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Motivation 0 B

« Best prediction methods take genetic values as random effect
(e.g., BLUP and BayesR).

« These methods require individual genotypes and phenotypes.
 These data are often not publicly accessible.

« Computationally demanding with large # individuals/SNPs.

« Could be addressed by using GWAS summary stafistics (sumstats).

 Methodology in human genetics has moved forward to use GWAS
sumstats only.
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Table 1. Recommended standard reporting elements for GWAS

SumStats

Data element

Column header

Mandatory/Optional

variant id
chromosome

base pair
location

p value
effect allele
other allele

effect allele
frequency

effect (odds

ratio or beta)
standard error
upper confidence
interval

lower confidence
interval

variant_id
chromosome

base_pair_
location

p_value
effect_allele
other_allele

effect_allele_
frequency

odds_ratio or
beta

standard_error
ci_upper

ci_lower

One form of variant ID

is mandatory, either rs|D

or chromosome, base pair
location, and genome build®

Mandatory
Mandatory
Mandatory
Mandatory

Mandatory

Mandatory
Optional

Optional

Emil Uffelmann
Yukinori Okada
Danielle Posthuma

', Qin Qin Huang®?, Nchangwi Syntia Munung®?3, Jantina de Vries?,

45, Alicia R. Martin®78, Hilary C. Martin?, Tuuli Lappalainen®'%'? and
LT

Table 3 | Databases of GWAS summary statistics

Database Content

GWAS Catalog'* GWAS summary statistics and GWAS lead SNPs reported in
GWAS papers

GeneAtlas® UK Biobank GWAS summary statistics

Pan UKBB UK Biobank GWAS summary statistics

GWAS Atlas?”? Collection of publicly available GWAS summary statistics

with follow-up in silico analysis

FinnGen results GWAS summary statistics released from FinnGen, a project
that collected biological samples from many sources in

Finland

dbGAP Public depository of National Institutes of Health-funded
genomics data including GWAS summary statistics

OpenCGWAS database GWAS summary data sets

Pheweb.jp GWAS summary statistics of Biobank Japan and

cross-population meta-analyses

For a comprehensive list of genetic data resources, see REF.">. GWAS, genome-wide
association studies; SNP, single-nucleotide polymorphism.



Sumstats for PGS prediction

What are the minimum data required?

Given the standard GWAS with genotypes being allelic counts (0/1/2),
the minimum data required for PGS prediction include:

~

SNP marginal effect estimates

Standard errors - GWAS sumstats
GWAS sample size

LD correlations among SNPs > LD mafrix



Sumstats for PGS prediction 0 By

SNP marginal effect estimates

GWAS estimates effect of each SNP one at a fime from single SNP regression, so the
estimate is marginal to (unconditional on) other SNPs.

! -1 / o
b = (XjX;) "Xjy

4.0

000 O

Assuming X has been standardised with column
mean zero and variance one, then

00

3.0

Phenotypic score
oo

X]’-Xj = nVar(Xj) =n

And 2.0
1 i ]
b] — ’)Tl ]’y SNP genotype

|
40 0 0 00

Note that it has the inner product of the SNP genotypes and the phenotypes.



Sumstats for PGS prediction

SNP marginal effect estimates

For diseases, GWAS is done using logistic regression

Pi
08 1—Pi U+ ijlY

The SNP effect is log odds ratio (OR), i.e.,
difference in log odds for cases vs. controls

b; = log(OR)

Approximately equal to the b; from the linear
model when true effect size is small.
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LD mairix for PGS prediction

Linkage disequillibrium (LD) correlations

Usually obtained from a reference population
LD correlation matrix -

g

1
R ==-X'X

n
assuming X is standardised “u,
with mean zero and %,
variance one




The principle of sumstats-based methods



Principle of sumstats-based methods

Use of summary data only - how does it worke

GWAS results and LD correlations are sufficient statistics for the
estimation of SNP joint effects!
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Sufficient statistics

A statistic is sufficient if no ofther statistics provides any additional
information as to the value of the parameter.

e.9., X1, X9, ..., Xy ~ N(, 6?) and we want to estimate u and o2

n ° ° ° °
j = i—1xi « Y .x; and n are sufficient statistics for u
n 1x X 1xl e Y1 . x7, Y™ x; and n are sufficient
statistics for o2

We don't need to know the value of each x!



