy
Estimation IV3; allows for
adjustment balanced pleiotropy
Estimation IV3; allows for (some)
adjustment directional pleiotropy

Environmental IV3; allows for (some)
control adjustment directional pleiotropy

Individual-level data

Wald ratio estimation, 2SLS
regression analysis®

LIML™, allele score
approaches”

Weighted median'*’

sisVIVE’’, adaptive LASSO”?,
weighted mode'*’

Limited approaches currently
available

Limited approaches currently
available

Limited approaches currently
available

Constrained IVs’,
multivariable MR”*

MR GxE"’*, MR GENIUS"’

Summary data
Wald ratio estimation, [VW?*’

MR RAPS", debiased IVW"*’, MR
GRAPPLE®, NOME adjustment'®,
two-sample AR**

Weighted median®*’

Weighted mode**, MR LASSO*, Steiger
filtering>”*, Welch-weighted Egger™,
contamination mixture'”’, GSMR",
MR-Clust**’, Bayesian MIMR'**, CIV"*

MR RAPS®*’, MRCIP***

MR TRYX®*’, MR Robust*, MR CAUSE®,
MR PRESSO®’, MR GRAPPLE®*, MRMix'**,
MR-LDP***, IMRP**’, regularization'*,
MR-PATH (see preprint'*)

Debiased VW™’

MR Egger™”, multivariable MR"**', MR
Link”, h)JAM***, GIV**?, Bayesian network
analysis’”’, BMRE"", BayesMR"”

Limited approaches currently available

Sanderson et al. Nat Rev Methods Primers 2022
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Two-sample MR

No direct pleiotropy
- Confounders

A A

IBExposure—Outcome = Bxy
Outcome

n
Z
U
-
v
m
P
©
o
2]
-
S
®
v

,BSNP—Outcome = ,BSNP—Exposure X .BExposure—Outcome

Inverse variance weighted
Causal effect by Wald estimator: (IVW) average causal effect:

A . IBSNPk—Outcome

Bxr,

K —
’B" . Dk=1 .BXY, Wi
wvw — K -

,BSNPk—Ex'posure

21
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Two-sample MR

With direct pleiotropy (ay)
.- Confounders

-

-

A A

IBExposure—Outcome = Bxy

SNP, » EXxposure »  Outcome
— e
e ?Jf —————————————————————————————
,BSNP—Outcome = :BSNP—Exposure X :BExposure—Outcome + ak
Causal effect by Wald estimator: Inverse variance weighted (IVW) average causal effect:
ESNPk—Outcome — A ak Zlk<=1 BXY,Wk - . 5
B - ﬂExposu‘re—Outcome + ,E K . - ,BExposure—Outcome + Bias (CZ, ,BSNPk—Exposure)
SNPj—Exposure SNPj—Exposure Zk=1 Wk

22



Heterogeneity

We expect that each SNP represents an independent study, and
each should give an unbiased (if imprecise) estimate of the causal
effect of x ony.

Heterogeneity, where effect estimates are more different than
expected due to standard errors, arises because at least some of
the instruments are invalid.

Cochran’s Q statistic (heterogeneity test):

K A A
Q= Zk:1wk (.Bxyk - :BIVW)Z

Where w, is the weight (i.e. inversed variance) of the causal
estimate at SNP k.

If MR model is correct, Q follows a x2 distribution with expected
value K-1.

If Q is larger than K-1, then the estimates exhibit over-dispersion.

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

e SNPs are valid instruments
« SNPs associated with outcome via an independent pathway.

* . Biased effect
] : ® . > Bar True effect
B}' 7] ¢ . ® e
0 1 I 1 1 IB‘YI 1 1 1
A B
—t— —
S — —_—
—_— PR J—
PR | A —_—
S —
—_—— }
0.1 1.0 10 0.1 1.0 10
N=6 instruments
(A): No heterogeneity; all variants estimating the same quantity: Q =5
(B): Heterogeneity; variants estimating different quantities: Q >>5

Bowden et al. Am J Epidemiol. (2018) 187(12):2681-2685
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Accounting for heterogeneity

Option 1: Remove outliers c
« Some SNPs might contribute to the majority of the heterogeneity. :
« If we assume these are the invalid instruments, then the IVW g =
estimate excluding them should be less biased. 3 B
o . '
% te
. '
However — beware of: e a
- Cherry picking — remove outliers will artificially provide a more precise S GooR el
estimate
« What if the outlier is the only valid instrument, and all the others are
invalid?

