

Bayesian Methods for PGS prediction

Jian Zeng j.zeng@uq.edu.au

Institute for Molecular Bioscience

Slides credit: Ben Hayes

Best linear unbiased prediction (BLUP)

Linear mixed model

$$\mathbf{y} = \mathbf{1}_{\mathbf{n}}\boldsymbol{\mu} + \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

BLUP solutions

$$\begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n}'\mathbf{1}_{n} & \mathbf{1}_{n}'\mathbf{X} \\ \mathbf{X}'\mathbf{1}_{n} & \mathbf{X}'\mathbf{X} + \mathbf{I}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{n}'\mathbf{y} \\ \mathbf{X}'\mathbf{y} \end{bmatrix}$$

I = identity matrix (dimensions m x m)

$$\lambda = \sigma_e^2 \, / \, \sigma_\beta^2$$

- How to determine the shrinkage parameter λ ?
 - Estimate the variance components using GREML
 - > Cross-validation with various input values for λ
- Assumes SNPs effects are:
 - all non-zero
 - very small
 - normally distributed

How realistic is it?

- Bayesian methods can estimate all parameters including SNP effects
 simultaneously
- Allow alternative assumptions regarding the distribution of SNP effects

What are alternative distributions that make sense?

Alternative distributions

Assumption	Distribution of SNP effects	Method
Small number of moderate to large effects, many small effects	Students t	BayesA

Alternative distributions

Assumption	Distribution of SNP effects	Method
Small number of moderate to large	Students t	BayesA
effects, many small effects		
Small number of moderate to large	Mixture, spike at zero,	BayesB
effects, many zero effects	Students t	
Small number of small effects, many	Mixture, spike at zero,	BayesC
zero effects	normal distribution	
Many zero effects, proportion of small	Multi-variate normal	BayesR
effects, some moderate to large effects		

Assumptions for SNP effect distribution

How to incorporate this prior knowledge in the estimation of SNP effects?

Introduction to Bayesian methods

 $P(x \mid y) \propto P(y \mid x)P(x)$ $Probability of \qquad \text{Is proportional to} \qquad Probability of \qquad Prior \\ \text{parameters x given} \qquad \qquad \text{data y given the} \qquad \text{probability} \\ \text{the data y (posterior)} \qquad \qquad x (likelihood of \qquad of x \\ \text{data}) \qquad \qquad \qquad \end{aligned}$

Consider an experiment where we measure height of 10 people to estimate average height

We want to use prior knowledge from many previous studies that average height is 174cm with standard error 5cm

y = average height + e

 $P(x \mid y) \propto P(y \mid x)P(x)$

Prior probability of x (average height)

Height

14

Bayes theorem

15

Less certainty about prior information? Use *less* informative (flat) prior

More certainty about prior information? Use *more* informative prior

16

PGS prediction with Bayesian methods

17

Model

BLUP is a special case of BayesC when $\pi = 1$

When $\pi < 1$, it introduces extra shrinkage on the SNP effect

Model

Model

The posterior distribution is also a point-normal mixture

Posterior joint distribution

 $P(\mu, \boldsymbol{\beta}, \sigma_{\beta}^2, \pi, \sigma_{e}^2 | \boldsymbol{y})$

$\propto P(\boldsymbol{y}|\boldsymbol{\mu},\boldsymbol{\beta},\sigma_{\beta}^{2},\pi,\sigma_{e}^{2})P(\boldsymbol{\mu})P(\boldsymbol{\beta}|\sigma_{\beta}^{2},\pi)P(\sigma_{\beta}^{2})P(\pi)P(\sigma_{\beta}^{2})$

- Cannot solve directly, as estimates of parameters depend on other parameters → no closed form solution
- For example, estimate of a SNP effect depends on whether or not the it is zero or nonzero component of the distribution
- Use Gibbs sampling!

Gibbs Sampling

A technique to sample from posterior distribution of the parameter **conditional** on all other parameters.

For example, for SNP effect β_i

- First sample if in zero or nonzero effect component of distribution (δ_i)
- Then if in nonzero component of the distribution, sample from

$$N\left(\frac{\mathbf{X}_{ij}'\mathbf{y} - \mathbf{X}_{ij}'\mathbf{X}\beta_{(ij=0)} - \mathbf{X}_{ij}'\mathbf{1}_{n}\mu}{\mathbf{X}_{ij}'\mathbf{X}_{ij} + \sigma_{e}^{2}/\sigma_{\beta}^{2}}, \sigma_{e}^{2}/(\mathbf{X}_{ij}'\mathbf{X}_{ij} + \sigma_{e}^{2}/\sigma_{\beta}^{2})\right)$$

Gibbs sampling

Figure source

Gibbs chain

- Set starting values for $(\mu, \delta, \beta, \sigma_{\beta}^2, \pi, \sigma_e^2)$
- Then (for many iterations)
 - For each SNP, sample δ_i , β_i conditional on other parameters
 - Sample μ , σ_{β}^2 , π , σ_e^2 with updated δ , β

Samples reconstruct posterior distributions of parameters

Gibbs sampling is Markov chain Monte Carlo (MCMC) algorithm

Gibbs chain

Posterior mean is often used as the point estimate of the SNP effect

As a method of fine-mapping

Posterior inclusion probability (PIP): probability that the SNP is included in the model with a nonzero effect.

