THE UNIVERSITY
OF QUEENSLAND CREATE CHANGE
AAAAAAAAA

PGS Prediction Accuracy

Evaluation, Visualisation, Theory & Pitfalls

Jian Zeng
j.zeng@ug.edu.au

THE UNIVERSITY : .
OF QUEENSLAND | Institute for Molecular Bioscience
AUSTRALIA |

Slides credit: Huanwei Wang, Naomi Wray




L] THE UNIVERSITY
U I n e @ OF QUEENSLAND

How to measure PGS prediction in guantitative fraitse

How to measure PGS prediction in diseasese

What parameters determine the accuracy of PGS prediction?

What are the pitfalls in the prediction analysise



PGS evaluation in quantitative traits

Prediction accuracy

Sguared correlation between phenotype and PGS in the validation sample
« The proportion of phenotypic variance explained by PGS (prediction R?)
« The SNP-based heritability is its upper bound

It's common to adjust for covariates (sex, age, top 10 PCs, etc)
 Null model: y = covariates + e
« Fullmodel: y = covariates + PGS + e

« Incremental R%: R2,;, — Rz



PGS evaluation in quantitative traits
Prediction accuracy
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PGS evaluation in quantitative traits e

AUSTRALIA

Prediction bias

The slope of regression of phenotypes on PGS in the validation sample is
expected o be 1.

« 1 unifincrease in PGS leads to 1 unit increase in phenotype
 The PGS are unbiased

If the slope > 1, then

« 1 unitincrease in PGS leads to >1 unit increase in phenotype
« The PGS are downward biased

If the slope < 1, then
 The PGS are upward biased



Phenotype

Prediction bias

Unbiased

—— Slope =1

Phenotype

Upward biased

| —— Slope =0.7

Phenotype

Downward biased

—— Slope=1.3
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PGS evaluation in diseases (binary fraits) @ee==

Alsua(

Control = Case

Polygenic risk score

Padlygenic score percentile

Control

Case
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PGS evaluation in diseases (binary fraits) @ee==

Statistics to measure prediction accuracy

Pseudo R? from logistic regression
AUC (area under the ROC curve)
Variance explained on liability scale
Decile odds ratio (OR)

Risk stratification
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Logistic regression:
* Null model: y = logistic(covariates + €)
« Fullmodel: vy =logistic(covariates + PGS + €

Many pseudo R? statistics available for logistic regression

e.g., Nagelkerke's R?
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For a review of pseudo R? statistics, check this link



https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds

Property of pseudo R*

Problem: Nagelkerke's R? depends on case proportion in the sample
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AUC (area under the ROC curve)

AUC = Probability that a randomly

selected case has a higher test score .
than a randomly selected confrol o]
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Property of AUC

-
- Nice property - independent to proportion .
of cases and controls in sample S 7
- Can be used to compare results "
between case-control studies 5 ©
©)
- Max AUC depends on heritability and 2 . a K =0.001
. a ™ b K=0.01
disease prevalence P
. . d K=03
- Use caution when comparing ©
populations with difference prevalence °
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The Genetic Interpretation of Area under the ROC Curve
in Genomic Profiling

Naomi R. Wray'#, Jian Yang', Michael E. Goddard?3, Peter M. Visscher'

1 Genetic Epidemiology and Queensland Statistical Genetics, Queensland Institute of Medical Research, Brisbane, Australia, 2 Department of Food and Agricultural
Systems, University of Melbourne, Melbourne, Australia, 3 Victoria Department of Primary Industries, Melbourne, Australia

Figure 2. Relationship between maximum AUC (AUC,,,,) from a
genomic profile and heritability on the liability scale /3. For
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Prediction R? on liability scale 77

Liability threshold model

Map variance explained on observed probability 0-1 scale (R2)

To underlying unobserved continuous liability scale (Rf).

