
Introduction to Structural Equation Modelling 
(SEM) and GenomicSEM

Geng Wang 

Postdoctoral Research Fellow | Evans Group
Institute for Molecular Bioscience

The University of Queensland
27-June-2024

1



The University of Queensland (UQ) acknowledges the 
Traditional Owners and their custodianship of the lands 
on which we meet.

We pay our respects to their Ancestors and their 
descendants, who continue cultural and spiritual 
connections to Country.

We recognise their valuable contributions to Australian 
and global society.

Acknowledgement  
of Country

Image: Digital reproduction of A guidance through time by Casey Coolwell and Kyra Mancktelow



Content

• Part I (9:00-10:00 am)
• SEM basics
• Path diagrams

Short break (5mins)
• Part II (10:05 -10:30 am)
• Genomic SEM
• Q&A (5-10mins)



Background - What is SEM?

• Structural Equation Modelling (SEM) is a statistical 
method for analysing the relationship between 
observed and latent variables.

• Causal and correlational relationships between 
variables are modelled explicitly.

• Involves constructing a statistical (structural) 
model, seeing how well this model fits observed 
data, and obtaining estimates of parameters.

• The causal connections are represented 
using equations, but the postulated structuring can 
be illustrated by a path diagram. Also known as:

• Confirmatory Factor Analysis
• Analysis of covariance structure
• Path analysis



Background - What is latent variable?

• For example, General Intelligence (g)…

Spearman 1904
Deary et al. 2021

https://psycnet.apa.org/search/results?term=Spearman,%20C.&latSearchType=a
https://www.nature.com/articles/s41380-021-01027-y


Background - Why SEM?

• Flexibility - almost any linear model can be written as an SEM.

• Simplicity - SEM makes it easy to create new models/methods.

• Useful - super useful for deriving expected variances/covariances in genetics

• Versatility - SEM means that you can think about a problem in multiple ways

• Advantages for modelling human genetic data:

• Latent variables
• Multivariate phenotypes
• Feedback loops
• …
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SEM basics - Theory (e.g. Univariate Regression)

Theory: there is a linear relationship between the independent variable X and the 
dependent variable Y.

Structural Equation:  Y = bX + e

Assume variables measured in deviation form

“b” is a path coefficient/regression coefficient.

It quantifies the expected change in Y for every unit change in X is “b”

“e” is the error term (residual)

X Y eb 1
var(e)φ1



SEM basics - Path diagram elements

*Latent variables are variables that can only be inferred indirectly through a mathematical model from other 
observable variables that can be directly observed or measured

• A path diagram is a pictorial representation of an SEM 

X Y eb 1
var(e)φ1

(Co)variance: the parameters on co/variance paths, e.g. φ1

Path coefficient: the number on the causal path, e.g. b



SEM basics - Build Model (Univariate Regression)

• Y = bX + e (explicit)

• Measurement error in Y is e (explicit)

• No measurement error in X (explicit)

• No covariance between X and e (explicit)

• Covariance between X and Y is b*φ1 (explicit)

• Linear relationships between the variables (implicit)

• Multivariate normality (implicit)

X Y eb 1
var(e)φ1



SEM basics - Concepts

1. Identification



SEM basics - Identification

• Means that all parameters in a model can be estimated uniquely given the 
data.

• A necessary (but not sufficient condition) for identifiability is that you have 
the same (or more) observed statistics than parameters you want to 
estimate.

• If all parameters in a model are identified, then the model as a whole is 
identified

• Even though the model as a whole may be unidentified some parameters 
may be identified



SEM basics – Identified or Not?

(1)  θ1 + θ2 = 10
(2)  θ1 + θ2 = 10
      θ1 - θ2  =  0
(3)  θ1 + θ2 = 10
      2θ1 +2θ2  =  20



Y = bX + eX Y eb 1
var(e)φ1

t ≤  n(n+1)/2
t number of parameters to estimate
n number of observed variables

General rule

Number of estimated parameters: 3

φ1, b, var(e)

Number of observed variables: 2
Number of observed statistics:
2*3/2 =3 (var(X), cov(X,Y), var(Y))

SEM basics – Identifiability
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SEM basics - Concepts

1. Identification

2. Maximum Likelihood (Fit to data)



Likelihood (function)

The likelihood function (often simply called the likelihood) is the 
joint probability P() of the observed data (x) viewed as a function 
of the parameter(s) (θ) of a statistical model. 