SNP

BayesR

Model

 $\mathbf{y} = \mathbf{1}_{\mathbf{n}} \boldsymbol{\mu} + \mathbf{X} \boldsymbol{\beta} + \mathbf{e}$ $\beta_{j} | \pi, \sigma_{\beta}^{2} = \begin{cases} 0 & \text{with probability } \pi_{1}, \\ \sim N(0, \gamma_{2} \sigma_{\beta}^{2}) & \text{with probability } \pi_{2}, \\ \vdots \\ \sim N(0, \gamma_{C} \sigma_{\beta}^{2}) & \text{with probability } 1 - \sum_{c=1}^{C-1} \pi_{c}, \end{cases}$

 $\gamma = (0, 0.01, 0.1, 1.0)'$

BayesC is a special case of BayesR with two components

Why use multi-normal mixture?

Account for almost any distribution!

Estimate π from the data

$$\beta_j \sim \pi_1 + \pi_2 + \pi_3 + \pi_4$$

Sample π from a Dirichlet distribution (multivariate Beta distribution)

$$[\pi_1, \pi_2, \pi_3, \pi_4]' \sim Dirichlet(a_1, a_2, a_3, a_4)$$

Applications of BayesR

30

THE UNIVERSIT

Cattle, 800K SNPs

- Reference
 - Holstein = 3049 bulls, 8478 cows
 - Jersey = 770 bulls, 3917 cows
- Validation
 - Holstein = 262 bulls
 - Jersey = 105 bulls
 - Australian Reds = 114 bulls
- GEBV with GBLUP, BayesR
- (Kemper et al GSE, 2014)

Fat

Cattle, 800K SNPs

• Prediction accuracy $r(\hat{g}, y)$

Milk

Holstein								
GBLUP	0.60	0.59	0.58	0.72	0.83	0.66		
BAYESR	0.64	0.62	0.57	0.81	0.84	0.69		
Jersey								
GBLUP	0.56	0.62	0.67	0.64	0.76	0.65		
BAYESR	0.56	0.69	0.71	0.76	0.79	0.70		
Australian Reds								
GBLUP	0.20	0.16	0.11	0.32	0.34	0.22		
BAYES	0.26	0.21	0.13	0.44	0.36	0.28		

Protein Fat% Protein% Average

BayesR

position, Mbp

Prediction of disease risk in humans

Bayesian methods for Genomic Prediction

Bayesian approach allows us to incorporate prior knowledge in estimation of SNP effects

Bayesian methods can have an advantage when:

QTL of moderate to large effect on the trait (eg Fat%, DGAT1)

Very large numbers of SNP (800K, sequence) -> set some SNP effects to zero

Integrates polygenic prediction and genetic fine-mapping

Copyright © 2001 by the Genetics Society of America

Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,* B. J. Hayes[†] and M. E. Goddard^{†,‡}

*Research Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands, [†]Victorian Institute of Animal Science, Attwood 3049, Victoria, Australia and [‡]Institute of Land and Food Resources, University of Melbourne, Parkville 3052, Victoria, Australia

> Manuscript received August 17, 2000 Accepted for publication January 17, 2001

Meuwissen et al is the paper coined genomic selection.

BayesA, BayesB:

Habier et al. BMC Bioinformatics 2011, 12:186 http://www.biomedcentral.com/1471-2105/12/186

RESEARCH ARTICLE

Open Access

Bioinformatics

BMC

Extension of the bayesian alphabet for genomic selection

David Habier^{1*}, Rohan L Fernando¹, Kadir Kizilkaya^{1,2} and Dorian J Garrick^{2,3}

J. Dairy Sci. 95:4114–4129 http://dx.doi.org/10.3168/jds.2011-5019 © American Dairy Science Association[®], 2012. Open access under <u>CC BY-NC-ND license</u>

Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels

M. Erbe,*¹ B. J. Hayes,†‡\$^{1.2} L. K. Matukumalli,# S. Goswami,|| P. J. Bowman,†‡ C. M. Reich,†‡ B. A. Mason,†‡ and M. E. Goddard†¶

Practical 4: Bayesian methods

https://cnsgenomics.com/data/teaching/GNGWS24/module5/Practical4_Bayes.html

To log into your server, type command below in **Terminal** for Mac/Linux users or in **Command Prompt** or **PowerShell** for Windows users.

ssh username@hostname

And then key in the provided password.