

Best Linear Unbiased Prediction (BLUP)

Jian Zeng j.zeng@uq.edu.au

Institute for Molecular Bioscience

Slides credit: Ben Hayes

Polygenic risk score methods

A weighted sum of the count of risk alleles

$$
PRS = \widehat{\beta_1} x_{i1} + \widehat{\beta_2} x_{i2} + \widehat{\beta_3} x_{i3} + \dots = \sum_{j=1}^{n_{SNP}} \widehat{\beta_j} x_{ij}
$$

How many SNPs? Which SNPs? What weights?

Basic method:

Clumping & P-value thresholding $(C+PT)$:

- Select most associated SNP in tower – LD-based clumping
- Select on a p-value threshold

Polygenic risk score methods

A weighted sum of the count of risk alleles

$$
PRS = \widehat{\beta_1} x_{i1} + \widehat{\beta_2} x_{i2} + \widehat{\beta_3} x_{i3} + \dots = \sum_{j=1}^{n_{SNP}} \widehat{\beta_j} x_{ij}
$$

How many SNPs? Which SNPs? What weights?

Can we simultaneously use all SNPs?

Yes! But ...

cannot aggregate GWAS effects

due to linkage disequilibrium (double counting)

Polygenic risk score methods

A weighted sum of the count of risk alleles

$$
PRS = \widehat{\beta_1} x_{i1} + \widehat{\beta_2} x_{i2} + \widehat{\beta_3} x_{i3} + \dots = \sum_{j=1}^{n_{SNP}} \widehat{\beta_j} x_{ij}
$$

How many SNPs? Which SNPs? What weights?

Estimate SNP effects with a multiple regression?

Yes!

But ...

Linear model

 $y = 1_n \mu + X\beta + e$

where

- **y** is a vector of *n* phenotypes,
- *µ* is the mean,
- **X** is an incidence matrix of individuals' genotypes for all SNPs,
- \cdot β are the fixed effects of the *m* SNPs,
- **e** is a vector of random residuals, $\mathbf{e} \sim N(0, \sigma_e^2)$

Least squares (LS): minimising the sum of squares of the residuals.

Linear model

$$
y = 1_n \mu + X\beta + e
$$

LS solutions

$$
\begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_n' \mathbf{1}_n & \mathbf{1}_n' \mathbf{X} \\ \mathbf{X}' \mathbf{1}_n & \mathbf{X}' \mathbf{X} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_n' \mathbf{y} \\ \mathbf{X}' \mathbf{y} \end{bmatrix}
$$

No unique solutions when #SNPs > #individuals (*p > n* problem)

BLUP

Linear mixed model

$y = 1_n \mu + X\beta + e$

where

- **y** is a vector of *n* phenotypes,
- *µ* is the mean,
- **X** is an incidence matrix of individuals' genotypes for all SNPs,
- \cdot β are the random effects of the *m* SNPs,
- **e** is a vector of random residuals, $\mathbf{e} \sim N(0, \sigma_e^2)$

Assume SNP effects come from normal distribution with same variance $\beta \sim \mathsf{N}(0, \sigma_\beta^2)$

BLUP

Assumed distribution of SNP effects

Best linear unbiased prediction

To estimate random effects (Henderson 1975 & Robinson 1991).

Best: minimum mean square error within class of linear predictors **Linear:** random variables β are linear functions of the data **y Unbiased:** the average value of the estimate of β is equal to the average value of the quantity being estimated

Predictor: to distinguish random effects from fixed effect estimates

Best linear unbiased prediction (BLUP)

Linear mixed model

$$
y = 1_{n}\mu + X\beta + e
$$

BLUP solutions

$$
\begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_n' \mathbf{1}_n & \mathbf{1}_n' X \\ X' \mathbf{1}_n & X' X + I \lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_n' y \\ X' y \end{bmatrix}
$$

