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Polygenic risk score methods

PRS = !𝛽!𝑥"! + !𝛽#𝑥"# + !𝛽$𝑥"$ +⋯	= ∑%&!
'!"# )𝛽%𝑥"%

A weighted sum of the count of risk alleles

How many SNPs?
Which SNPs?
What weights? 

Basic method:
Clumping & P-value thresholding 
(C+PT):

• Select most associated SNP in 
tower – LD-based clumping

• Select on a p-value threshold
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Polygenic risk score methods

PRS = !𝛽!𝑥"! + !𝛽#𝑥"# + !𝛽$𝑥"$ +⋯	= ∑%&!
'!"# )𝛽%𝑥"%

A weighted sum of the count of risk alleles

How many SNPs?
Which SNPs?
What weights? 

Can we simultaneously use all SNPs?
Yes! But …
cannot aggregate GWAS effects
due to linkage disequilibrium (double counting)
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Polygenic risk score methods

PRS = !𝛽!𝑥"! + !𝛽#𝑥"# + !𝛽$𝑥"$ +⋯	= ∑%&!
'!"# )𝛽%𝑥"%

A weighted sum of the count of risk alleles

How many SNPs?
Which SNPs?
What weights? 

Estimate SNP effects with a multiple regression?
Yes! 
But …
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Linear model

where
• y is a vector of n phenotypes, 
• µ is the mean, 
• X is an incidence matrix of individuals’ genotypes for all SNPs,
• 𝜷 are the fixed effects of the m SNPs, 
• e is a vector of random residuals, 𝐞 ~ N(0, 𝜎!")

𝐲 = 𝟏𝐧𝜇 + 𝐗𝜷 + 𝐞

Least squares method
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Least squares (LS): minimising the sum of squares of the residuals. 

Least squares method
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Linear model

𝐲 = 𝟏𝐧𝜇 + 𝐗𝜷 + 𝐞

�̂�
*𝜷
= 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

LS solutions

No unique solutions when #SNPs > #individuals
(p > n problem)

Least squares method
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Linear mixed model

where
• y is a vector of n phenotypes, 
• µ is the mean, 
• X is an incidence matrix of individuals’ genotypes for all SNPs,
• 𝜷 are the random effects of the m SNPs, 
• e is a vector of random residuals, 𝐞 ~ N(0, 𝜎!")

𝐲 = 𝟏𝐧𝜇 + 𝐗𝜷 + 𝐞

Assume SNP effects come from normal distribution with 
same variance 𝜷 ~ N(0, 𝜎+#)

BLUP
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Assumed distribution of SNP effects
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Best linear unbiased prediction

To estimate random effects (Henderson 1975 & Robinson 1991).

Best: minimum mean square error within class of linear predictors

Linear: random variables 𝜷 are linear functions of the data y
Unbiased: the average value of the estimate of	𝜷 is equal to the 
average value of the quantity being estimated
Predictor: to distinguish random effects from fixed effect estimates 

BLUP
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Best linear unbiased prediction (BLUP)

𝐲 = 𝟏𝐧𝜇 + 𝐗𝜷 + 𝐞
Linear mixed model

BLUP solutions

I = identity matrix (dimensions m x m)

l = 𝜎,#	/ 𝜎+
#

�̂�
*𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

BLUP
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LS solutions
�̂�
*𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

BLUP solutions
�̂�
*𝜷
= 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

BLUP
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• 10 SNPs
• Only 5 phenotypes

X
Individual y 1 2 3 4 5 6 7 8 9 10

1 0.19 0 0 0 0 0 0 1 2 0 2
2 1.23 1 0 0 1 1 1 2 1 0 1
3 0.86 1 0 0 1 0 0 1 1 1 1
4 1.23 1 1 1 1 0 1 2 1 1 1
5 0.45 0 1 1 1 1 1 2 1 0 1

Example
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Let 1n’ = [1 1 1 1 1]

Assume value of 1 for l

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

Example

BLUP solutions

X
Individual y 1 2 3 4 5 6 7 8 9 10

1 0.19 0 0 0 0 0 0 1 2 0 2
2 1.23 1 0 0 1 1 1 2 1 0 1
3 0.86 1 0 0 1 0 0 1 1 1 1
4 1.23 1 1 1 1 0 1 2 1 1 1
5 0.45 0 1 1 1 1 1 2 1 0 1
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BLUP solutions

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

5 3 2 2 4 2 3 8 6 2 6 3.96
3 4 1 1 3 1 2 5 3 2 3 3.32
2 1 3 2 2 1 2 4 2 1 2 1.68
2 1 2 3 2 1 2 4 2 1 2 1.68
4 3 2 2 5 2 3 7 4 2 4 3.77
2 1 1 1 2 3 2 4 2 0 2 1.68
3 2 2 2 3 2 4 6 3 1 3 2.91
8 5 4 4 7 4 6 15 9 3 9 6.87
6 3 2 2 4 2 3 9 9 2 8 4.15
2 2 1 1 2 0 1 3 2 3 2 2.09
6 3 2 2 4 2 3 9 8 2 9 4.15

Example
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BLUP solutions

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

5 3 2 2 4 2 3 8 6 2 6 3.96
3 4 1 1 3 1 2 5 3 2 3 3.32
2 1 3 2 2 1 2 4 2 1 2 1.68
2 1 2 3 2 1 2 4 2 1 2 1.68
4 3 2 2 5 2 3 7 4 2 4 3.77
2 1 1 1 2 3 2 4 2 0 2 1.68
3 2 2 2 3 2 4 6 3 1 3 2.91
8 5 4 4 7 4 6 15 9 3 9 6.87
6 3 2 2 4 2 3 9 9 2 8 4.15
2 2 1 1 2 0 1 3 2 3 2 2.09
6 3 2 2 4 2 3 9 8 2 9 4.15