- E.g. cis-variants for gene expression, DNA methylation, and protein levels.
CRP levels are best instrumented by variants within the CRP gene region.
Most other variants that come up in CRP GWAS are upstream effects related
to inflammation.

24
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Accounting for heterogeneity
Option 2: Multivariable MR

We are testing for whether X; has an influence on Y

We know that some instruments for X; also have influences on X,

This opens up the possibility of horizontal pleiotropy biasing our estimate
What is the X;-Y association adjusting for X,?

Does increasing HDL levels
(HDL-Cholesterol) U 1 reduce the risk of CVD?

SNP, X

|
|
| Y (Cardiovascular disease)
|

SNP,
(LDL-Cholesterol) U2

25
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Accounting for heterogeneity
Option 3: Fit a model that is robust to some model of horizontal pleiotropy

IVW fixed effects estimator assumes all SNPs are valid instruments and

averages across them all.

- Clear trend in estimates increasing with 3, x from origin br

- Cochran’s Q = K- 1 (no heterogeneity)




THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Accounting for heterogeneity
Option 3: Fit a model that is robust to some model of horizontal pleiotropy

IVW random effects estimator allows all SNPs to be invalid due to pleiotropy as long as the pleiotropy is balanced.
- The standard error of the causal estimate increases with the degree of heterogeneity.

Biased effect

A -

- ' o P 4 " o P True effect i o We could therefore regress the SNP-

i e ° . i * . ] . * e W outcome associations on the SNP-
8, ° B, - ° ° 5 1o * exposure associations, but allow for a
T o ° . T o/ ° . Br | . * o+ non-zero intercept in the regression

_ . o . i . e 1 e ¢ . This is the principal behind MR-Egger

1 ° ¢ i regression.

° ° 4
o o U IBXI LI o o T B 'BX' LI B b T 1 If}Xl T 1
Balanced Imbalanced Imbalanced

(zero-intercept)
Trend away from origin + heterogeneity
«  Zero-intercept condition unreasonable
+ |VW does not appear to be a good fit

* SNPs are valid instruments Pleiotropy potentially causes heterogeneity and bias

» SNP associated with outcome via confounder.
e SNP associated with outcome via an independent pathway.



Break time

by Canva Al image generator
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MR-Egger regression: Central concept

MR-Egger allows for a non-zero intercept in the

regression. ] / .
Br 12 . .
When multiple SNPs are used as instruments, . -+ ’
MR-Egger can: |
» Identify the presence of “directional” pleiotropy >
(biasing the causal estimate in VW)
» Provide a less biased causal estimate (in the Confounders
presence of pleiotropy)

MR-Egger lacks power. T R
,BSNPk—Exposure - ﬁZkX

,BExposure—Outcome = Bxy
SNPy > EXxposure »  Outcome
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MR-Egger regression | IR PO B L e
" ] c e L4 4". . T o e ﬁMR—Egger
MR-Egger regression replies on the InSIDE (INstrument 1 ° Soe . 1 ° e ® .
Strength Independent of Direct Effect) assumption, which i 1
states that the pleiotropic effects of SNPs must be N I
independent of their strength as instruments. ’ B ° bx
InSIDE Violation of InSIDE

* SNP not associated with outcome via an independent pathway
* SNP associated with outcome via an independent pathway

IVW model: Bk = Brvw Bxk + + ey \ A
?—J T Brw
ope
MR-Egger model: By = Bo + ﬁEggerBXk t vk 5 . * e o
iy By o Begger
Slope 1 e
B [ J
* By is the intercept term. B, can be interpreted as the o ] ° D) o__ O Brresiope
average pleiotropic effect across all genetic variants. A 1l ="
non-zero S, indicates directional pleiotropy. |
*  PBrgger is the causal estimate adjusted for directional ——— ————1—>
pleiotropy 0 Bx