I = identity matrix (dimensions *m* x *m*)

$$
\lambda = \sigma_e^2 / \sigma_\beta^2
$$

$$
\begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_n' \mathbf{1}_n & \mathbf{1}_n' X \\ X' \mathbf{1}_n & X' X + I \lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_n' y \\ X' y \end{bmatrix}
$$

LS solutions

$$
\begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n}' \mathbf{1_n} & \mathbf{1_n}' \mathbf{X} \\ \mathbf{X}' \mathbf{1_n} & \mathbf{X}' \mathbf{X} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n}' \mathbf{y} \\ \mathbf{X}' \mathbf{y} \end{bmatrix}
$$

- 10 SNPs
- Only 5 phenotypes

Example

Let $1_n' = [1 1 1 1 1]$

Assume value of 1 for λ

BLUP solutions

$$
\begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_n' \mathbf{1}_n & \mathbf{1}_n' X \\ X' \mathbf{1}_n & X' X + I \lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_n' y \\ X' y \end{bmatrix}
$$

 $\hat{\mu}$ ̂ $\widehat{\bm{\beta}}$ $\left| \frac{\partial}{\partial \theta} \right| =$ $1_n'1_n$ $1'_nX$ $X'1_n$ $X'X+1\lambda$ $^{-1}$ $\lceil 1'_ny \rceil$ X'y

 $\hat{\mu}$ ̂ $\widehat{\bm{\beta}}$ $\left| \frac{\partial}{\partial \theta} \right| =$ $1_n'1_n$ $1'_nX$ $X'1_n$ $X'X + I\lambda$ $^{-1}$ $\lceil 1'_ny \rceil$ X'y

 $\hat{\mu}$ ̂ $\widehat{\bm{\beta}}$ $\left| \frac{\partial}{\partial \theta} \right| =$ $1_n'1_n$ $1'_nX$ $X'1_n$ $X'X + I\lambda$ $^{-1}$ $\lceil 1'_ny \rceil$ X'y

Example

BLUP solutions

"Smear" the effect over SNPs in LD

Now we want to predict PGS of a group of young individuals without phenotypes

$$
\mathbf{PGS}=\mathbf{X}\widehat{\boldsymbol{\beta}}
$$

We have the $\hat{\beta}$, and we can get **X** from their genotypes (after genotyping)……

PGS prediction with BLUP

$$
\mathbf{PGS}=\mathbf{X}\widehat{\boldsymbol{\beta}}
$$

$$
\begin{bmatrix} \hat{\mu} \\ \hat{\alpha} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n}' \mathbf{1_n} & \mathbf{1_n}' \mathbf{X} \\ \mathbf{X}' \mathbf{1_n} & \mathbf{X}' \mathbf{X} + \mathbf{I} \lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n}' \mathbf{y} \\ \mathbf{X}' \mathbf{y} \end{bmatrix}
$$

 $\lambda = \sigma_e^2 / \sigma_B^2$ is known as the shrinkage parameter

It shrinks LS estimates toward zero to an extent depending on the noise-signal ratio.

$$
\begin{bmatrix} \hat{\mu} \\ \hat{\alpha} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n}' \mathbf{1_n} & \mathbf{1_n}' \mathbf{X} \\ \mathbf{X}' \mathbf{1_n} & \mathbf{X}' \mathbf{X} + \mathbf{I} \lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n}' \mathbf{y} \\ \mathbf{X}' \mathbf{y} \end{bmatrix}
$$

 $\lambda = \sigma_e^2 / \sigma_\beta^2$ is known as the shrinkage parameter

is an unbiased estimator of b in the classical sense that \mathbf{B} \mathbf{r} in \mathbf{r} n na unbiased estimator of b in the classical sense that contract \mathbf{r} E(b\b) = b. However, if we now select the SNPs with **Shrinkage**

Shrinks LS estimates toward zero

Statistical Science
2009, Vol. 24, No. 4, 5, 17–529
DOI: 10. 121,409-575306 2009, Vol. 24, No. 4, 517-5
DOI: 10.1214/09-STS306 DOI: 10.1214/09-STS306 ? Institute of Mathematical Statistics, 2009

tive of the threshold chosen to select the SNPs.

