

PGS Prediction using GWAS summary statistics

Jian Zeng j.zeng@uq.edu.au

Institute for Molecular Bioscience

- Best prediction methods take genetic values as random effect (e.g., BLUP and BayesR).
- These methods require individual genotypes and phenotypes.
- These data are often not publicly accessible.
- Computationally demanding with large # individuals/SNPs.
- Could be addressed by using GWAS summary statistics (sumstats).
- Methodology in human genetics has moved forward to use GWAS sumstats only.

Sumstats

Check for updates

PRIMFR

Cell Genomics

S

Perspective Workshop proceedings: GWAS summary statistics standards and sharing

2021

Jacqueline A.L. MacArthur,^{1,2,*} Annalisa Buniello,¹ Laura W. Harris,¹ James Hayhurst,¹ Aoife McMahon,¹ Elliot Sollis,¹ Maria Cerezo,¹ Peggy Hall,³ Elizabeth Lewis,¹ Patricia L. Whetzel,¹ Orli G. Bahcall,⁴ Inês Barroso,⁵ Robert J. Carroll,⁶ Michael Inouye,^{7,8,9} Teri A. Manolio,³ Stephen S. Rich,¹⁰ Lucia A. Hindorff,³ Ken Wiley,³ and Helen Parkinson^{1,*}

Table 1. Recommended standard reporting elements for GWAS SumStats

Data element	Column header	Mandatory/Optional
variant id	variant_id	One form of variant ID
chromosome	chromosome	is mandatory, either rsID
base pair location	base_pair_ location	or chromosome, base pair location, and genome build ^a
p value	p_value	Mandatory
effect allele	effect_allele	Mandatory
other allele	other_allele	Mandatory
effect allele frequency	effect_allele_ frequency	Mandatory
effect (odds ratio or beta)	odds_ratio or beta	Mandatory
standard error	standard_error	Mandatory
upper confidence interval	ci_upper	Optional
lower confidence	ci_lower	Optional

Genome-wide association studies

Emil Uffelmann^[b], *Qin Qin Huang*^[o], *Nchangwi Syntia Munung*^[o], *Jantina de Vries*³, *Yukinori Okada*^[6,5], *Alicia R. Martin*^{6,7,8}, *Hilary C. Martin*², *Tuuli Lappalainen*^{9,10,12} and *Danielle Posthuma*^[1,11]

Table 3 | Databases of GWAS summary statistics

Database	Content
GWAS Catalog ¹¹⁰	GWAS summary statistics and GWAS lead SNPs reported in GWAS papers
GeneAtlas ⁸	UK Biobank GWAS summary statistics
Pan UKBB	UK Biobank GWAS summary statistics
GWAS Atlas ²⁷³	Collection of publicly available GWAS summary statistics with follow-up in silico analysis
FinnGen results	GWAS summary statistics released from FinnGen, a project that collected biological samples from many sources in Finland
dbGAP	Public depository of National Institutes of Health-funded genomics data including GWAS summary statistics
OpenGWAS database	GWAS summary data sets
Pheweb.jp	GWAS summary statistics of Biobank Japan and cross-population meta-analyses

For a comprehensive list of genetic data resources, see REF.¹³. GWAS, genome-wide association studies; SNP, single-nucleotide polymorphism.

What are the minimum data required?

Given the standard GWAS with genotypes being allelic counts (0/1/2), the minimum data required for PGS prediction include:

- SNP marginal effect estimates
- Standard errors
- GWAS sample size

GWAS sumstats

• LD correlations among SNPs \longrightarrow LD matrix

SNP marginal effect estimates

GWAS estimates effect of each SNP one at a time from single SNP regression, so the estimate is marginal to (unconditional on) other SNPs.

 $b_j = \left(\mathbf{X}_j'\mathbf{X}_j\right)^{-1}\mathbf{X}_j'\mathbf{y}$

Assuming **X** has been standardised with column mean zero and variance one, then

$$\mathbf{X}_{j}'\mathbf{X}_{j} = nVar(\mathbf{X}_{j}) = n$$

And

$$b_j = \frac{1}{n} \mathbf{X}'_j \mathbf{y}$$

Note that it has the inner product of the SNP genotypes and the phenotypes.