="
!"#

$

𝑃%	(𝑥!)

SEM basics - Likelihood (function)

θ represents the parameters of the model.
x is the observed data
L(θ∣x) represents the likelihood of the parameter θ given the 
observed data x.



𝜃: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	ℎ𝑒𝑎𝑑𝑠	
𝑥 ∶ ℎ𝑒𝑎𝑑

= 𝜃

SEM basics - Likelihood (function)

Probability of Heads (θ)
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SEM basics - Likelihood (function)

Probability of Heads (θ)
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Evloution of 
Likelihood function as 
you add observations 
(1 to 100 coin flips)

SEM basics - Likelihood (function)

Probability of Heads (θ)



Consistent

Asymptotically unbiased

Efficient

Scale Invariant

Sampling distribution of estimates is 
asymptotically normal

Parameter that maximises 
the probability of the 
observed data
𝜃: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	ℎ𝑒𝑎𝑑𝑠	

= 𝜃. 𝜃. 𝜃. 𝜃	. (1 − 𝜃)

𝑥 ∶ ℎ𝑒𝑎𝑑𝑠, ℎ𝑒𝑎𝑑𝑠, ℎ𝑒𝑎𝑑𝑠, ℎ𝑒𝑎𝑑𝑠,
𝑡𝑎𝑖𝑙𝑠

SEM basics - Maximum likelihood estimation (MLE) 

Probability of Heads (θ)



SEM basics – Maximum Likelihood (>1 parameter)

• mean (m1) 
• standard deviation (σ)
• Likelihood( L(m1, σ) )



• Maximize the multivariate normal likelihood according to the model for 
the means and the model for the covariances.

• Minimize the difference between the covariance matrix implied by the 
SEM (the “expected covariance matrix”) and the observed covariance 
matrix

SEM basics – Modelling Both Means and 
Covariances Simultaneously

𝐒	 − 𝚺 𝛉
Observed

Covariance
Matrix

Expected
Covariance

Matrix



• Expected covariance matrix is a function of model parameters

• Parameters chosen to minimise the difference between observed and 
expected covariance matrices (MLEs)

SEM basics – Understanding SEM

𝐒	 − 𝚺 𝛉
Observed

Covariance
Matrix

Expected
Covariance

Matrix



SEM basics – Simple example (Univariate Regression)

X Y eb 1
var(e)φ1

S =

Observed Covariance Matrix:

Number of observed variables: 2
Number of observed statistics: 3 
(var(X), cov(X,Y), var(Y))

Expected/Implied Covariance Matrix:

Number of estimated parameters: 3 (φ1, b, var(e))

φ1 bφ1
bφ1 b2φ1+var(e)

Σ(θ) =
VAR(X) COV(X,Y)

COV(X,Y) VAR(Y)



ML, FIML, REML
ML: Maximum likelihood 

FIML: Full Information 
Maximum Likelihood

REML: Restricted Maximum 
Likelihood 

Handles missing values

Minimises bias in variance 
estimation of mixed 
models

Fine for fixed effect models
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SEM basics - Concepts

1. Identification

2. Maximum Likelihood

3. Optimization



• Maximum likelihood of complex model 
solutions can rarely be solved in closed 
form - rather, iterative optimization 
procedures are commonly needed.

SEM basics - Optimization
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Calculate likelihood 
of these parameter 
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Repeat process until stopping criterion is reached

SEM basics - Optimization



SEM basics - Optimization

• Typically, we maximize the log-likelihood 
because computers find it easier to add 
rather than multiply.

• The likelihood surface may be complicated 
with one or more local maxima

• Choosing different starting values can 
increase confidence in a global solution

• In general, it is good practice to choose 
starting values as close as possible to the 
global solution



SEM basics - Fit indices 

• Chi-square test: A low chi-square value relative to its degrees of freedom and a 
non-significant p-value suggest a good model fit.

• Aikake Information Criterion (AIC): Lower AIC values indicate a better model 
fit relative to other models.

• Comparative Fit Index (CFI): CFI values range from 0 to 1, with values closer 
to 1 indicating a better fit.