Example
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BLUP solutions

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

5 3 2 2 4 2 3 8 6 2 6 3.96
3 4 1 1 3 1 2 5 3 2 3 3.32
2 1 3 2 2 1 2 4 2 1 2 1.68
2 1 2 3 2 1 2 4 2 1 2 1.68
4 3 2 2 5 2 3 7 4 2 4 3.77
2 1 1 1 2 3 2 4 2 0 2 1.68
3 2 2 2 3 2 4 6 3 1 3 2.91
8 5 4 4 7 4 6 15 9 3 9 6.87
6 3 2 2 4 2 3 9 9 2 8 4.15
2 2 1 1 2 0 1 3 2 3 2 2.09
6 3 2 2 4 2 3 9 8 2 9 4.15

Example
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BLUP solutions

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

5 3 2 2 4 2 3 8 6 2 6 3.96
3 4 1 1 3 1 2 5 3 2 3 3.32
2 1 3 2 2 1 2 4 2 1 2 1.68
2 1 2 3 2 1 2 4 2 1 2 1.68
4 3 2 2 5 2 3 7 4 2 4 3.77
2 1 1 1 2 3 2 4 2 0 2 1.68
3 2 2 2 3 2 4 6 3 1 3 2.91
8 5 4 4 7 4 6 15 9 3 9 6.87
6 3 2 2 4 2 3 9 9 2 8 4.15
2 2 1 1 2 0 1 3 2 3 2 2.09
6 3 2 2 4 2 3 9 8 2 9 4.15

Example
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BLUP solutions

5 3 2 2 4 2 3 8 6 2 6 3.96
3 4 1 1 3 1 2 5 3 2 3 3.32
2 1 3 2 2 1 2 4 2 1 2 1.68
2 1 2 3 2 1 2 4 2 1 2 1.68
4 3 2 2 5 2 3 7 4 2 4 3.77
2 1 1 1 2 3 2 4 2 0 2 1.68
3 2 2 2 3 2 4 6 3 1 3 2.91
8 5 4 4 7 4 6 15 9 3 9 6.87
6 3 2 2 4 2 3 9 9 2 8 4.15
2 2 1 1 2 0 1 3 2 3 2 2.09
6 3 2 2 4 2 3 9 8 2 9 4.15

5.96 -0.46 -0.04 -0.04 -0.81 -0.31 -0.01 -1.01 -1.19 -0.50 -1.19 3.96
-0.46 0.65 0.11 0.11 -0.11 0.08 -0.06 -0.06 0.11 -0.18 0.11 3.32
-0.04 0.11 0.72 -0.28 -0.03 0.04 -0.11 -0.11 0.03 -0.07 0.03 1.68
-0.04 0.11 -0.28 0.72 -0.03 0.04 -0.11 -0.11 0.03 -0.07 0.03 1.68
-0.81 -0.11 -0.03 -0.03 0.83 -0.09 -0.05 -0.05 0.17 -0.09 0.17 3.77
-0.31 0.08 0.04 0.04 -0.09 0.68 -0.12 -0.12 0.09 0.24 0.09 1.68
-0.01 -0.06 -0.11 -0.11 -0.05 -0.12 0.76 -0.24 0.05 0.07 0.05 2.91
-1.01 -0.06 -0.11 -0.11 -0.05 -0.12 -0.24 0.76 0.05 0.07 0.05 6.87
-1.19 0.11 0.03 0.03 0.17 0.09 0.05 0.05 0.83 0.09 -0.17 4.15
-0.50 -0.18 -0.07 -0.07 -0.09 0.24 0.07 0.07 0.09 0.68 0.09 2.09
-1.19 0.11 0.03 0.03 0.17 0.09 0.05 0.05 -0.17 0.09 0.83 4.15

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

Example
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BLUP solutions
Mean 0.47
SNP1 0.29
SNP2 -0.05
SNP3 -0.05
SNP4 0.08
SNP5 -0.02
SNP6 0.13
SNP7 0.13
SNP8 -0.08
SNP9 0.11
SNP10 -0.08

“Smear” the effect 
over SNPs in LD

Example
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Now we want to predict PGS of a group of young individuals without 
phenotypes

We have the -𝜷, and we can get X from their genotypes (after genotyping)……

𝐏𝐆𝐒 = 𝐗*𝜷

Young 
individuals X

1 1 1 1 1 1 1 2 1 0 1
2 1 0 0 1 1 1 1 1 0 1
3 1 0 0 1 1 1 2 1 0 1
4 1 0 0 1 1 2 2 1 0 1
5 0 0 0 0 0 0 1 2 0 2

PGS prediction with BLUP
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𝐏𝐆𝐒 = 𝐗*𝜷

X                                       PGS
1 1 1 1 1 1 2 1 0 1 0.29 0.48
1 0 0 1 1 1 1 1 0 1 -0.05 0.45
1 0 0 1 1 1 2 1 0 1 -0.05 0.58
1 0 0 1 1 2 2 1 0 1 0.08 0.71
0 0 0 0 0 0 1 2 0 2 -0.02 -0.19

0.13
0.13

-0.08
0.11

-0.08

$𝜷

PGS prediction with BLUP
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Shrinkage

BLUP solutions

l = 𝜎#"	/ 𝜎!
"  is known as the shrinkage parameter

It shrinks LS estimates toward zero to an extent depending on the 
noise-signal ratio.

�̂�
1𝜶
= 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲
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Shrinkage

BLUP solutions

l = 𝜎#"	/ 𝜎!
"  is known as the shrinkage parameter

Ignoring mean and other SNP
$𝛼! =

"!"#
"!""!$%

 

   = (0*0.19+1*1.23+1*0.86+1*1.23+ 0*0.45)/(3+1)

�̂�
1𝜶
= 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

Individual
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 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 2 ~

 with = 2^, we see that the average value of \b\ among ?b
 the selected SNPs is equal to the true average value of
 \b\ because b is unbiased in the sense of (2). That is,

 estimators of the kind recommended here do not suffer

 from the winner's curse. This property holds irrespec
 tive of the threshold chosen to select the SNPs.