Sumstats for PGS prediction 0 By

For simplicity, let's assume that when running GWAS,

« the genotypes of each SNP are standardised with column mean
zero and varionce one.

* the phenotypes are standardised with mean zero and variance one.

We will come back fo deal with this assumption later.



Principle of sumstats-based methods

BLUP
y=Xp +e

BLUP solutions:
B =[XX+11]" X'y

where A = "—§ ‘ ‘
9B
n R nb

Recall

1

R=-X'X

bj:

n

1 !
n Y

R (LD matrix), b (marginal effects) and n are sufficient

stafistics for the estimation of B.




Compare BLUP and SBLUP

BLUP SBLUP (sumstats-based BLUP)
« Model: * Model:
v=XB+e b=Rp +¢€
« Estimator:  Esfimator:
B = [X'X + 1] 1X’ [nR + 1] nb
= y
b S / \ \
Genotype Phenotypes GWAS GWAS effects
matrix sample correlation

SIZ€ matrix



From individual- to summary-level model

Individual-level data Summary-level data
analysis analysis
BLUP SBLUP
9
Bayes SBayes

Covariates, such as age and sex, are accounted for when running GWAS.
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From individual- to summary-level model I orourmsians

Consider an individual-data model with a standardised genotype
maftrix X:

y=Xp +e
Multiply both sides by %X’ gives

1X' 1X'X +1X'
—_— —_— —_— e
n y n ﬂ n

b =Rpf+e€ - 1
7 Var(e€) = —Ro/
GWAS marginal SNP effects T n

LD correlation matrix



Sumstais-based Bayesian methods

o b=R+e€. 2
SNP marginal effects / \ Var(e) = - Rog
from GWAS

LD correlation matrix SNP joint effects

Prior distribution for each SNP effect

SBayesR

LDpred-Inf LDpred?2 BSLMM
SBLUP /\ SBayesC //

6




Sumstats-based BayesR e T

ARTICLE
SBOyesR e | |
Improved polygenic prediction by Bayesian multiple
regression on summary statistics

Luke R. Lloyd-Jones 19¢ Jian Zeng 19¢ Julia Sidorenko'?, Loic Yengo1, Gerhard Moser34,

E O C h S N P e ffe C'I' h O S O m iX'I' U re d iS'I'ri b U 'I'i O n : Kathryn E. Kemper!, Huanwei Wang® ", Zhili Zheng!, Reedik Magi2, Ténu Esko?, Andres Metspalu®>,

Naomi R. Wray® "6, Michael E. Goddard’, Jian Yang® "8* & Peter M. Visscher® ™

4
2 —
B; ~ z - N(O, Ykaﬁz) o ~le(v,rz)}

=t AL
e ~

[ 1T ~ Dirichlet (1)

V1= 0 Y2 = 0.01 Y3 = 0.1 V4 = 1
Null effect Small effects Medium effects Large effects
_/\




Compare BayesR and SBayesR algorithm O Sramen

AUSTRALIA

Gibbs sampling

Full conditional distribution for g;, if it is nonzero,

| _n(5 %
f(,B] |b,else) —N<Cj, Cj>

T T T T T
-3 -2 -1 0 1
where

Individual-level data Summary-level data
=X —23 X _
A <y kj k'gk) Tj =mnbj — zkij Rji P