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25
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MR-Egger regression

Example: height and lung function

0.20

VW

0.15

IVW = 0.59 (95% ClI: 0.50, 0.67 )

0.10

MR-Egger = 0.58 (95% CI: 0.50, 0.67);
intercept =-0.001 (p = 0.5)

0.00

-0.05

Py (SNP-lung function association)
0.05

P

-0.10 -0.05 0.00 0.05 010 . 015 0.20

i

P

Bx (SNP-height association)

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25



MR-Egger regression

Example: BP and Coronary Heart Disease

P

By (SNP-CHD association)

0.00 0.02 0.03
1

-0.01

Systolic BP

— Egger

0.00 0.05

Bx (SNP-SBP association)

0.10

0.15 0.20 0.25

0.30

0.35

IVW = 0.054 logOR/mmHg; p = 4x106

Egger = 0.015 logOR/mmHg; p = 0.6

P

By (SNP-CHD association)

0.00 0.01 0.02 0.03

-0.01

Diastolic BP

[ J
— IVW
— Egger °
I I I I I
0.00 0.05 0.10 0.15 0.20

Bx (SNP-DBP association)

IVW = 0.083 logOR/mmHg; p = 1x10~
Egger = -0.024 logOR/mmHg; p = 0.7

THE UNIVERSITY
OF QUEENSLAND

AUSTRALIA
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Median based methods (Median Estimator)

Order causal estimates (Wald ratio) and take the median.

A Y S Assumption: >50% of the
- (O Valid Iv = O valid Iv ! ' .
] ’o Invalid IV T | | @ mvaidv instrumental variables are valid.
§ i esltmte Median g VW
\§ . _ estimate ~§ 7] L estmate ..
3 ° o " . E 0" No restrictions need to be placed
3 o ¢ L7 o ™ ° = Median he | lid IVs:
5 N . @ Median on the invali S:
S - P S Peu and Tru i i
g o © g - T o  InSIDE assumption not required
s A ° A _m - Violations of #2 and #3 MR
o> 0~ T T T T T T T 1T~ assumptions are allowed

0 Genetic association with exposure(y) Genetic association with exposure |y |

Figure 2. Fictional example of a Mendelian randomization analysis with 10 genetic variants—six valid instrumental variables (hollow circles)
and four invalid instrumental variables (solid circles) for finite sample size (left) and infinite sample size (right) showing IVW (solid line) and simple
median (dashed line) estimates compared with the true causal effect (dotted line). The ratio estimate for each genetic variant is the gradient of the
line connecting the relevant datapoint for that variant to the origin; the simple median estimate is the median of these ratio estimates.

Bowden et al. Genet Epidemiol. (2016) 40(4):304-314
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Median based methods

Simple median estimator

* Odd number of IVs: middle ratio estimate

- Even number of IVs: median is the average of the two middle estimates G (B + Bk+1))

« Inefficient when the precision of individual variants varies considerably

fj'l ’}2 33 d4 ;3)5 “36 ?7 -38 }39 ‘.‘"310
Simple median B.+B
Weight (1/v) | 5 %5 1 10 1 10 16 15 = L B - —BstBs
Percentile (py) 5 15 25 35 45 55 65 75 35 05 IBSlmple median 2

Weighting 1
Percentile 1.67 6.67 15.00 26.67 4167 5833 7333 8500 93.33 08.33
Weighting 2

: 2
Weight (1/ve) | 35 3 3 36 36 36 36
Percentile (pc) | 2.78 972 27.78 52.78 70.83 81.94 88.89 93.06 9583 98.61

Bowden et al. Genet Epidemiol. (2016) 40(4):304-314
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Median based methods