 The advantages of the properties of type (2) estima
 tors [i.e., those with property (2)] can be illustrated
 using two examples. First, suppose the purpose of se
 lecting the markers is to predict the disease risk faced

 i) Least squares  ii) BLUP

 -4 -2 0 2 4 -4 -2 0 2 4

 LS(b) BLUP(b)

 FIG. 2. Comparison of conventional least squares (LS) estimates (i) and BLUP estimates (ii) of the effects of SNPs. The true SNP ef
 fects were simulated ~N(0, 0.5) and estimated with sampling error ~ N(0,0.5). The SNPs with the largest magnitude of effect are plotted
 (I LS(b) I > 4). The BLUP estimates are unbiased, while the least squares estimates overestimated the magnitude of the largest effects. The
 dashed line shows y = and the solid line is the regression ofb on the LS(&) or BLUP(&). BLUP estimates are unbiased irrespective of the
 threshold chosen for selection.
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BLUP avoids selection bias!

 Statistical Science
 2009, Vol.24, No. 4,517-529
 DOI: 10.1214/09-STS306
 ? Institute of Mathematical Statistics, 2009

 Estimating Effects and Making Predictions
 from Genome-Wide Marker Data
 Michael E. Goddard, Naomi R. Wray, Klara Verbyla and Peter M. Visscher

 Abstract. In genome-wide association studies (GWAS), hundreds of thou
 sands of genetic markers (SNPs) are tested for association with a trait or phe
 notype. Reported effects tend to be larger in magnitude than the true effects
 of these markers, the so-called "winner's curse." We argue that the classical
 definition of unbiasedness is not useful in this context and propose to use
 a different definition of unbiasedness that is a property of the estimator we
 advocate. We suggest an integrated approach to the estimation of the SNP
 effects and to the prediction of trait values, treating SNP effects as random
 instead of fixed effects. Statistical methods traditionally used in the predic
 tion of trait values in the genetics of livestock, which predates the availability
 of SNP data, can be applied to analysis of GWAS, giving better estimates of
 the SNP effects and predictions of phenotypic and genetic values in individ
 uals.

 Key words and phrases: Genome-wide association study, prediction, esti
 mation.

 1. INTRODUCTION

 The rules for the genetic inheritance of traits, dis
 covered by Mendel, are most obvious for traits con
 trolled by a single gene, for example, individuals who
 carry two defective variants in the gene CFTR develop
 cystic fibrosis. However, most of the traits that are of
 importance in medicine, agriculture and evolution are
 influenced by many genes and by nongenetic or "envi
 ronmental" factors. For example, height in humans in
 volves many physiological processes and many genes
 but is also influenced by nongenetic factors such as nu
 trition and health care. These traits are called quanti

 Michael E. Goddard is Professor of Animal Genetic,
 Faculty of Land and Food Resources, University of
 Melbourne and Department of Primary Industries, Victoria,
 Australia. Naomi R. ray is Professor of Psychiatric,
 Genetic Epidemiology and Queensland Statistical Genetics,
 Queensland Institute of Medical Research, Australia. Klara
 Verbyla is PhD Scholar, Faculty of Land and Food
 Resources, University of Melbourne and Department of
 Primary Industries, Victoria, Australia. Peter M. Visscher is
 Professor of Statistical Genetics, Genetic Epidemiology and
 Queensland Statistical Genetics, Queensland Institute of
 Medical Research, Australia (e-mail:
 Peter. Vis s eher @qimr. edu. au).

 tative or complex traits and include common genetic
 diseases such as heart disease, breast cancer, diabetes
 and psychiatric disorders.

 Until recently few of the genes which harbor vari
 ants for complex genetic traits had been identified. The
 availability of genome-wide panels of densely spaced,
 genetic markers has led to a revolution in the study of
 the genetics of complex traits. These genetic markers
 are single nucleotide polymorphisms (SNPs) which are
 positions in the DNA sequence where the nucleotides
 can vary (e.g., G or T). Individuals carry pairs of ho
 mologous chromosomes and so have one of three geno
 types at a G/T SNP?GG, GT or TT. Assays are now
 available that determine the genotype of an individual
 at 100,000 to over 1 million SNPs spread over all of
 the chromosomes of the species.

 SNPs usually have no direct effect on a trait un
 der study. However, any polymorphism that does af
 fect the trait will be located on a chromosome close to

 one or more of the genotyped SNPs because the geno
 typed SNPs are chosen to cover all chromosomes in,
 at least, moderate density. Polymorphisms that are lo
 cated close to each other on a chromosome can occur

 together more often than expected by chance, so that
 they are correlated or in linkage disequilibrium (LD).
 Thus, for every polymorphism that affects a trait, there

 517
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 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 2 ~

 with = 2^, we see that the average value of \b\ among ?b
 the selected SNPs is equal to the true average value of
 \b\ because b is unbiased in the sense of (2). That is,

 estimators of the kind recommended here do not suffer

 from the winner's curse. This property holds irrespec
 tive of the threshold chosen to select the SNPs.

 The advantages of the properties of type (2) estima
 tors [i.e., those with property (2)] can be illustrated
 using two examples. First, suppose the purpose of se
 lecting the markers is to predict the disease risk faced

 i) Least squares  ii) BLUP

 -4 -2 0 2 4 -4 -2 0 2 4

 LS(b) BLUP(b)

 FIG. 2. Comparison of conventional least squares (LS) estimates (i) and BLUP estimates (ii) of the effects of SNPs. The true SNP ef
 fects were simulated ~N(0, 0.5) and estimated with sampling error ~ N(0,0.5). The SNPs with the largest magnitude of effect are plotted
 (I LS(b) I > 4). The BLUP estimates are unbiased, while the least squares estimates overestimated the magnitude of the largest effects. The
 dashed line shows y = and the solid line is the regression ofb on the LS(&) or BLUP(&). BLUP estimates are unbiased irrespective of the
 threshold chosen for selection.
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Shrinks LS estimates toward zero
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Property of BLUP
 Statistical Science
 2009, Vol.24, No. 4,517-529
 DOI: 10.1214/09-STS306
 ? Institute of Mathematical Statistics, 2009