2
o2 7

/ e . =
GXjXj + — G=n+t-3

K Yiop / k Vi% /




Compare BayesR and SBayesR algorithm

All X’y and X’X can be replaced by nb and nR

Algorithm 1 - Individual level data algorithm Algorithm 2 Summary data algorithm
Initialise parameters and read genotypes and phenotypes in PLINK binary format Initialise parameters and read summary statistics
Initialise y* =y — X8 Reconstruct X'X and X'y from summary statistics and LD reference panel
for i :=1 to number of iterations do Calculate r* = X'y — X'XB
fori:=1to p do for i :=1 to number of iterations do
Calculate r} = x;-y* fori:=1topdo

Calculate r; = rj + x}x]ﬂ](i*l Calculate r]-2= T +XXiP ,
Calculate 07 = 055~ for each of C classes (e.g., BayesR C=4 and v = (0,0.0001,0.001,0.01)) Calculate 07 = 0774, for each fo C classes (e.g., SBayesR C=4 and y = (0,0.01,0.1,1)’)

4 o2
Calculate the left hand side /;. = ] ixj + ‘7‘ for each of the C classes Calculate the left hand side jc = ’{j"i + ﬁ( for each of the C classes

2 2 - . . 01' '2
Calculate the log densities of given §; = ¢ using log(£L.) = —3% [log <[7f712”) - 0%] + log(7t:), where 7, is the current Calculate the log densities of given Jj = c using log(Lc) = —; [log ( ) 2 ] + log(7c), where 7rc is the current
g 2l .
Calculate the full conditional posterior probability for §; = ¢ for C classes with P(J; = c|6,y) = m Calculate the full conditional posterior probability for §; = c for C classes with IP(J; = c[6,y) = ET%_I expllog(Z;)—log(Lo)]
1=1 © P
Using full conditional posterior probabilities sample class membership for ﬁ/('l) using categorical random variable sampler Using full conditional posterior probabilities sample class membership for ﬁj") using categorical random variable sampler
. a2
Given class sample SNP effect ﬁ; from N ( ,r , 1‘2 ) Given class sample SNP effect /3(,) from N ( 7;?)
Given SNP effect adjust corrected phenotype side (y*)(#) = (y*)(i~ (/3<’ -8 (i= 1)) Given SNP effect adjust corrected right hand side (r*)(*1) = (r*)®) — X'x; (ﬁ('“) ﬁ/(.i)). X'x; is the jth column of X'X.
od od
it 2 ; ; stribution T & _ SHTEL i - W+, 7
Sample update from full conditional for o from scaled inverse chi-squared distribution v = v + g and 5% = EE Sample update from full conditional for o2 from scaled inverse chi-squared distribution 7, = v + ¢ and 72, = WL'
where g is the number of non-zero variants where ¢ is the number of non-zero variants
Sample update from full conditional for ¢ from scaled inverse chi-squared distribution 7, = 1 + v, Sample update from full conditional for 62 from scaled inverse chi-squared distribution 7, = 1 + v,
and scale parameter 52 = % and SSE = y*'y* and scale parameter 72 = SSE%"— and SSE =y'y — B'r* — B'X'y
Sample update from full conditional for 7t, which is Dirichlet(C, ¢ + &), where c is a vector of length C and contains the counts Sample update from full conditional for 7t, which is Dirichlet(C, ¢ + &), where c is a vector of length C and contains the counts
of the number of variants in each variance class and « = (1,...,1) of the number of variants in each variance class.
. . . . -~ -~/
Calculate genetic variance for gy calculation using o = Var(X) Calculate genetic variance for k% calculation using 02 = MSS/n, where MSS = B X'y — B r*
a? o2
Calculate gy, = L,gT{,g Calculate hfyp =
od od ¢

Lloyd-Jones & Zeng et al. 2019 NC supplement



Scaling GWAS effects 0 b

Now we deal with the condition of unstandardised genotypes/phenotypes:

« Typically, GWAS are performed using allele counts (0/1/2) as genotypes
(X

« often with unstandardised phenotypes (Var(y) # 1).