SNP marginal effect estimates

For diseases, GWAS is done using logistic regression

$$\log\left(\frac{p_i}{1-p_i}\right) = \mu + X_{ij}b_j$$

The SNP effect is log odds ratio (OR), i.e., difference in log odds for cases vs. controls

$$b_j = \log(OR)$$

Approximately equal to the b_j from the linear model when true effect size is small.

0 1 2 Genotype

Linkage disequilibrium (LD) correlations

Usually obtained from a reference population LD correlation matrix

$$\mathbf{R} = \frac{1}{n} \mathbf{X}' \mathbf{X}$$

assuming **X** is standardised with mean zero and variance one

The principle of sumstats-based methods

Use of summary data only - how does it work?

GWAS results and LD correlations are **sufficient statistics** for the estimation of SNP joint effects!

A statistic is **sufficient** if no other statistics provides any additional information as to the value of the parameter.

e.g., $x_1, x_2, \dots, x_n \sim N(\mu, \sigma^2)$ and we want to estimate μ and σ^2

$$\hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n} \qquad \bullet \quad \sum_{i=1}^{n} x_i \text{ and } n \text{ are sufficient statistics for } \mu$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n x_i^2}{n} - \left[\frac{\sum_{i=1}^n x_i}{n}\right]^2 \qquad \bullet \quad \sum_{i=1}^n x_i^2 \text{, } \sum_{i=1}^n x_i \text{ and } n \text{ are sufficient} \\ \text{statistics for } \sigma^2$$

We don't need to know the value of each x!

For simplicity, let's assume that when running GWAS,

- the genotypes of each SNP are standardised with column mean zero and variance one.
- the phenotypes are standardised with mean zero and variance one.

We will come back to deal with this assumption later.

Principle of sumstats-based methods

BLUP

R (LD matrix), **b** (marginal effects) and n are sufficient statistics for the estimation of β .

BLUP

• Model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

• Estimator:

SBLUP (sumstats-based BLUP)

• Model:

- $\mathbf{b} = \mathbf{R}\boldsymbol{\beta} + \boldsymbol{\epsilon}$
- Estimator:

From individual- to summary-level model

Individual-level data analysis

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

BLUP

Bayes

Covariates, such as age and sex, are accounted for when running GWAS.

SEARCH ARTICL

Consider an individual-data model with a standardised genotype matrix **X**:

Sumstats-based Bayesian methods

Prior distribution for each SNP effect

Sumstats-based BayesR

SBayesR

Each SNP effect has a mixture distribution:

ARTICLE

https://doi.org/10.1038/s41467-019-12653-0 OPEN

Improved polygenic prediction by Bayesian multiple regression on summary statistics

Luke R. Lloyd-Jones ^{1,9}*, Jian Zeng ^{1,9}*, Julia Sidorenko^{1,2}, Loïc Yengo¹, Gerhard Moser^{3,4}, Kathryn E. Kemper¹, Huanwei Wang ¹, Zhili Zheng¹, Reedik Magi², Tönu Esko², Andres Metspalu^{2,5}, Naomi R. Wray ¹,⁶, Michael E. Goddard⁷, Jian Yang ^{1,8}* & Peter M. Visscher ¹*

Compare BayesR and SBayesR algorithm

Gibbs sampling

Full conditional distribution for β_j , if it is nonzero,

$$f(\beta_j \mid \mathbf{b}, else) = N\left(\frac{r_j}{C_j}, \frac{\sigma_e^2}{C_j}\right)$$

where

Summary-level data $r_{j} = nb_{j} - \sum_{k \neq j} R_{jk} \beta_{k}$ $C_{j} = n + \frac{\sigma_{e}^{2}}{\gamma_{j} \sigma_{\beta}^{2}}$