• Standardized Root Mean Square Residual (SRMR): SRMR values range from 
0 to 1, with lower values indicating a better fit. An SRMR value less than 0.08 is 
generally considered a good fit.

• Root Mean Square Error of Approximation (RMSEA): Fit index where a value 
of zero indicates the best fit



Path diagram – A more complex model

X1

Ye
b1

1

φ11

var(e)

X2

X3

φ22

φ33

b2

b3

φ12

φ23

φ13

Y = b1X1 + b2X2 + b3X3+ e

VAR(X1) COV(X1,X2) COV(X1,X3) COV(X1,Y)

COV(X2,X1) VAR(X2) COV(X2,X3) COV(X2,Y)

COV(X3,X1) COV(X3,X2) VAR(X3) COV(X3,Y)

COV(Y,X1) COV(Y,X2) COV(Y, X3) VAR(Y)

S =

Structural Equation:

Observed Covariance Matrix:

Number of observed variables: 4 
Number of observed statistics: (4*5)/2=10
Number of estimated parameters: 10

(b1,b2,b3,φ11,φ12,φ13,φ22, φ23,φ33,var(e))



Path diagram – A more complex model
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Observed Covariance Matrix:

Expected Covariance Matrix:
φ11 φ12 φ13
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+b3φ13

φ12 φ22 φ23
b2φ22+b1φ12

+b3φ23

φ13 φ23 φ33
b3φ33+b1φ13

+b2φ23

b1φ11+b2φ12
+b3φ13

b2φ22+b1φ12
+b3φ23

b3φ33+b1φ13
+b2φ23

b1
2φ11+b2

2φ22
+b3

2φ33+2b1b2φ12+ 
2b1b3φ13+2b2b3φ23

+ var(e)

Σ(θ) =
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Path diagram – Common Factor Model
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Expected Covariance Matrix:

Σ(θ) =
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Path diagram – Classical Twin Design

Structural Equations:

T1MZ = A1 + C1 + E1

T2MZ = A2 + C2 + E2

T1DZ = A1 + C1 + E1

T2DZ = A2 + C2 + E2

Additive genetic effects (A)
Common environmental effects (C)
Unique Environmental effects (E)
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Observed Covariance Matrices: 

VAR(T1MZ) COV(T1MZ,T2MZ)

COV(T1MZ,T2MZ) VAR(T2MZ)
SMZ =

VAR(T1DZ) COV(T1DZ,T2DZ)

COV(T1DZ,T2DZ) VAR(T2DZ)
SDZ =
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Expected Covariance Matrices: 
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Path diagram – More complicated model 



Path Tracing Rules

• Deriving Expected Variances and Covariances Using
Path Tracing Rules

X Y eb 1
var(e)φ1

VAR(X) COV(X,Y)

COV(X,Y) VAR(Y)

S =

Observed Covariance Matrix: Expected/Implied Covariance Matrix:

φ1 bφ1

bφ1 b2φ1+var(e)
Σ(θ) =



Path Tracing Rules - Deriving variances & covariances 

• Identify all legitimate chains (a series of paths) that connect one 
variable to another (covariances) or connect a variable back to itself 
(variances)

X

Covariance: cov(x,y) Variance: var(y)



Path Tracing Rules - Deriving variances & covariances 

• All chains begin by travelling backwards against the direction of a 
(single or double-headed) arrow, head to tail. 

• e.g. expected variance of Y

X eb 1
var(e)φ1

Chain 1 Chain 2



Path Tracing Rules - Deriving variances & covariances 

• Once a double-headed arrow has been traversed, the direction 
reverses such that the chain travels forward.

• e.g. expected variance of Y

X eb 1
var(e)φ1

Chain 1



Path Tracing Rules - Deriving variances & covariances 

• The expected value of a chain is the product of all coefficients 
associated with each path making up that chain.

• e.g. expected variance of Y

b*φ1*b

X eb 1
var(e)φ1

Chain 1



Path Tracing Rules - Deriving variances & covariances 

• The final expected variance or covariance equals the sum of the 
values of all legitimate chains

• e.g. expected variance of Y

X eb 1
var(e)φ1

Chain 1 Chain 2
b*φ1*b     +       1*var(e)*1



Path Tracing Rules - Deriving variances & covariances 

• All chains must include exactly one double-headed arrow. This 
implies a chain must change directions exactly once.