The solutions is to ‘scale’ the GWAS marginal effects before the analysis and
‘unscale’ the estimated joint effects after the analysis.

20



Scaling GWAS effects 0 b

Let o; be the SD of genotypes for SNP j and g, be the SD of phenotypes.

The genotypic value
cnt

. _ yentypent _ ) pent
gj =XbT = ——— Xojb; o .
] This is in the SD units

g. O'. /
2= x; Lt = x; sib™ = x(by )
Oy Oy
All we need to do is to get
bj — S «—— Output from GWAS

where s; can be estimated by

1
2 2
nSEj + bj

Sj=
\

21
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Summary (1)

 Minimum data required for sumstat-based methods are
» GWAS effects, standard errors, GWAS sample size, LD matrix

* |n principle, SBayes and Bayes are equivalent methods when same
data are used.

« However, when LD is estimated from a reference sample, SBayes is
only an approximation to Bayes.

 Whether the difference is negligible depends on the heterogeneity
in LD between the GWAS and LD ref samples.

22



Assumptions regarding LD reference B e

LD reference population matches with GWAS population in genetics
* No systematic differences in LD 2 same ancestry and population structure

* Minimum sampling variance in LD - LD ref sample size cannot be too small

¢ AFR d EAS e AFR
b 1.0 2y 1.0 1.0
F— ] < gg
% 0.8 g 0.8 i 0.8
"
%) =5 0.6 T 0.6 - = 0.6
< = -]
0.4 w 0.4 - 0.4
0.2 0.2 0.2
0.0 0.0 0.0

LD decays to zero between distant SNPs

« Can use sparse or block-wide LD matrices

23



Regulation of LD matrix ) e

Lloyd-Jones et al (2019) used chromosome-wide shrunk LD matrices.
Zheng et al (2024) used eigen-decomposed matrices from LD blocks.
* More robust to LD heterogeneity - better prediction performance

« Faster 2 allows us to fit multi-million SNPs simultaneously

nature genetics

Article https://doi.org/10.1038/s41588-024-01704-y

Leveraging functional genomic annotations
and genome coverage toimprove polygenic
prediction of complex traitswithinand
between ancestries

Received: 1 October 2022 Zhili Zheng ®'** 7, Shouye Liu', Julia Sidorenko®', Ying Wang®', TianLin®",
Loic Yengo®', Patrick Turley ® %%, Alireza Ani® ®’, Rujia Wang ®¢,

Ilja M. Nolte ® %, Harold Snieder ®$, LifeLines Cohort Study*, Jian Yang ® ®°,
Published online: 30 April 2024 Naomi R. Wray ®'"°, Michael E. Goddard"*?, Peter M. Visscher ®'**

&JianZeng®'
|®|Check for updates 24

Accepted: 5 March 2024
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Low-rank model (fits 7M SNPs or more) 0 orampa o

In each quasi-independent LD block:

b = R p + €

[ GWAS SNP marginal effects ][ LD correlation matrix ][ SNP joint effects ][ Residuals ]

I . I Var(E) ) .

/ Eigen-decomposition \
I ‘ \ It only requires the top 20%
v A U PCs to explain 99.5% of the
) ) ) variance in LD!
AZUb = AU B+ AzUE
w = Q ﬁ + &

Var(e) o« ]
CRICOS code 00025B 25




Low-rank model 0 e

ethod
lmprOved rObUSTneSS GWAS: FInnGen e

LDpred-funct

LDref: UK Bi Nk
Method ef: UK Bioba . MegaPRS
SBayesR
I LDpred2 . SBayesRC
a b 1 SBayesRC
0.45 - o 0.45 - R .
':!E'? ; ¢ FinnGen

) T ) $ = 5
(\é‘, 0.40 - $| (\é‘,
) )
® ©  0.40 -
3 3 ﬁ $ 04
O O
@ (.35 A ©
c C
2 ke
© kS -
© o] - |
E 0.30 - I$I § 0357