Compare BayesR and SBayesR algorithm

All X'y and X'X can be replaced by nb and nR

Algorithm 1 – Individual level data algorithm

Initialise parameters and read genotypes and phenotypes in PLINK binary format Initialise $\mathbf{v}^* = \mathbf{v} - \mathbf{X}\boldsymbol{\beta}$ for i :=1 to number of iterations do **for** i :=1 **to** *v* **do** Calculate $r_i^* = \mathbf{x}_i' \mathbf{y}^*$ Calculate $r_i = r_i^* + \mathbf{x}_i' \mathbf{x}_i \beta_i^{(i-1)}$ Calculate $\sigma_c^2 = \sigma_B^2 \gamma_{\delta,=c}$ for each of *C* classes (e.g., BayesR C=4 and $\gamma = (0, 0.0001, 0.001, 0.01)$) Calculate the left hand side $l_{jc} = \mathbf{x}'_{j}\mathbf{x}_{j} + \frac{\sigma_{c}^{2}}{\sigma^{2}}$ for each of the *C* classes Calculate the log densities of given $\delta_j = c$ using $\log(\mathcal{L}_c) = -\frac{1}{2} \left| \log \left(\frac{\sigma_c^2 l_{jc}}{\sigma_c^2} \right) - \frac{r_j^2}{\sigma_c^2 l_{jc}} \right| + \log(\pi_c)$, where π_c is the current Calculate the full conditional posterior probability for $\delta_j = c$ for C classes with $\mathbb{P}(\delta_j = c | \boldsymbol{\theta}, \mathbf{y}) = \frac{1}{\sum_{l=1}^{C} \exp[\log(\mathcal{L}_l) - \log(\mathcal{L}_l)]}$ Using full conditional posterior probabilities sample class membership for $\beta_i^{(i)}$ using categorical random variable sampler Given class sample SNP effect $\beta_i^{(i)}$ from $N\left(\frac{r_i}{l_i}, \frac{\sigma_{\epsilon}^2}{l_i}\right)$ Given SNP effect adjust corrected phenotype side $(\mathbf{y}^*)^{(i)} = (\mathbf{y}^*)^{(i-1)} - \mathbf{x}_i \left(\beta_i^{(i)} - \beta_i^{(i-1)} \right)$ od Sample update from full conditional for σ_{β}^2 from scaled inverse chi-squared distribution $\tilde{\nu}_{\beta} = \nu_{\beta} + q$ and $\tilde{S}^2_{\ \beta} = \frac{\nu_{\beta}S_{\beta}^2 + \sum_{l=1}^{l} \frac{P_l}{\gamma_c}}{\nu_{\sigma+\sigma}}$ where *q* is the number of non-zero variants Sample update from full conditional for σ_e^2 from scaled inverse chi-squared distribution $\tilde{\nu}_e = n + \nu_e$ and scale parameter $\tilde{S}_{\ell}^2 = \frac{SSE + v_c S_{\ell}^2}{n + v_c}$ and $SSE = \mathbf{y}^* \mathbf{y}^*$ Sample update from full conditional for $\boldsymbol{\pi}$, which is Dirichlet($C, \mathbf{c} + \boldsymbol{\alpha}$), where \mathbf{c} is a vector of length C and contains the counts of the number of variants in each variance class and $\alpha = (1, ..., 1)$ Calculate genetic variance for h_{SNP}^2 calculation using $\sigma_g^2 = Var(\mathbf{X}\boldsymbol{\beta})$ Calculate $h_{SNP}^2 = \frac{v_g}{\sigma^2 + \sigma^2}$ od