• All chains must be counted exactly once, and each must be unique.

• However, order matters: a->b->c is a distinct chain from c->b->a.

• See example in the next slide
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Path Tracing Rules - Deriving variances & covariances 

• Identify all legitimate chains (a series of paths) that connect one variable 
to another (covariances) or connect a variable back to itself (variances)

• All chains begin by travelling backwards against the direction of a (single 
or double-headed) arrow, head to tail. 

• The expected value of a chain is the product of all coefficients associated 
with each path making up that chain

• Once a double-headed arrow has been traversed, the direction reverses 
such that the chain travels forward

• The final expected variance or covariance equals the sum of the values of 
all legitimate chains

• All chains must include exactly one double-headed arrow. This implies a 
chain must change directions exactly once.

• All chains must be counted exactly once, and each must be unique. 
However, order matters: a->b->c is a distinct chain from c->b->a.
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Path Tracing Rules - Deriving variances & covariances 

• Identify all legitimate chains (a series of paths) that connect one variable 
to another (covariances) or connect a variable back to itself (variances)

• All chains begin by travelling backwards against the direction of a (single 
or double-headed) arrow, head to tail. 

• The expected value of a chain is the product of all coefficients associated 
with each path making up that chain

• Once a double-headed arrow has been traversed, the direction reverses 
such that the chain travels forward

• The final expected variance or covariance equals the sum of the values of 
all legitimate chains

• All chains must include exactly one double-headed arrow. This implies a 
chain must change directions exactly once.

• All chains must be counted exactly once, and each must be unique. 
However, order matters: a->b->c is a distinct chain from c->b->a.
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Path Tracing Rules - Deriving variances & covariances 

• Identify all legitimate chains (a series of paths) that connect one variable 
to another (covariances) or connect a variable back to itself (variances)

• All chains begin by travelling backwards against the direction of a (single 
or double-headed) arrow, head to tail. 

• The expected value of a chain is the product of all coefficients associated 
with each path making up that chain.

• Once a double-headed arrow has been traversed, the direction reverses 
such that the chain travels forward

• The final expected variance or covariance equals the sum of the values of 
all legitimate chains

• All chains must include exactly one double-headed arrow. This implies a 
chain must change directions exactly once.

• All chains must be counted exactly once, and each must be unique. 
However, order matters: a->b->c is a distinct chain from c->b->a.
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Path Tracing Rules - Deriving variances & covariances 

• Identify all legitimate chains (a series of paths) that connect one variable 
to another (covariances) or connect a variable back to itself (variances)

• All chains begin by travelling backwards against the direction of a (single 
or double-headed) arrow, head to tail. 

• The expected value of a chain is the product of all coefficients associated 
with each path making up that chain.

• Once a double-headed arrow has been traversed, the direction reverses 
such that the chain travels forward

• The final expected variance or covariance equals the sum of the values of 
all legitimate chains

• All chains must include exactly one double-headed arrow. This implies a 
chain must change directions exactly once.

• All chains must be counted exactly once, and each must be unique. 
However, order matters: a->b->c is a distinct chain from c->b->a.
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Path Tracing Rules - Deriving variances & covariances 

• Identify all legitimate chains (a series of paths) that connect one variable 
to another (covariances) or connect a variable back to itself (variances)

• All chains begin by travelling backwards against the direction of a (single 
or double-headed) arrow, head to tail. 

• The expected value of a chain is the product of all coefficients associated 
with each path making up that chain.

• Once a double-headed arrow has been traversed, the direction reverses 
such that the chain travels forward

• The final expected variance or covariance equals the sum of the values of 
all legitimate chains

• All chains must include exactly one double-headed arrow. This implies a 
chain must change directions exactly once.

• All chains must be counted exactly once, and each must be unique. 
However, order matters: a->b->c is a distinct chain from c->b->a.



A B

G

H

VA

x

covAB

ba

g

VB

COV(H,A) = 
+ g * b *  

Path Tracing Rules - Deriving variances & covariances 

• Identify all legitimate chains (a series of paths) that connect one variable 
to another (covariances) or connect a variable back to itself (variances)

• All chains begin by travelling backwards against the direction of a (single 
or double-headed) arrow, head to tail. 