 Estimating Effects and Making Predictions
 from Genome-Wide Marker Data
 Michael E. Goddard, Naomi R. Wray, Klara Verbyla and Peter M. Visscher

 Abstract. In genome-wide association studies (GWAS), hundreds of thou
 sands of genetic markers (SNPs) are tested for association with a trait or phe
 notype. Reported effects tend to be larger in magnitude than the true effects
 of these markers, the so-called "winner's curse." We argue that the classical
 definition of unbiasedness is not useful in this context and propose to use
 a different definition of unbiasedness that is a property of the estimator we
 advocate. We suggest an integrated approach to the estimation of the SNP
 effects and to the prediction of trait values, treating SNP effects as random
 instead of fixed effects. Statistical methods traditionally used in the predic
 tion of trait values in the genetics of livestock, which predates the availability
 of SNP data, can be applied to analysis of GWAS, giving better estimates of
 the SNP effects and predictions of phenotypic and genetic values in individ
 uals.

 Key words and phrases: Genome-wide association study, prediction, esti
 mation.

 1. INTRODUCTION

 The rules for the genetic inheritance of traits, dis
 covered by Mendel, are most obvious for traits con
 trolled by a single gene, for example, individuals who
 carry two defective variants in the gene CFTR develop
 cystic fibrosis. However, most of the traits that are of
 importance in medicine, agriculture and evolution are
 influenced by many genes and by nongenetic or "envi
 ronmental" factors. For example, height in humans in
 volves many physiological processes and many genes
 but is also influenced by nongenetic factors such as nu
 trition and health care. These traits are called quanti

 Michael E. Goddard is Professor of Animal Genetic,
 Faculty of Land and Food Resources, University of
 Melbourne and Department of Primary Industries, Victoria,
 Australia. Naomi R. ray is Professor of Psychiatric,
 Genetic Epidemiology and Queensland Statistical Genetics,
 Queensland Institute of Medical Research, Australia. Klara
 Verbyla is PhD Scholar, Faculty of Land and Food
 Resources, University of Melbourne and Department of
 Primary Industries, Victoria, Australia. Peter M. Visscher is
 Professor of Statistical Genetics, Genetic Epidemiology and
 Queensland Statistical Genetics, Queensland Institute of
 Medical Research, Australia (e-mail:
 Peter. Vis s eher @qimr. edu. au).

 tative or complex traits and include common genetic
 diseases such as heart disease, breast cancer, diabetes
 and psychiatric disorders.

 Until recently few of the genes which harbor vari
 ants for complex genetic traits had been identified. The
 availability of genome-wide panels of densely spaced,
 genetic markers has led to a revolution in the study of
 the genetics of complex traits. These genetic markers
 are single nucleotide polymorphisms (SNPs) which are
 positions in the DNA sequence where the nucleotides
 can vary (e.g., G or T). Individuals carry pairs of ho
 mologous chromosomes and so have one of three geno
 types at a G/T SNP?GG, GT or TT. Assays are now
 available that determine the genotype of an individual
 at 100,000 to over 1 million SNPs spread over all of
 the chromosomes of the species.

 SNPs usually have no direct effect on a trait un
 der study. However, any polymorphism that does af
 fect the trait will be located on a chromosome close to

 one or more of the genotyped SNPs because the geno
 typed SNPs are chosen to cover all chromosomes in,
 at least, moderate density. Polymorphisms that are lo
 cated close to each other on a chromosome can occur

 together more often than expected by chance, so that
 they are correlated or in linkage disequilibrium (LD).
 Thus, for every polymorphism that affects a trait, there
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Unbiased: E[𝜷 | )𝜷./01] = )𝜷./01

In contrast, for LS estimator: E[-𝜷#$ | 𝜷] = 𝜷

 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 2 ~

 with = 2^, we see that the average value of \b\ among ?b
 the selected SNPs is equal to the true average value of
 \b\ because b is unbiased in the sense of (2). That is,

 estimators of the kind recommended here do not suffer

 from the winner's curse. This property holds irrespec
 tive of the threshold chosen to select the SNPs.

 The advantages of the properties of type (2) estima
 tors [i.e., those with property (2)] can be illustrated
 using two examples. First, suppose the purpose of se
 lecting the markers is to predict the disease risk faced

 i) Least squares  ii) BLUP

 -4 -2 0 2 4 -4 -2 0 2 4

 LS(b) BLUP(b)

 FIG. 2. Comparison of conventional least squares (LS) estimates (i) and BLUP estimates (ii) of the effects of SNPs. The true SNP ef
 fects were simulated ~N(0, 0.5) and estimated with sampling error ~ N(0,0.5). The SNPs with the largest magnitude of effect are plotted
 (I LS(b) I > 4). The BLUP estimates are unbiased, while the least squares estimates overestimated the magnitude of the largest effects. The
 dashed line shows y = and the solid line is the regression ofb on the LS(&) or BLUP(&). BLUP estimates are unbiased irrespective of the
 threshold chosen for selection.
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Desirable property of a genetic predictor:

The regression of y on the predictor has an 
intercept of zero and a slope of one.
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Computation of BLUP

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

BLUP solutions

What’s the dimension of this matrix?

Think about fitting 20 million SNPs!
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An equivalent model to SNP-BLUP

• If there are many causal variants whose effects are normally 
distributed with constant variance, 

• Then it is equivalent to use a genomic relationship matrix (GRM) 
estimated from SNP markers in normal BLUP equations. 

- GRMij = proportion of genome that is shared between individuals i and j

Genomic BLUP (GBLUP)
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How to calculate GRM?

Rescale X to account for allele frequencies 

𝑤'( =
(𝑥'( − 2𝑝')
2𝑝'(1 − 𝑝')

Then, the genetic values are   g = W𝜷

Hence  
Var(g) = 𝐖	𝐖′𝜎!" = 𝐖𝐖*

+
	𝑚𝜎!