_50 -

0.25 - T T T T T T T T
ukb20k  uk10k  1kgO.5k  afrdk 100 90 50 0
LD reference Percent of overlapped in meta—analysis
T2D Asthma HBP GLAUC

Trait

26



Other critical information ) e

Ofther information critical to quality control (QC)

Which allele is the effect allele in GWAS?
e.g., Al dllele

- 2 ° Need to match with the allele used to
g r calculate the LD matrix in the reference
e sample
% 3.5 o [
s |8 g !f
2 3.01 =
T s
o
2.0 8
; 1 ; s
SNP genotype 4

A2A2 ATA2 ATAI

27



Other critical information

Ofther information critical to quality control (QC)

Per-SNP sample size

Heterogeneity in per-SNP sample size (usually due to meta-analysis)
may result in a convergence problem in MCMC.

We recommend to visualise the per-SNP sample size distribution and
remove the outliers.

28



Other critical information ) e

AUSTRALIA

Critical information from GWAS summary dato

Marginal SNP effects
(Per-SNP) GWAS sample sizes
Standard errors

Effect alleles and alternate alleles (A1 and A2)
Effect allele frequencies

Input file (.Mma)

SNP Al A2 freq b se p N

rslf90l A G 0.8493 0.0024 0.0055 0.6653 129850
rsloe2 C G 0.0306 0.0034 0.0115 0.7659 129799
rsl0e3 A C 0.5128 0.0045 0.0038 0.2319 129830

29



Summary (2) B By

 Minimum data required for sumstat-based methods are
» GWAS effects, standard errors, GWAS sample size, LD matrix

« Other information are critical/useful to quality control.

« SBayes an approx. to Bayes when LD is estimated from a reference
sample, but unleashes the power of large GWAS sample size.

* Matrix regulation/tactorisation can better model LD.

30



Incorporating functional annotations



Functional genomic annotations

Functional genomic annotations provide orthogonal information useful for polygenic
prediction.

« Chromatin states
« Biological functions
« Molecular quantitative trait loci (xQTL)

°°°°°° Regulatory sequence Regulatory sequence
Enhancer
/silencer Promoter 5'UTR Open reading frame /silencer
I 1 E— I
Proximal  Core Start Stop

owa T W -

H3K4me3 ‘ ‘ ‘ ‘

H3K27ac

CTCF | l
ese ‘ll J“LJ“L “““ |

§ J* ' Image from ENCODE
CRICOS code 00025B 32



Functional genomic annotations T orcummi

Functional genomic annotations provide orthogonal information useful for polygenic
prediction.

« Chromatin states
« Biological functions
* Molecular quantitative trait loci (xQTL)

Zeng et al 2021 Nature Communications

> .
o =
c Q ]
(o
€=
=R}
o £ 7
24
SZ 1
o9
o p—

o) - -
L a

S

& & % & < & o
ée' < & {9 t>$° & &L & & u“‘ /\ @ &
& 0° \3 N N N & & & 3 &< ¢ '~°
oo“ <& \g}‘ @ <& &o SIS &
Cid &
N oM
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Opportunities/challenges

Functional annotations are informative on both the presence of causal variants and the
distribution of causal effect sizes.

Differences in proportion of Differences in distribution of
causal variants causal effects
@© _
o
B Proportion of SNPs
B Proportion of causal variants
©
o
A
o
AN
o
o
o

Anno 1 Anno 2 Anno 3

CRICOS code 00025B 34



Opportunities/challenges

When causal variants are not observed, SNP markers can tag the causal variant
by LD but may not tag by annotation.

4 _ ) 4 . )
Causal variant (CV) observed Causal variant not observed
LD "
> 3%¢
SNP l::c;/::. SNP
T T
\ J \ J

It's best to model all SNPs simultaneously with their annotations!