Weighted median estimator

« Weighted median estimator takes into account the differing precisions

. . A A A ~ 50-27.78
. : = — (2 )X
Weighted median: Sy = fiz + (Bu — P3)% 5, —— -
. . . . . 1
« Suggested weights: inversed variance of the ratio estimate: w;,, = —
k ”ar(ﬂxyk)
31 ’}2 ,33 (4 35 6 ?7 -38 39 510
Simple median
Weight (1/vi) | & % 10 10 10 10 15 15 15 15
Percentile (px) | 5 15 25 35 45 55 65 75 85 95
Weighting 1 50 — 41.67
Weight (1/ve) | %5 % 3 3 3 3 % % 2 3 Pwm=Ps+(Bs—Ps)x
Percentile | 1.67 6.67 1500 26.67 41.67 5833 73.33 85.00 93.33 098.33 58.33 — 41.67
Weighting 2 50 — 27.78
H 2 3 10 8 5 3 2 1 1 1 A A A A - .
Weight (1/vi) | 35 35 3% 3% 3% 3 3% 3% 3% 3% Py =P+ (Bs— P3)X
Percentile (px) | 2.78 9.72 27.78 52.78 70.83 81.94 88.89 03.06 95.83 98.61 52.78 — 27.78

Bowden et al. Genet Epidemiol. (2016) 40(4):304-314



Summary of robust estimators

SNP effect on outcome

1.0

00 02 04 06 08

1.0

00 02 04 06 08

Ivw
No horizontal pleiotropy

[ ! I ! I I
00 02 04 06 08 1.0

SNP effect on exposure

Egger regression
Directional horizontal pleiotropy

I~

- — Egger
— VW

00 02 04 06 08 1.0

SNP effect on outcome

1.0

00 02 04 06 08

1.0

00 02 04 06 08

Random effects
Balanced horizontal pleiotropy

T T T T T T
00 02 04 06 08 10

SNP effect on exposure

Median-based estimator
Minority horizontal pleiotropy

| — Median-based
— VW

THE UNIVERSITY
OF QUEENSLAND
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® SNPs associated with outcome via an independent pathway.

Hemani et al. eLife (2018)



THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Reverse causal instruments

Problem: MR of type 2 diabetes on BMI

GWAS of T2D reveals FTO variant
- Famously associated with BMI

* Loci established previously
9 LOC! Kiariiad by, Curent sy - Areverse causal instrument?

150 4

FTO —— 172D —— BMI

100 —

T2D «<—— BMI «—— FTO
; ! FTO may be associated with T2D
50 - I through its effect on BMI

>> Not a good instrument for T2D

: 3
' {
L
-
i 3
. 2l 394 o )
il 4 " 'Y v T - e o po
b DI clh BBt bl dlloe A Uik ks
o~ [} -t w @0 ~ «© o o -— ~N w <O ~ ©w D

0~ £ B
Ll -
-

- -

20 we
21

o~
o~

Chromosome
37
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Can we avoid including reverse-causal SNPs as instruments?

Steiger filtering test
» If SNP causes A and A causes B
» The effect of SNP on A should be larger than the effect of SNP on B

SNP A B Expect that
r2(SNP, B) = r2(SNP, A)x r%(4A, B)
%{—)

This term is <1

r2(SNP, A) r%(4, B)

« Steiger test used to evaluate if 2(SNP,A) > r2(SNP,B)
« If this is not satisfied, infer that this instrument is not influencing the exposure primarily.

38
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ldeal instruments are genetic variants with a known biological
function related to the exposure

Bitter taste Bitter taste +-
U receptors — ercention  Bitter beverage intake (Ong et al. 2018 Sci Rep)
(TAS2Rs) percep
Caffeine . L : :
. Maternal coffee = X Children’s birth weight/  (Brito Nunes et al.