" = 𝐆𝜎,"

𝐆 = 𝐖𝐖*
+  is the GRM, and 𝜎," = 𝑚𝜎!" is the total genetic variance

Genomic relationship matrix (GRM)



CRICOS code 00025B 30

In cattle

Holstein reference     n = 781

Jersey reference       n = 287

Holstein validation    n = 400

Jersey validation      n = 77 

Genomic relationship matrix (GRM)
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In humans (unrelated individuals)

Yang et al (2010 Nat Genet)

Genomic relationship matrix (GRM)
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An equivalent model

where

BLUP solutions

𝐲 = 𝟏𝐧𝜇 + 𝐙𝐠 + 𝐞

�̂�
1𝒈 =

𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐙

𝐙′𝟏𝐧 𝐙"𝐙 + 𝐆#𝟏
𝜎&'

𝜎('

#$

𝟏𝐧" 𝐲
𝐙"𝐲

Var(g) = G 𝜎,"

Genomic BLUP (GBLUP)
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Z matrix maps the phenotypic records onto the genetic values

e.g. 5 individuals with the first 3 having records

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

Z

y1
y2
y3

y          =

g1
g2
g3
g4
g5

⨉              g

To be predicted

Z matrix in GBLUP
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Model 1 - SNP-BLUP 

Model 2 - GBLUP 

𝐲 = 𝟏𝐧𝜇 + 𝐙𝐠 + 𝐞

�̂�
:𝒈 =

𝟏𝐧′𝟏𝐧 𝟏𝐧* 𝐙

𝐙′𝟏𝐧 𝐙*𝐙 + 𝐆/𝟏
𝜎#"

𝜎,"

/1

𝟏𝐧* 𝐲
𝐙*𝐲

𝐲 = 𝟏𝐧𝜇 + 𝐗𝜷 + 𝐞
�̂�
$𝜷
=

𝟏𝐧′𝟏𝐧 𝟏𝐧* 𝐗

𝐗′𝟏𝐧 𝐗*𝐗 + 𝐈
𝜎#"

𝜎!
"

/1

𝟏𝐧* 𝐲
𝐗*𝐲

𝐏𝐆𝐒 = 𝐗:𝜶

Equivalent models
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• If number of SNPs >>> large than number of individuals, GBLUP is more 
computationally efficient

• Calculate prediction accuracy for each individual from inverse coefficient 
matrix (amount of data in estimate!)
� Prediction error variance  𝑃𝐸𝑉% = 𝐶%%𝜎!"

� Accuracy 𝑟%2 = 1 − 𝑃𝐸𝑉%/𝜎&"

• Very useful – can calculate how well we predict for individuals without their own 
phenotype (e.g., young calves, people)
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Which model to use?
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Methods
Model
We model the phenotype of an individual with a standard linear model 
y x β "= +i i i

⊤ , in which xi is an M × 1 vector of standardized genotypes 
(centred and standardized with respect to the allele frequency in the 
training population for both training and testing individuals), β is an 
M × 1 vector of standardized genetic effects, and !i is random noise. 
Under a random effects model, β is a vector of random variable sampled 
from a prior distribution p β( ) that differs under different genetic  
architecture assumptions62 and PGS methods53,63–65. The PGS weights 
β E βˆ= ( )β|D  are estimated to be the posterior mean given the observed 
data D (D X y= ( , )train train  with access to individual-level genotype, Xtrain, 
and phenotype, ytrain; or D β R= ( ˆ , )̂GWAS  with access to marginal associa-
tion statistics β̂GWAS and LD matrix R̂, in which GWAS stands for genome- 
wide association study). The genetic liability (g x β=i i

T ) of an individual 
i is estimated to be g E x β^ = ( )i β D i

T
| , the uncertainty of which is esti-

mated as the posterior variance of genetic liability g x βvar( ^ ) = var ( )i β D| i
T   

(ref. 49).

Individual PGS accuracy
We define individual PGS accuracy as the squared correlation between 
an individual’s genetic liability, gi, and its PGS estimate, ĝi, following 
the general form in ref. 28:

⊤

⊤ ⊤r
g g

g g
x β

x β x β
=

cov ( , ^ )
var ( )var ( ^ )

=
var ( ^)

var ( )var ( ^)
i

β D i i

β D i β D i

D i

β i D i

2 ,
2

, ,

2

Here we are interested in the PGS accuracy of a given individual; 
therefore, the genotype is treated as a fixed variable, and genetic effects 
are treated as a random variable. We note that a random effects model 
is essential; otherwise, g gcov ( , ˆ )β D i i,  and gvar ( )β D i,  are 0. Under a random 
effects model, both the genetic liability and PGS estimate for individ-
ual i are random variables. The randomness of ⊤g x β=i i  comes from the 
randomness in β, and the randomness of  g x βˆ = ˆ

i i  comes from the ran-
domness of both β and the training data D. Individual PGS accuracy 
measures the correlation between gi and  ĝi, which can be computed 
with the following equation:

r
E x β

x β
= 1 −

(var ( ))

var ( )
(2)i

D β D i

β i

2 |
⊤

⊤

in which x βvar ( )β D i|
⊤  is the posterior variance of genetic liability given 

the training data, and x βvar ( )β i
⊤  is the genetic variance. The equation 

is derived as follows.
First, we show that under the random effects model, 

⊤ ⊤ ⊤x β x β x βcov ( ^, ) = var ( ^)β D i i D i,  (in which  β E βˆ= ( )β|D ) following equation 
5.149 in ref. 66:

β β E ββ E β E β

E E ββ E β E E β

E E E β β

E E β E E β

E E β E β

E E β E E β

E β

β

cov ( ^, ) = ( ^ ) − ( ^) ( )

= ( ( ^ )) − ( ^) ( ( ))

= ( ( ( ) ))

− ( ( )) ( ( ))