• The expected value of a chain is the product of all coefficients associated 
with each path making up that chain.

• Once a double-headed arrow has been traversed, the direction reverses 
such that the chain travels forward

• The final expected variance or covariance equals the sum of the values of 
all legitimate chains

• All chains must include exactly one double-headed arrow. This implies a 
chain must change directions exactly once.

• All chains must be counted exactly once, and each must be unique. 
However, order matters: a->b->c is a distinct chain from c->b->a.
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Path Tracing Rules - Deriving variances & covariances 

• Identify all legitimate chains (a series of paths) that connect one variable 
to another (covariances) or connect a variable back to itself (variances)

• All chains begin by travelling backwards against the direction of a (single 
or double-headed) arrow, head to tail. 

• The expected value of a chain is the product of all coefficients associated 
with each path making up that chain.

• Once a double-headed arrow has been traversed, the direction reverses 
such that the chain travels forward

• The final expected variance or covariance equals the sum of the values of 
all legitimate chains

• All chains must include exactly one double-headed arrow. This implies a 
chain must change directions exactly once.

• All chains must be counted exactly once, and each must be unique. 
However, order matters: a->b->c is a distinct chain from c->b->a.
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Path Tracing Rules - Deriving variances & covariances 



A B

G

H

VA

x

covAB

ba

g

VB

VAR(G) = 

Path Tracing Rules - Deriving variances & covariances 



A B

G

H

VA

x

covAB

ba

g

VB

VAR(G) = x 
                + 

Path Tracing Rules - Deriving variances & covariances 



A B

G

H

VA

x

covAB

ba

g

VB

VAR(G) = x 
                + b * 

Path Tracing Rules - Deriving variances & covariances 
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Path Tracing Rules - Deriving variances & covariances 
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Path Tracing Rules - Deriving variances & covariances 

• All chains must be counted exactly once, and each must be unique. 
However, order matters: a->b->c is a distinct chain from c->b->a.
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Path Tracing Rules - Deriving variances & covariances 
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Path Tracing Rules - Deriving variances & covariances 
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Path Tracing Rules - Deriving variances & covariances 
VAR(G) = x 
                + b * COVAB * a 
                + a * COVAB * b 

+ 
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Path Tracing Rules - Deriving variances & covariances 
VAR(G) = x 
                + b * COVAB * a 
                + a * COVAB * b

+ a * 
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Path Tracing Rules - Deriving variances & covariances 
VAR(G) = x 
                + b * COVAB * a 
                + a * COVAB * b

+ a *  VA * 
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Path Tracing Rules - Deriving variances & covariances 
VAR(G) = x 
                + b * COVAB * a 
                + a * COVAB * b 
                + a * VA * a

+ 
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Path Tracing Rules - Deriving variances & covariances 
VAR(G) = x 
                + b * COVAB * a 
                + a * COVAB * b 
                + a * VA * a

+ b *
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Path Tracing Rules - Deriving variances & covariances 
VAR(G) = x 
                + b * COVAB * a 
                + a * COVAB * b 
                + a * VA * a
                + b * VB *
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Path Tracing Rules - Deriving variances & covariances 
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Path Tracing Rules - Deriving variances & covariances 
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Path Tracing Rules - Deriving variances & covariances 
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Path Tracing Rules - Deriving variances & covariances 

You can also derive expected variances and 
covariances using covariance algebra!

(Feel free to try it after the class, see slides at the 
end).

VAR(G) = x + 2*a*b*COVAB + a2*VA + b2*VB



SEM basics – Simple example (Univariate Regression)

X Y eb 1
var(e)φ1

VAR(X) COV(X,Y)

COV(X,Y) VAR(Y)

S =

Observed Covariance Matrix:

Number of observed variables: 2
Number of observed statistics: 3 
(var(X), cov(X,Y), var(Y))

Expected/Implied Covariance Matrix:

Number of estimated parameters: 3 (φ1, b, var(e))

φ1 bφ1

bφ1 b2φ1+var(e)
Σ(θ) =



Take home messages – Part I

• Structural Equation Modeling (SEM) is a statistical method that 
analyzes relationships between observed and latent variables. 

• Path diagram is a visual representation of an SEM, which is usually 
found more intuitive than collections of structural equations, 
especially as the models grow complicated.