tors in the property (2) can be interested with a beginning property of the interest of the interest of the in from Genome-Wide Marker Data Estimating Effects and Making Predictions tors **Extimating Effects and Making Predential**

Michael E. Goddard, Naomi R. Wray, Klara Verbyla and Peter M. Visscher
.

fects were simulated and estimated and estimated with sampling error \mathbf{R} **BLUP avoids selection bias!**
The least squares estimated the magnitude of the magnitude of the magnitude of the magnitude of the magnitude o **data direction bias!**
BLUP avoids selection bias! The choice of the choice of the selection.

CRICOS code 00025B **BLUP avoids selection bias!** fects were simulated and estimated and estimated and estimated with sampling error \mathbf{R} **BLUP avoids selection bias!** The least squares estimated the magnitude of the magnitude of the magnitude of the ma \textbf{B} LUP avoids selection bias!
 \textbf{B} LUP estimates are unbiased in the solid line is the crick of the crick code 00025B CRICOS code 00025B

Statistical Science
2009, Vol. 24, No. 4, 517-529 2009, Vol.24, No. 4,517-529 DOI: 10.1214/09-STS306 ? Institute of Mathematical Statistics, 2009 Suntistical Science
2009, Vol. 24, No. 4, 517–529

 Estimating Effects and Making Predictions from Genome-Wide Marker Data tors in the property (2) can be interested with a beginning property of the interest of the interest of the in

Michael E. Goddard, Naomi R. Wray, Klara Verbyla and Peter M. Visscher

Unbiased: $E[\beta | \hat{\beta}_{\text{BLUP}}] = \hat{\beta}_{\text{BLUP}}$

In contrast, for LS estimator: $E[\hat{\beta}_{LS} | \beta] = \beta$

Desirable property of a genetic predictor:

The regression of y on the predictor has an intercept of zero and a slope of one.

$$
\begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_n' \mathbf{1}_n & \mathbf{1}_n' X \\ X' \mathbf{1}_n & X' X + I \lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_n' y \\ X' y \end{bmatrix}
$$

What's the dimension of this matrix?

Think about fitting 20 million SNPs!

An equivalent model to SNP-BLUP

- If there are many causal variants whose effects are normally distributed with constant variance,
- Then it is equivalent to use a genomic relationship matrix (**GRM**) estimated from SNP markers in normal BLUP equations.
	- GRM_{ij} = proportion of genome that is shared between individuals i and j

How to calculate GRM?

Rescale **X** to account for allele frequencies $w_{ij} =$ $(x_{ij} - 2p_i)$ $2p_i(1 - p_i)$

Then, the genetic values are $g = W\beta$

$$
Var(\mathbf{g}) = \mathbf{W} \mathbf{W}' \sigma_{\beta}^{2} = \frac{\mathbf{W} \mathbf{W}'}{m} m \sigma_{\beta}^{2} = \mathbf{G} \sigma_{g}^{2}
$$

Hence

$$
G = \frac{WW'}{m}
$$
 is the GRM, and $\sigma_g^2 = m\sigma_\beta^2$ is the total genetic variance

Genomic relationship matrix (GRM)

In cattle

In humans (unrelated individuals)

An equivalent model

$$
y = 1_n \mu + Zg + e
$$

where

$$
Var(\mathbf{g}) = \mathbf{G} \; \sigma_g^2
$$

BLUP solutions

$$
\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n}' \mathbf{1_n} & \mathbf{1_n}' \mathbf{Z} \\ \mathbf{Z}' \mathbf{1_n} & \mathbf{Z}' \mathbf{Z} + \mathbf{G}^{-1} \frac{\sigma_e^2}{\sigma_g^2} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n}' \mathbf{y} \\ \mathbf{Z}' \mathbf{y} \end{bmatrix}
$$