= ( ( ) ( ))

− ( ( )) ( ( ))

= var ( ( ))

= var ( ^)

β D β D β D β D

D β D D β D β D

D β D β D

D β D D β D

D β D β D

D β D D β D

D β D

D
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| , |

| |

| |

| |

| |

|

⊤ ⊤ ⊤

⊤ ⊤

⊤

⊤

⊤

⊤

Multiplying xi on both sides of the equation, we obtain:

x β β x x β xcov ( ^, ) = var ( ^)i
T

β D i i
T

D i,

x β x β x βcov ( ^, ) = var ( ^) (3)β D i i D i,
⊤ ⊤ ⊤

Equation (3) also implies the slope from regression of observed phe-
notypic values (or true genetic liability) on the estimated PGS equal to 1 
(Supplementary Fig. 2), which offers an alternative way to assess the 
calibration of PGS as done in refs. 64,67.

⊤

⊤

⊤ ⊤

⊤

⊤

⊤
x β y

x β
x β x β "

x β
x β
x β

slope =
cov( ,̂ )

var( ^)
=

cov( ,̂ + )

var( ^)
=

var( ^)

var( ^)
= 1i i

i

i i i

i

i

i

Next, by applying the law of total variance, we show that:

g x β E x β E x βvar ( ) = var ( ) = (var ( )) + var ( ( ))β D i β D i
T

D β D i
T

D β D i
T

, , | |

x β x β E x βvar ( ^) = var ( ) − (var ( )) (4)D i β D i D β D i, |
⊤ ⊤ ⊤

Third, we derive the correlation between gi and  ĝi as:
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g g

x β

x β x β

x β
x β

x β E x β

x β
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x β
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var ( )var ( ^ )
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by applying equation (3)
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The above equation is widely used in animal breeding theory to com-
pute the reliability of estimated breeding value for each individual30. 
In this work, we use individual PGS uncertainty g x βvar( ^ ) = var ( )i β D i|

⊤   
as an unbiased estimator of E x β(var ( ))D β D i|

⊤ . We also use estimated her-
itability to approximate ⊤x βvar ( )β i  in simulations in which the phenotype 
has unit variance. In real-data analysis, as the phenotype does not nec-
essarily have unit variance, we approximate x βvar ( )β i

⊤  by scaling the 
estimated heritability with the residual phenotypic variance in the 
training population after regressing GWAS covariates including sex, 
age and precomputed UKBB PC1–16 (Data-Field 22009).

Analytical form of individual PGS accuracy under infinitesimal 
assumption
Without loss of generality, we assume a prior distribution of genetic 
effects as follows:

p β σ MVN σ I( | ) = (0, )β β M
2 2

where M is the number of genetic variants. With access to individual 
genotype, Xtrain, and phenotype, ytrain, data, the likelihood of the  
data is

p y X β σ MVN X β σ I( , , ) = ( , )Ntrain train e
2

train e
2∣

where N is the training sample size. The posterior distribution of genetic 
effects given the data is proportional to the product of the prior and 
the likelihood:

p β X y σ σ p β σ p y X β σ

MVN σ I MVN X β σ I

MVN µ σ

( | , , , ) ∝ ( | ) ( | , , )

∝ (0, ) ( , )

∝ ( , )
M N

β β

train train train train

train

β β

β

2
e
2 2

e
2

2
e
2

New wine in the old bottle

Methods
Model
We model the phenotype of an individual with a standard linear model 
y x β "= +i i i

⊤ , in which xi is an M × 1 vector of standardized genotypes 
(centred and standardized with respect to the allele frequency in the 
training population for both training and testing individuals), β is an 
M × 1 vector of standardized genetic effects, and !i is random noise. 
Under a random effects model, β is a vector of random variable sampled 
from a prior distribution p β( ) that differs under different genetic  
architecture assumptions62 and PGS methods53,63–65. The PGS weights 
β E βˆ= ( )β|D  are estimated to be the posterior mean given the observed 
data D (D X y= ( , )train train  with access to individual-level genotype, Xtrain, 
and phenotype, ytrain; or D β R= ( ˆ , )̂GWAS  with access to marginal associa-
tion statistics β̂GWAS and LD matrix R̂, in which GWAS stands for genome- 
wide association study). The genetic liability (g x β=i i

T ) of an individual 
i is estimated to be g E x β^ = ( )i β D i

T
| , the uncertainty of which is esti-

mated as the posterior variance of genetic liability g x βvar( ^ ) = var ( )i β D| i
T   

(ref. 49).

Individual PGS accuracy
We define individual PGS accuracy as the squared correlation between 
an individual’s genetic liability, gi, and its PGS estimate, ĝi, following 
the general form in ref. 28:
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Here we are interested in the PGS accuracy of a given individual; 
therefore, the genotype is treated as a fixed variable, and genetic effects 
are treated as a random variable. We note that a random effects model 
is essential; otherwise, g gcov ( , ˆ )β D i i,  and gvar ( )β D i,  are 0. Under a random 
effects model, both the genetic liability and PGS estimate for individ-
ual i are random variables. The randomness of ⊤g x β=i i  comes from the 
randomness in β, and the randomness of  g x βˆ = ˆ

i i  comes from the ran-
domness of both β and the training data D. Individual PGS accuracy 
measures the correlation between gi and  ĝi, which can be computed 
with the following equation:
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in which x βvar ( )β D i|
⊤  is the posterior variance of genetic liability given 

the training data, and x βvar ( )β i
⊤  is the genetic variance. The equation 

is derived as follows.
First, we show that under the random effects model, 

⊤ ⊤ ⊤x β x β x βcov ( ^, ) = var ( ^)β D i i D i,  (in which  β E βˆ= ( )β|D ) following equation 
5.149 in ref. 66:
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Multiplying xi on both sides of the equation, we obtain:

x β β x x β xcov ( ^, ) = var ( ^)i
T

β D i i
T

D i,

x β x β x βcov ( ^, ) = var ( ^) (3)β D i i D i,
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Equation (3) also implies the slope from regression of observed phe-
notypic values (or true genetic liability) on the estimated PGS equal to 1 
(Supplementary Fig. 2), which offers an alternative way to assess the 
calibration of PGS as done in refs. 64,67.
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Next, by applying the law of total variance, we show that:
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The above equation is widely used in animal breeding theory to com-
pute the reliability of estimated breeding value for each individual30. 
In this work, we use individual PGS uncertainty g x βvar( ^ ) = var ( )i β D i|