• Path tracing rules are useful for deriving variance/covariance.

• Fitting data to an SEM model involves adjusting model parameters to 
minimize the difference between the observed covariance matrix and 
the expected covariance matrix. 



Further Reading

• Evans DM. et al (2002). Biometrical Genetics. Biol Psychol, 61, 33-51.

• Bollen K. (1989). Structural equations with latent variables.

• Neale M. & Cardon L. (1992). Methodology for genetic studies of 
twins and families.

• Rijsdijk F.V. & Sham P.C. (2002). Analytic approaches to twin data 
using structural equation models. Brief Bioinform, 3(2), 119-33.
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Genomic SEM – Why Genomic SEM? 

• Human complex traits/diseases are associated with many genes

S. Cichon, S. Ripke, 2016



Traits are highly polygenic, so not simply a matter of identifying 
~5 overlapping genes

Schizophrenia Depression

Genomic SEM – Why Genomic SEM? 

Slide courtesy of Andrew Grotzinger



Genomic SEM – LD score regression (LDSC)

Estimates genetic correlations between samples with varying degrees 
of sample overlap using publicly available data

• To estimate SNP Heritability:
• Regress GWAS test statistic against LD 

Scores for all SNPs (not just significant 
ones)

• To estimate Genetic Correlation:
• Regress product of GWAS test statistics 

for two different phenotypes against LD 
Scores



Pervasive (Statistical) Pleiotropy Necessitates 
Methods for Analyzing Joint Genetic Architecture

Genomic SEM – Why Genomic SEM? 
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Genomic SEM – Genomic SEM



• Apply structural equation model to estimated genetic covariance matrices

• Allow users to examine traits that could not be measured in the same sample

• Genomic SEM provides a flexible framework for estimating a limitless 
number of structural equation models using multivariate genetic data from 
GWAS summary statistics . 

• Can be applied to summary stats with varying and unknown degrees of overlap

Genomic SEM – Genomic SEM



Genomic SEM fits structural equation models to genetic covariance matrices derived 
from GWAS summary statistics using 2 Stage Estimation.

• Stage 1: Estimate Genetic Covariance Matrix and associated matrix of standard errors 
and their co-dependencies

• We use LD Score Regression, but any method for estimating this matrix (e.g. GREML) and 
its sampling distribution can be used. 

• Stage 2: Fit a Structural Equation Model to the Matrices from Stage 1

Genomic SEM – Genomic SEM



Create a genetic covariance matrix, S: an “atlas of genetic correlations”

Diagonal elements are
(heritabilities hn2)

Off-diagonal elements are
Coheritabilities (𝜎!",!$)

Genomic SEM – Stage 1 Estimation: Multivariable LDSC



Off-diagonal elements are dependencies between estimation errors used to directly 
model dependencies that occur due to sample overlap from contributing GWASs

Also produced is a second matrix, V, of squared standard errors and the dependencies between 
estimation errors

Genomic SEM – Stage 1 Estimation: Multivariable LDSC

Diagonal elements are
squared standard errors of
genetic variances and 
covariances
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Genomic SEM – Common factor model

Schizophrenia (SCZ), bipolar disorder (BIP), major depressive disorder (MDD), 
post-traumatic stress disorder (PTSD), and anxiety disorder (ANX).
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V1 V2 V4 V5

E1

VE1
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E5

VE4

C

1 1 1

λ1 λ2 λ3 λ4

VAR(V1) COV(V1,V2) COV(V1,V3) COV(V1,V4) COV(V5,V1)

COV(V2,V1) VAR(V2) COV(V2,V3) COV(V2,V4) COV(V5,V2)

COV(V3,V1) COV(V3,V2) VAR(V3) COV(V3,V4) COV(V5,V3)

COV(V4,V1) COV(V4,V2) COV(V4, V3) VAR(V4) COV(V5, V4)

COV(V5,V1) COV(V5,V2) COV(V5,V3) COV(V5, V4) VAR(V5)

S =

Observed Covariance Matrix:1

Expected Covariance Matrix:

Σ(θ) =

SEM – Common factor model
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Genomic SEM – GWAS of a Latent Factor