Density

K = Proportion of the population
/ that are diseased

Liability '+ _ 1 reshold

Falconer 1965; Lee et al 2011 AJHG; Lee, 2012, Genet Epidemiol 13



Prediction R? on liability scale

Linear regression; Y are Os and 1s
Null: Y= covariates + e

Full: Y= covariates + PGS + e

R2 on the olbserved scale

Likelihood
R(Z) — 1 _ ( null Z/N

Likelihood ¢y

R2 on the liability scale

K(1-K)
ZZ

R? = R

z = density at t

Density

K = Proportion of the population
/ that are diseased

Liability 4 = threshold

Lee, 2012, Genet Epidemiol
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Prediction R? on liability scale

Ascertainment in case-control studies

\ J \ J

Unaffected (1-K) Affected (K)

K(1-K)
Z2

R? = R

Control ( 1Y-P)

Case (P)
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Prediction R? on liability scale

Ascertainment in case-control studies ST
8 I o
Liability
R2  — Rg_cc *
lcc — 2
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Lee, 2012, Genet Epidemiol
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Property of R? on liability scale

- heritability is independent of disease prevalence

- Rlz_cc is on the same sale as heritability estimated from family studies or genotypes

- Provide a direct measure of how well the predictor performs relative to capturing all

genetic variation
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Decile odds ratio
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Sample
* Denmark
- MNGS

+ Swoden

Odds rato

Cut distribution into deciles

Each decile will include both cases and controls
Odds of being a case in each decile

Odds ratio for each decile compared to the 15" decile

« Good visualisation

« Shows that there could be utility in using
high vs low profile risk scores

* But remember case-control samples are
50% cases

* Would look less impressive if a
population sample

4 5 6 7 8
Decile

PGC-SCZ 2014 108 loci Nature
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Decile odds ratio

In case control samples Same data scaled to population risk
Sample
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Decile odds ratio )

Toy example: )
Odd51 . 1/1—1--’1

Odds ratio = =53
Bottom 10%) | (Top 10% P
( 6) | (Top 10%) Ddds — P
Case 23 83 1-p
Control 103 40

P = probability of being case

Odds being a case in 15t decile
=23/103

Odds being a case in 10" decile
= 83/40

Odds ratio between 10" and 15t decile
= (23/103) / (83/40) =9.3
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Risk stratification
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Khera et al (2018) Genome-wide polygenic scores for common diseases identify Torkamani et al, Nat Rev Genetics, 2018
individuals with risk equivalent to monogenic mutations. Nature Genetics
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Stratification & health economics B

Population risk of 1%

80% of cases in
top 18% of genetic risk

Proportion of cases

0.1+

0 02 04 056 035 10
Proportion of population

For every 1,000 people treated with intervention could “save” 10
Treat only 18% = 180 and “save” 8

Number of people freated to save 1 reduced from 100 to 22.5

Polychronakos & Li NRG (2011) Understanding Type | Diabetes through genetics. Nat Rev Genetics
22



Parameters determining the prediction accuracy = o=

The expected value of prediction accuracy:

hZ : True variance explained by the predictor
depends on the SNP set - subscript m.

h2
Variance explained by | R2 — m
the predictor 1 + C
m
C = 5
NhZ,

- N: discovery sample size

C:. captures the error in estimation

As C> 0, R? > k2,

- m: the number of SNPs (assume LD-independent)
- hZ,: the SNP-heritability captured by m SNPs

Wray et al (2019) Complex frait prediction from genome data. Genetics
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What is the maximum prediction accuracy we can get? oo

AUSTRALIA

hZ : True variance explained by the predictor
hz depends on the SNP set - subscript m.

Variance explained by

the predictor R 1 4+ C'

C:. captures the error in estimation

As C> 0, R?2 > k%,

We want C to be as small as possible: C
« C decreases as Discovery sample N increases

« C decreases as the number of SNPs in the SNP set m decreases

As m gets smaller, h2, also gets smaller

How to optimise m and hZ, to get max R? ?

Wray et al (2019) Complex frait prediction from genome data. Genetics 24
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How about whole genome sequencing?