⊤   
as an unbiased estimator of E x β(var ( ))D β D i|

⊤ . We also use estimated her-
itability to approximate ⊤x βvar ( )β i  in simulations in which the phenotype 
has unit variance. In real-data analysis, as the phenotype does not nec-
essarily have unit variance, we approximate x βvar ( )β i

⊤  by scaling the 
estimated heritability with the residual phenotypic variance in the 
training population after regressing GWAS covariates including sex, 
age and precomputed UKBB PC1–16 (Data-Field 22009).

Analytical form of individual PGS accuracy under infinitesimal 
assumption
Without loss of generality, we assume a prior distribution of genetic 
effects as follows:

p β σ MVN σ I( | ) = (0, )β β M
2 2

where M is the number of genetic variants. With access to individual 
genotype, Xtrain, and phenotype, ytrain, data, the likelihood of the  
data is

p y X β σ MVN X β σ I( , , ) = ( , )Ntrain train e
2
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where N is the training sample size. The posterior distribution of genetic 
effects given the data is proportional to the product of the prior and 
the likelihood:
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for all individuals in the UKBB, assuming shared causal variants and 
homogeneous causal effect sizes for individuals from various genetic 
backgrounds (see Methods). Overall, the 90% credible intervals are 
approximately well calibrated (that is, the 90% credible interval over-
laps with the true genetic liability across 90 of 100 replicates, for all 
individuals, regardless of their GD from the training population or 
GIA labels; Fig. 2a). For example, when individuals are binned into  
10 deciles based on their GD from the training population, the average 
empirical coverage of the 90% credible intervals is 89.7% (s.d. 2.6%) 
for individuals from the closest decile (composed of 96.9% individu-
als labelled as WB, 3.1% labelled as PL under a discrete view of ances-
tries; see detailed naming convention in Methods) compared to the 
average empirical coverage of 82.4% (s.d. 4.6%) for individuals from 
the furthest decile (composed of 19.9% individuals labelled as CB and 
80.1% labelled as NG).

Next, we investigated the impact of GD on individual-level PGS 
accuracy. As expected, the width of the credible interval increases 
linearly with GD, reflecting reduced predictive accuracy for the PGS 
(Fig. 2b). The average width of the 90% credible interval is 1.83 in the 
furthest decile of GD, a 1.8-fold increase over the average width in the 
closest decile of GD. In contrast to the credible interval width, the 
individual-level PGS accuracy ri

2 decreases with GD from the training 
data (Fig. 2c); the average estimated accuracy of individuals in the 
closest decile GD is fourfold higher than that of individuals in the 
furthest decile. Even among the most homogeneous grouping of 
individuals traditionally labelled as WB, we observe a 5% relative 
decrease in accuracy for individuals at the furthest decile of GD as 
compared to those in the closest decile. Similar results are observed 
when using a population-level PGS metric of accuracy, albeit at the 
expense of binning individuals according to GD; we find a high degree 
of concordance between the average ri

2  within the bin and the 
population-level R2 estimated within the bin (Fig. 2d and Extended 
Data Fig. 1a). Similarly, we observe a high consistency between 

average ri
2  and squared correlation between PGS and simulated phe-

notypes (R = 0.86, P < 10−10; Extended Data Fig. 1b). Taken together, 
our results show that the 90% credible intervals remain calibrated 
for individuals that are genetically distant from the training popula-
tion at the expense of wider credible intervals, and ri

2  captures the 
PGS accuracy decay across GD.

To demonstrate that the continuous accuracy decay is not specific 
to PGS models trained on European ancestries, we conducted further 
analyses using a non-European training dataset composed of indi-
viduals of NG and CB GIAs (we grouped the two GIAs to attain sufficient 
sample size for simulations). We simulated a high signal-to-noise trait 
by setting h = 0.8g

2  and proportion of causal variants p = 1%causal  and 
0.1% with 56,539 SNPs on chromosome 10 alone. We trained PGS mod-
els on 5,000 individuals from the NG and CB GIA clusters and applied 
the models to the remaining testing individuals. The coverage of the 
90% credible intervals was invariant to GD despite slight miscalibra-
tion. The 90% credible interval width increased and individual PGS 
accuracy decreased when the testing individual was further away 
from the training data. This trend is consistent with the observed 
decrease in empirical accuracy computed as squared correlation 
between PGS and genetic value as GD increases (Extended Data  
Figs. 2 and 3).

We further evaluated the impact of the number of PCs used for 
calculating GD on its ability to capture accuracy decay. We varied the 
number of PCs (J) from 1 to 20 and observed that the correlation 
between GD and individual accuracy ( d r g g−cor( , ( , ˆ )i i i i

2 ) increases 
when more PCs are used for computing GD, but no further improve-
ment is observed when J > 15 for any GIA clusters or the whole biobank 
(Extended Data Fig. 4). Therefore, we set J = 20 for simplicity. We also 
explored average squared genetic relationship from training data as 
an alternative metric of GD and found that it is a better prediction of 
accuracy decay within each GIA clusters (Extended Data Fig. 4). How-
ever, because this metric relies on individual-level training data that 
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Fig. 1 | Illustration of population-level versus individual-level PGS accuracy. 
a, Discrete labelling of GIA with PCA-based clustering. Each dot represents an 
individual. The circles represent arbitrary boundaries imposed on the genetic 
ancestry continuum to divide individuals into different GIA clusters. The colour 
represents the GIA cluster label. The grey dots are individuals who are left 
unclassified. b, Schematic illustrating the variation of population-level PGS 
accuracy across clusters. The box plot represents the PGS accuracy (for example, 
R2) measured at the population level. The question mark emphasizes that the 
PGS accuracy for unclassified individuals is unknown owing to the lack of a 
reference group. Grey dashed lines emphasize the categorical nature of GIA 

clustering. c, Continuous labelling of everyone’s unique position on the genetic 
ancestry continuum with a PCA-based GD. The GD is defined as the Euclidean 
distance of an individual’s genotype from the centre of the training data when 
projected on the PC space of training genotype data. Everyone has their own 
unique GD, di, and individual PGS accuracy, ri