Z matrix maps the phenotypic records onto the genetic values

e.g. 5 individuals with the first 3 having records

Model 1 - SNP-BLUP

$$
y = 1_{n}\mu + X\beta + e
$$

$$
\begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} 1_{n}^{\prime}1_{n} & 1_{n}^{\prime}X \\ X^{\prime}1_{n} & X^{\prime}X + I\frac{\sigma_{e}^{2}}{\sigma_{\beta}^{2}} \end{bmatrix}^{-1} \begin{bmatrix} 1_{n}^{\prime}y \\ X^{\prime}y \end{bmatrix}
$$
PGS = Xâ

Model 2 - GBLUP

$$
y = 1_n \mu + Zg + e
$$

$$
\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} 1_n' 1_n & 1'_n Z \\ Z'1_n & Z'Z + G^{-1} \frac{\sigma_e^2}{\sigma_g^2} \end{bmatrix}^{-1} \begin{bmatrix} 1'_n y \\ Z'y \end{bmatrix}
$$

 $C =$

Which model to use?

- If number of SNPs >>> large than number of individuals, GBLUP is more \bullet computationally efficient
- Calculate prediction accuracy for each individual from inverse coefficient matrix (amount of data in estimate!)
	- Prediction error variance $PEV_i = C^{ii} \sigma_e^2$
	- Accuracy $r_i^2 = 1 PEV_i/\sigma_q^2$
- Very useful can calculate how well we predict for individuals without their own phenotype (e.g., young calves, people)

New wine in the old bottle \mathbf{N} as the posterior variance of \mathbf{N} **i** $\hat{\mathbf{g}}$ \mathbf{g} $\mathbf{g$ (ref. 49).

randomness in *β*, and the randomness of *g x* ˆ = *^β*^ˆ *ⁱ ⁱ* comes from the ran-

natur Inature

is derived as follows.

and *g*ˆ*ⁱ*

THE UNIVERSITY **OF OUEENSLAND**

Third, we derive the correlation between \mathcal{G}_i

g g

, λ

Backsolving SNP effects from GBLUP

- Moving from GBLUP to SNP-BLUP
- called Backsolving for SNP effects

$$
\widehat{\beta} = \mathbf{X}' \mathbf{G}^{-1} \widehat{\boldsymbol{g}} / m
$$

• Can use in alternative form of GWAS

Examples of BLUP applications

- Genomic selection in livestock
- Disease risk prediction in humans

Use genome-wide SNPs to estimate the breeding value of selection candidates.

"Genomic selection" = "precision medicine" for animals

U.S. dairy population & milk yield

$Humans - Crohn's disease$ Chen et al. 2017. BMC Medicine.

- Inflammatory Bowel Disease
- Affects 2 in every 1000 people (approx.)
- 68,000 IBD patients and 29,000 healthy controls from 15 cohorts, European descent
- 909,763 GWAS SNPs or 123,437 SNPs on the custom designed Immunochip
- Prediction methods:
	- o Genetic profile risk scores (GPRS) constructed using effects of all SNPs from GWAS
	- o GBLUP
	- o Elastic net (EN)
	- o BayesR Bayesian method that models SNP effects as a mixture of 4 normal distributions.

Humans – Crohn's disease Chen et al. 2017. BMC Medicine.

Assess value of predictions as "Area Under Curve" (AUC) from 5-fold cross-validation

Predict risk of psychiatric disorders

CRICOS code 00025B 42 Bipolar Disorder, and Major Depressive Disorder. AJHG. (Not summary statistics) Maier et al (2015) Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia,

BLUP

- Simultaneously estimate all SNP effects as random o No need to prune on LD or select p-value threshold
	- o No need to know causal variants or biological function
- Assumes normal distribution on SNP effects with equal variance
- Unbiased estimates of SNP effects
- Equivalent models between SNP-BLUP and GBLUP
- Provide per-individual prediction accuracy
- Improved prediction accuracy in practice

Practical 3: BLUP

https://cnsgenomics.com/data/teaching/GNGWS24/module5

To log into your server, type command below in Terminal for Mac/Linux use Prompt or PowerShell for Windows users.

ssh username@hostname

And then key in the provided password.