CRICOS code 00025B 35
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enhances QTL discovery and genomic prediction of

complex traits _
nature genetics
I. M. MacLeod &, P. J. Bowman, C. J. Vander Jagt, M. Haile-Mariam, K. E. Kemper, A. J. Chamberlain,

C. Schrooten, B. J. Hayes & M. E. Goddard
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BMC Genomics 17, Article number: 144 (2016) | Cite this article

6209 Accesses | 146 Citations | 9 Altmetric | Metrics Article | Published: 07 April 2022
Leveraging fine-mapping and multipopulation training
B ayes RC data to improve cross-population polygenic risk scores

P O Iy P re d Omer Weissbrod &, Masahiro Kanai, Huwenbo Shi, Steven Gazal, Wouter J. Peyrot, Amit V. Khera,
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Nature Genetics 54, 450-458 (2022) | Cite this article 36
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Need new method that can

« simultaneously fit all SNPs and annotation data in @
unifled model

« account for variations in both causal variant proportion
and causal effect distribution

nature genetics

Article https://doi.org/10.1038/s41588-024-01704-y
Leveraging functional genomic annotations
and genome coverage toimprove polygenic

Leveraging functional annotations prediction of complex traits withinand
. e between ancestries
for cross-ancestry prediction

CRICOS code 00025B 37



SBayesRC 0 e

Incorporate functional annotations through a hierarchical prior:

:B] ~ 11 + 1Ty A +7T3 + 14 +7T5

I e

SNP annotations

f (njk) = Z SNP annotation X annotation effect

 The annotation effects are estimated from the data.

» A positive annotation effect increases the probability of the SNP belong to that distribution.

CRICOS code 00025B 38



SBayesRC 0 e

Incorporate functional annotations through a hierarchical prior:

:B] ~ 11 +7T2 +7T3 +7T4 +7T5

' /\

SNP annotations

f (njk) = Z SNP annotation X annotation effect

» Annotation effects are additive at » Estimation of conditional effects. » # annotation effect parameters x 5.
the GLM scale. « Allow annotation overlap. o Tjy + Mjp+ Wjz+ Mjs + mjs = 1.
* Interpretation.

CRICOS code 00025B 39
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Model annotation effects (suppose 4 components for simplicity)

A set of 2-component independent models:

For all SNPs [
Bi ~ (1 —ps) + P2 H

For SNPs with nonzero effects

Bi ~ (1-p3) k + P3

For SNPs with at least medium effects

Bi ~ (1 —pa) T Da

[Presentation Title] | [Date] 40
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Model annotation effects

* Probit link function:

o~ 1(p) = 2 SNP annotation X annotation effect

where @ is the CDF of the standard normal distribution.
 Itis straightforward to compute p = ®(-)

and my =1 —=py; 7 = (1 —p3)p2; T3= (1 — pa)P3D2; Ta= P2D3Pa4
« Assume a normal prior distribution for each annotation effect.

« Gibbs sampling for all parameters.

[Presentation Title] | [Date] 4]



S BEa”SN/é]s RC S T
Toy example

Genome | Region 1 | Region 2 | Region 3

0.02 0.02 0.16
Anno Effect

Matrix 00 02 0.6

0.08 0.01 0.01

014 06 0.1

|

Input data Estimate from sum is PrIP
the data (prior inclusion probability)

[Presentation Title] | [Date] 42



Entif Nome] THE UNIVERSITY
S y @ OF QUEENSLAND

TOy exam ple Prior distribution of SNP effect is annotation dependent.