Maximum depends on hz
maximising h3, R2 ~

We use GWAS data so the 1+ th
maximum h2, is the SNP-based
heritability

Theoretical maximum depends
on the heritability of the frait

With whole genome sequencing the variance captured by
all measured SNPs will increase

But the number of SNPs that we have estimate effect sizes
for increases much more

Need MASSIVE discovery sample sizes for WGS associations

Also... rare variants are less likely to be shared across populations

Wray et al (2019) Complex frait prediction from genome data. Genetics



Polygenic prediction

- Discovery/Training/Derivation
. Estimate the effect sizes (b) of SNPs on a trait (y) - GWAS

- Tunning/Validation
« Further estimate some parameters (depends on methods;
not all methods require it)

- Target/Testing/Validation
« Build a polygenetic risk score (PRS) (9):
« Evaluate the prediction performance/accuracy

((@ GENOME-WIDE ASSOCIATION STUDIES — OPINION

Pitfalls of predicting complex
traits from SNPs

Should be independent; no overlap;
out-of-sample prediction

Naomi R. Wray, Jian Yang, Ben J. Hayes, Alkes L. Price, Michael E. Goddard
and Peter M. Visscher
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Pitfall 1: No target sample — report R? in discovery sample

X: M markers for N samples

y from N(O,1) independently (null hypothesis)

1) Multiple linear regression of y on x (when M<N)|)
E(R*) =M/N variation “explained” by chance

2) Select m “best” markers out of M in total, and conduct multiple
inear regression in the same dataset

E(R*) »m/N winner's curse
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Winner’s curse T or aummsi

ARTICLE

doi:10.1038/nature10811

The Drosophila melanogaster

Genetic Reference Panel ~10 best markers selected
from 2.5 million markers

Predicting phenotypes from genotypes

We used regression models to predict trait phenotypes from SNP
genotypes and estimate the total variance explained by SNPs. The
latter cannot be done by summing the individual contributions of “A cross-validated Bayesian
the single marker effects because markers are not completely inde- prediction analysis using
pendent, and estimates of effects of single markers are biased when
more than one locus affecting the trait segregates in the population.

all genetic markers on the

We derived gene-centred multiple regression models to estimate the same data found that only
effects of multiple SNPs simultaneously. In all cases 6-10 SNPs 6% of phenotypic variation
explain from 51-72% of the phenotypic variance and 65-90% of the could be explained by the

genetic variance (Supplementary Tables 25 and 26 and Supplemen-
tary Figs 11-13). We also derived partial least square regression
models using all SNPs for which the single marker effect was significant

predictor.”
(Wray et al., 2013. Nat. Rev. Genet.)
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Pitfall 2: target sample overlapped with discovery sample

- Overlapping target and discovery sample

- Greater similarity between target and discovery sample (such as
relatedness)

- Cross-validation: not a pitfall, but to be aware

cov(y,,y,) = cov{z (x,;b j),zxijb e}
j=I Jul

= 2 var (x,-j )B jb b +2 xij COV( l;j " ) ,

If b estimated from the same data in which
prediction is made, then the second term is non-zero 2



Pitfalls

Pitfall 3: Less obvious non-independence

Correlation of actual phenotype with
predicted phenotype in validation set

Estimate SNP effects and/or select SNPs from total sample (discovery
+ target sample)

Re-estimate effects in the farget sample after selecting in the
discovery sample

1~
0.9
0.8
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0.5
4

—4— Validation set excluded from GWASs and excluded | O U.I._Of_SO m ple pred iC.I.iO N

when estimating prediction equation

—&— Validation set included in GWASs but excluded

02 when estimating prediction equation - Estimate SNP effects in total sample

—4— Validation set included in GWASs and included

when estimating prediction equation B DII’eCT I’epOI’T RQ Iﬂ The dISCOVGFY SCImp|e

I | T T T I I 1
-8 -7 -6 -5 -4 -3 -2 -1 0

log(P value in GWASs) 30
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ummary

« Evaluation of prediction performance

» Prediction accuracy and bias for quantitative traits

« Different statistics for disease fraits with pros and cons
 Parameters determining the prediction accuracy

« SNP-based heritability (h2,)

 Number of SNPs (m)

« Discovery sample size (N)
« Pitfalls in the prediction analysis

* No target sample (only discovery sample)

« Overlapping discovery & target sample

« Less obvious non-independence
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Practical 2: Evaluation of PRS prediction

https://cnsgenomics.com/data/teaching/GNGWS24/module5/Practical?2 Accracy.html

To log into your server, type command below in Terminal for Mac/Linux users or in Command
Prompt or PowerShell for Windows users.

ssh username@hostname

And then key in the provided password.
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https://cnsgenomics.com/data/teaching/GNGWS24/module5/Practical2_Accracy.html