ﬁ metabolism genes  ———— intake " Perinatal outcomes 2023 Int J Epidemiol)
(AHR/CYP1A2) P
Aldehyde X

? dehydrogenase Alcohol intake Breast/Ovarian cancer (Ong et al. 2020 Int J
(ALDHZ) Cancer)

I(_Lagt%se > Milk intake —Z. 18 diseases (Yuan et al. 2022 BMC

Med)
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TwoSampleMR R Package

TwoSampleMR 0.6.4 Guide ¥ Functions Changelog Search for Source

Links

Browse source code

Mendelian randomization with GWAS summary data

Report a bug

A package for performing Mendelian randomization using GWAS summary data. It uses the IEU GWAS database to License
obtain data automatically, and a wide range of methods to run the analysis. You can use the MR-Base web app to try Full license
out a limited range of the functionality in this package, but for any serious work we strongly recommend using this R MIT + file LICENSE
package.
Citation

January 2020 major update

We have made substantial changes to the package, database and reference panels. For full details of the changes,
please visit https://mrcieu.github.io/TwoSampleMR/articles/gwas2020.html

Citing TwoSampleMR

Developers

Gibran Hemani

InSta llation Author, maintainer
Users running Windows and macOS, to install the latest version of TwoSampleMR please install from our MRC IEU r- Philip Haycock
universe Author % 60
Jie Zheng g
install.packages("TwoSampleMR", repos = c("https://mrcieu.r-universe.dev", "https://cloud.r-project.o Athior -
(]
Tom Gaunt % 401
Users running Linux or WebR please see the following instructions. Author K
-
-
To update the package run the same command again. Ben Elsworth c
Author '_';
Installing from source Toiiiiar % 20/
install.packages("remotes") Author -g
remotes::install_github("MRCIEU/TwoSampleMR") a
Dev status =
-CMD- i [
To update the package just run the remotes::install_github("MRCIEU/TwoSampleMR") command again. Z 0
: ‘
DOCker 2005 2010 - tZOIS 2020 2025
a
A docker image containing R with the TwoSampleMR package pre-installed is available here:
https://hub.docker.com/r/mrcieu/twosamplemr r-universe [
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STROBE-MR MR Dictionary

D‘T, MR Dictionary Home About Contribute Contact

* STROBE-MR

Transparent reporting of Mendelian randomization studies

The definitive list of terms for Mendelian randomization Recently added/updated:
research OneSampleMR

Learn more about the project Inverse variance weighted (IVW).
fixed effects estimate

debiased IVW
Search... Q Cis- and trans-variants

Powered by Algolia MR for drug targets

Home Contributors Links Contact

Welcome to the STROBE-MR website!

About: STROBE-MR stands for "Strengthening the Reporting of Observational Studies in Epidemiology
using Mendelian Randomization”. Inspired by the original STROBE checklist, the STROBE-MR guidelines
were developed to assist researchers in reporting their Mendelian randomization studies clearly and

Browse All

. . - . . Genetic terms
View all terms in the Dictionary in an A-Z list

transparently. Adopting STROBE-MR should help readers, reviewers, and journal editors evaluate the quality Definition Related approaches

of published MR studies.

Biases and limitations One-sample methods

The STROBE-MR checklist contains 20 items recommended to address in reports of Mendelian

randomization studies.

Weak instrument-robust one-sample methods Pleiotropy-robust one-sample methods

The Statement document describes the process of developing the checklist and the complementary

Explanation and Elaborations document. Two-sample methods Weak instrument-robust two-sample methods

The Explanation and Elaboration document explains the items of the STROBE-MR checklist, along with

. . . Pleiotropy-robust two-sample methods
their rationale and examples of transparent reporting.

Model selection and averaging approaches

Heterogeneity and outlier detection Resources and software

All documents and publications produced by the STROBE-MR Initiative are open-access and available for
download on this website.

Copyright © 2021-2024 University of Bristol Bl University of MRC Imegrative
B BRISTOL o
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Summary

* MR uses natural randomization to mimic an RCT

It is useful, data is abundant, but it is not a panacea for causal inference

Often valuable for proving that a hypothesized association is not causal

Horizontal pleiotropy is one of the main threats to the validity of MR studies
- Multiple methods developed to detect and adjust for horizontal pleiotropy

Crucial to perform sensitivity analyses and obtain metrics regarding the likely reliability of the MR
estimates

Consistency of results across methods is key to reliable causal inference
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