2. d, Individual-level PGS accuracy 
decays along the genetic ancestry continuum. Each dot represents an individual 
and its colour represents the assigned GIA label. Individuals labelled with the 
same ancestry spread out on the genetic ancestry continuum, and there are no 
clear boundaries between GIA clusters. This figure is illustrative and does not 
involve any real or simulated data.
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residual height after regressing out sex, age and PC1–10 on the ATLAS 
from the actual measured trait. Using equally spaced bins across the 
GD continuum, we find that correlation between PGS and the measured 
height tracks significantly with GD (R = −0.92, P = 1.1 × 10−8; Fig. 3c).

PGS accuracy decay is pervasive
Having established the coupling of GD with PGS accuracy in simulations 
and for height, we next investigate whether this relationship is common 
across complex traits using PGSs for a broad set of 84 traits (Supple-
mentary Table 1). We find consistent and pervasive correlations of GD 
with PGS accuracy across all considered traits in both ATLAS and the 
UKBB (Fig. 4). For example, the correlations between GD and individual 

PGS accuracy range from −0.71 to −0.97 with an average of −0.95 across 
the 84 PGSs in ATLAS with similar results observed in the UKBB. Traits 
with sparser genetic architectures and fewer non-zero weights in the 
PGS have a lower correlation between GD and PGS accuracy; we rea-
son that this is because GD represents genome-wide genetic variation 
patterns that may not reflect a limited number of causal SNPs well. For 
example, PGS for lipoprotein A (log_lipoA) has the lowest estimated 
polygenicity (0.02%) among the 84 traits and has the lowest correlation 
in ATLAS (−0.71) and the UKBB (−0.85). By contrast, we observe a high 
correlation between GD and PGS accuracy (>0.9) for all traits with an 
estimated polygenicity >0.1%. Next, we show that the fine-scale popula-
tion structure accountable for the individual PGS accuracy variation is 
also prevalent within the traditionally defined genetic ancestry group. 
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Fig. 3 | The individual-level accuracy for height PGS decreases across  
the genetic ancestry continuum in ATLAS. a, Individual PGS accuracy 
decreases within both homogeneous and admixed genetic GIA clusters.  
Each dot represents a testing individual from ATLAS. For each dot, the x-axis 
represents its distance from the training population on the genetic continuum; 
the y-axis represents its PGS accuracy. The colour represents the GIA cluster.  
b, Individual PGS accuracy decreases across the entire ATLAS. c, Population- 
level PGS accuracy decreases with the average GD in each GD bin. All ATLAS 
individuals are divided into 20 equal-interval GD bins. The x axis is the average 

GD within the bin, and the y axis is the squared correlation between PGS and 
phenotype for individuals in the bin; the dot and error bar show the mean and 
95% confidence interval from 1,000 bootstrap samples. R and P refer to the 
correlation between GD and PGS accuracy and its significance, respectively,  
from two-sided Pearson correlation tests without adjustment for multiple 
hypothesis testing. Any P value below 10−10 is shown as P < 10−10. EA, European 
American; HL, Hispanic Latino American; SAA, South Asian American; EAA, 
East Asian American; AA, African American.
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• Moving from GBLUP to SNP-BLUP 

• called Backsolving for SNP effects

• Can use in alternative form of GWAS

*𝜷 = 𝐗"𝐆#𝟏	1𝒈	/𝑚

Backsolving SNP effects from GBLUP
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• Genomic selection in livestock
• Disease risk prediction in humans 

Examples of BLUP applications

Applications
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Genomic selection

Use genome-wide SNPs to estimate the breeding value of selection candidates.

“Genomic selection” = “precision medicine” for animals
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• Inflammatory Bowel Disease
• Affects 2 in every 1000 people (approx.)

• 68,000 IBD patients and 29,000 healthy controls from 15 cohorts, European descent
• 909,763 GWAS SNPs or 123,437 SNPs on the custom designed Immunochip

• Prediction methods:
o Genetic profile risk scores (GPRS) constructed using effects of all SNPs from GWAS 
o GBLUP
o Elastic net (EN)
o BayesR - Bayesian method that models SNP effects as a mixture of 4 normal distributions.

Humans – Crohn’s disease Chen et al. 2017. BMC Medicine.

Prediction of disease risk
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Humans – Crohn’s disease Chen et al. 2017. BMC Medicine.

Assess value of predictions as 
“Area Under Curve” (AUC) from 
5-fold cross-validation

Prediction of disease risk
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Schizophrenia Bipolar Disorder
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Maier et al (2015) Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, 
Bipolar Disorder, and Major Depressive Disorder. AJHG.  (Not summary statistics)

Predict risk of psychiatric disorders
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• Simultaneously estimate all SNP effects as random
o No need to prune on LD or select p-value threshold
o No need to know causal variants or biological function

• Assumes normal distribution on SNP effects with equal variance
• Unbiased estimates of SNP effects
• Equivalent models between SNP-BLUP and GBLUP
• Provide per-individual prediction accuracy
• Improved prediction accuracy in practice

BLUP

Summary
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Practical 3: BLUP
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https://cnsgenomics.com/data/teaching/GNGWS24/module5/Practical3_BLUP.html

https://cnsgenomics.com/data/teaching/GNGWS24/module5/Practical3_BLUP.html