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5

A || A

PriP=0.8 PriP=0.2 PriP=0.8 PriP = 0.1 PriP=0.8

PrIP: Prior Inclusion Probability =, + 3 + m, =1 —my

[Presentation Title] | [Date] 43
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Real data analysis

GWAS datasets

Q FINNGEN

lifelinesa

PAGE

S @
*%% ANT
3 X

X x

Multiple ancestries

 FEuropean (EUR)

« EastAsian (EAS)
« South Asian (SAS)
« African (AFR)

SNP panels (MAF>0.01)

« 1M HM3 SNPs
« /M imputed SNPs

Annotation data

BaselineLDv2.2
(Gazal et al 2017 NG)

96 genomic annotations

Methods compared

SBayesR
LDpred2
LDpred-funct
MegaPRS
PolyPred-S
PRS-CSx

CRICOS code 00025B 44
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Trans-ancestry prediction

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS
PRS-CSx

()

PRS-CSx

B (o)
o o
1 1

w
o
1

—
o
1

Improved prediction accuracy (%)
N
o o

17%
|

1.4%

1M SNPs
W/o annot

Train dataset

F=] UKB-EUR

E UKB-EUR + BBJ

nature genetics

Explore content v About the journal v Publish withus v Subscribe

GWAS sumstats| |GWAS sumstats| |GWAS sumstats
LD ref pop A LD ref pop B LD ref pop C
PRS-CSx

PRS A + PRS B PRS C

Final PRS

nature > nature genetics > articles > article

Article \ Published: 05 May 2022

Improving polygenic prediction in ancestrally
diverse populations

Yunfeng Ruan, Yen-Feng Lin, Yen-Chen Anne Feng, Chia-Yen Chen, Max Lam, Zhenglin

Hailiang Huang & & Tian Ge

Nature Genetics 54, 573-580 (2022) \ Cite this article

How important is functional
annotation data compare to
another GWAS dataset from
the target ancestry?

CRICOS code 00025B 45




Trans-ancestry prediction

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS

(9]

PRS-CSx SBayesRC
.50+
& o
< 16%
O 40 o e
© 17%
S
S 50- |
© Train dataset
S it T | EJ UKB-EUR
© 20 | & -
3 F=] UKB-EUR +BBJ
Q— 10 - 1.4% 4.0%
o i
g’ | -0.4% $
9 g o TSNS IESSS— [ WSS o o o U S RS AU ———
A R -- E'F:r ------------
1M SNPs 1M SNPs 1M SNPs Dense SNPs Dense SNPs
W/o annot W/o annot With annot W/o annot With annot
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Trans-ancestry prediction

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS
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Trans-ancestry prediction

Use GWAS data from UKB EUR and PAGE (mixed) AFR to predict UKB
AFR
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THE UNIVERSITY

Interaction between SNP density and annotation information® oosssiw
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Relative prediction accuracy with annotations (7M imputed SNPs)
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Relative prediction accuracy with annotations (1M HapMap3 SNPs)

Category

Behavior

Blood biomarker
Blood cell count
Cognitive
Disease

Physical measure

3

Reproductive

Improvement (%) in prediction
accuracy with vs. without
annotations:

using /M imputed SNPs (y-axis) or
1M HapMap3 SNPs (x-axis).

Annotations help more with
more SNPs - Why?

SNP markers can tag the
causal variant by LD but may
not tag by annotation.
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Contributions of functional categories to prediction accurd@typ:

Regions conserved across 29 mammals covers 3% genome but contributed 41% prediction accuracy!
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Functional genetic architecture
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Summary (3) 0 L

Methodology
« Develop a low-rank method that fits all SNPs to better model LD (more robust & efficient).

 Incorporate functional annotations to better capture causal effects (improved accuracy).

Science

« For trans-ancestry prediction, functional annotations with genome coverage provide
comparable and additive information to the use of additional GWAS dataset of target ancestry.

 Significant interaction between SNP density and annotation information, suggesting whole-
genome sequence variants with annotations may further improve prediction.

« Functional partitioning highlights a major contribution of evolutionary constrained regions to
prediction accuracy and the largest per-SNP contribution from non-synonymous SNPs.
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Practical 5: Polygenic prediction using SBayes

https://cnsgenomics.com/data/teaching/GNGWS24/module5/Practical5 SBayes.hitml

To log into your server, type command below in Terminal for Mac/Linux users or in Command
Prompt or PowerShell for Windows users.

ssh username@hostname

And then key in the provided password.
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