• Asks to what extent the effect of the SNP operates through the common factor

• 𝜒,	distributed test statistic, indexing fit of the common pathways model against 
independent pathways model

FG

1

SNPm𝜎SNP	"
"𝑏SNPm,F

1

u
F

1 𝑒!	
" 

𝑒V1	" 𝑒V2	" 𝑒V3	" 𝑒V4	" 𝑒V5	"

λV1

λV2 λV3 λV4

λV5

FGSNPm𝜎SNP	"

1

𝑒V1	" 𝑒V2	" 𝑒V3	" 𝑒V4	" 𝑒V5	"

λV1

λV2 λV3 λV4

λV5
"𝑏SNPm,V1

"𝑏SNPm,V2
"𝑏SNPm,V3 "𝑏SNPm,V4 "𝑏SNPm,V5

uV1 uV2 uV3 uV4 uV5

V1g

1111

V2g V3g V4g V5g
V1g V2g V3g V4g V5g

uV5uV4uV3uV2uV1

1 1 1 1 1

Genomic SEM - Estimates of SNP level heterogeneity (QSNP)



• 128 lead SNPs
• 27 unique loci not previously identified in 

any of the five univariate GWA studies (   )
• 41 previously significant in a univariate 

study, but not for p-factor (      )

• 1 significant QSNP estimate (*)

Genomic SEM - Manhattan Plot (Latent Factor)



• Genetic correlations from GWASs show widespread pleiotropy across various 
phenotypes.

• GenomicSEM is a multivariate method introduced for analyzing the joint genetic 
architecture of complex traits.

• It utilises genetic correlations and SNP heritabilities from GWAS summary statistics
(i.e. LDSC), even from samples with unknown or varying overlap.

• It applies structural equation model to estimated genetic covariance matrices, which 
allow users to examine traits that could not be measured in the same sample.

Take home messages – Part II



• Bulik-Sullivan B. et al (2015). LD score regression distinguishes confounding from 
polygenicity in genome-wide association studies. Nat Genet, 47(3), 291-295.

• Bulik-Sullivan B. et al (2015). An atlas of genetic correlations across human diseases and 
traits. Nat Genet, 11, 1236-41.

• Demange PA. et al (2021). Investigating the genetic architecture of noncognitive skills using 
GWAS-by-subtraction. Nat Genet, 53(1), 35-44.

• Grotzinger A. et al (2019). Genomic structural equation modelling provides insights into the 
multivariate genetic architecture of complex traits. Nat Hum Behav, 3(5), 513-525.

• Warrington NM. et al (2021). Estimating direct and indirect genetic effects on offspring 
phenotypes using genome-wide summary results data. Nat Commun, 12(1), 5420.

Further Reading
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Deriving Expected Variances 
and Covariances Using

Covariance Algebra



Rules of Covariance Algebra

COV(c, X) = 0 (c is a constant)

COV(cX1, X2) = cCOV(X1, X2) (c is a constant)

COV(X1 + X2, X3) = COV(X1, X3) + COV(X2, X3)

VAR(X1) = COV(X1, X1)



Covariance Algebra Example
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Covariance Algebra Example
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H = g*G
G = a*A + b*B + eX

COV(H,A) = ?
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G = a*A + b*B + eX

COV(H,A) = COV(g*G, A)
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= COV(g*(a*A + b*B + eX), A)
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G = a*A + b*B + eX

COV(H,A) = COV(g*G, A)

= COV(g*(a*A + b*B + eX), A)

= COV(g*a*A + g*b*B + g*eX), A)



Covariance Algebra Example
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H = g*G
G = a*A + b*B + eX

COV(H,A) = COV(g*G, A)

= COV(g*(a*A + b*B + eX), A)

= COV(g*a*A + g*b*B + g*eX), A)
= COV(g*a*A, A) + COV(g*b*B, A) + COV(g*eX, A)



Covariance Algebra Example
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H = g*G
G = a*A + b*B + eX

COV(H,A) = COV(g*G, A)

= COV(g*(a*A + b*B + eX), A)

= COV(g*a*A + g*b*B + g*eX), A)
= COV(g*a*A, A) + COV(g*b*B, A) + COV(g*eX, A)

= g*a*COV(A, A) + g*b*COV(B, A) + g*COV(eX, A)



Covariance Algebra Example
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