Algorithm 2 Summary data algorithm Initialise parameters and read summary statistics Reconstruct X'X and X'y from summary statistics and LD reference panel Calculate $\mathbf{r}^* = \mathbf{X}' \mathbf{y} - \mathbf{X}' \mathbf{X} \boldsymbol{\beta}$ for i :=1 to number of iterations do for i :=1 to p do Calculate $\mathbf{r}_j = \mathbf{r}_j^* + \frac{\mathbf{x}_j' \mathbf{x}_j}{\mathbf{x}_j} \boldsymbol{\beta}_j$ Calculate $\sigma_c^2 = \sigma_a^2 \gamma_{\delta_j=c}$ for each fo C classes (e.g., SBayesR C=4 and $\gamma = (0, 0.01, 0.1, 1)'$) Calculate the left hand side $l_{jc} = \frac{\mathbf{x}_j' \mathbf{x}_j}{\sigma_c^2} + \frac{\sigma_c^2}{\sigma_c^2}$ for each of the C classes Calculate the log densities of given $\delta_j = c$ using $\log(\mathcal{L}_c) = -\frac{1}{2} \left[\log \left(\frac{\sigma_c^2 l_{jc}}{\sigma_c^2} \right) - \frac{r_i^2}{\sigma_c^2 l_{jc}} \right] + \log(\pi_c)$, where π_c is the current Calculate the full conditional posterior probability for $\delta_j = c$ for C classes with $\mathbb{P}(\delta_j = c | \boldsymbol{\theta}, \mathbf{y}) = \frac{1}{\sum_{l=1}^{C} \exp[\log(\mathcal{L}_l) - \log(\mathcal{L}_c)]}$ Using full conditional posterior probabilities sample class membership for $\beta_j^{(i)}$ using categorical random variable sampler Given class sample SNP effect $\beta_j^{(i)}$ from $N\left(\frac{\mathbf{r}_l}{l_{lc}}, \frac{\sigma_{lc}^2}{l_{lc}}\right)$ Given SNP effect adjust corrected right hand side $(\mathbf{r}^*)^{(i+1)} = (\mathbf{r}^*)^{(i)} - \mathbf{X}' \mathbf{x}_j \left(\beta_j^{(i+1)} - \beta_j^{(i)}\right)$. $\mathbf{X}' \mathbf{x}_j$ is the *j*th column of $\mathbf{X}' \mathbf{X}$.

Sample update from full conditional for σ_{α}^2 from scaled inverse chi-squared distribution $\tilde{v}_{\alpha} = v_0 + q$ and $\tilde{\tau}_{\alpha}^2 = \frac{v_0 \tau_0^2 + \sum_{j=1}^{d} \frac{r_j}{\tau_{o_j}}}{v_0 + q}$, where q is the number of non-zero variants Sample update from full conditional for σ_{ϵ}^2 from scaled inverse chi-squared distribution $\tilde{v}_e = n + v_e$ and scale parameter $\tilde{\tau}_e^2 = \frac{SSE + v_e \tau_e^2}{n + v_e}$ and $SSE = \mathbf{y'y} - \boldsymbol{\beta'r^*} - \boldsymbol{\beta'X'y}$ Sample update from full conditional for π , which is Dirichlet($C, \mathbf{c} + \alpha$), where \mathbf{c} is a vector of length C and contains the counts of the number of variants in each variance class. Calculate genetic variance for h_{SNP}^2 calculation using $\sigma_g^2 = MSS/n$, where $MSS = \hat{\boldsymbol{\beta}'X'y} - \hat{\boldsymbol{\beta}'r^*}$ Calculate $h_{SNP}^2 = \frac{\sigma_g^2}{\sigma_{2}^2 + \sigma_{2}^2}$

od

Now we deal with the condition of unstandardised genotypes/phenotypes:

- Typically, GWAS are performed using allele counts (0/1/2) as genotypes (X_j^{cnt})
- often with unstandardised phenotypes ($Var(y) \neq 1$).

The solutions is to 'scale' the GWAS marginal effects before the analysis and 'unscale' the estimated joint effects after the analysis.

Let σ_j be the SD of genotypes for SNP *j* and σ_y be the SD of phenotypes. The genotypic value

$$g_{j} = X_{j}^{cnt} b_{j}^{cnt} = \frac{X_{j}^{cnt}}{\sigma_{j}} \times \sigma_{j} b_{j}^{cnt}$$

This is in the SD units
$$\frac{g_{j}}{\sigma_{y}} = X_{j} \quad \frac{\sigma_{j}}{\sigma_{y}} b_{j}^{cnt} = X_{j} \quad s_{j} b_{j}^{cnt} = X_{j} \quad b_{j}$$

All we need to do is to get

$$b_j = s_j b_j^{cnt} \leftarrow \text{Output from GWAS}$$

where s_i can be estimated by

$$s_j = \sqrt{\frac{1}{nSE_j^2 + b_j^2}}$$

- Minimum data required for sumstat-based methods are
 - GWAS effects, standard errors, GWAS sample size, LD matrix
- In principle, SBayes and Bayes are equivalent methods when same data are used.
- However, when LD is estimated from a reference sample, SBayes is only an approximation to Bayes.
- Whether the difference is negligible depends on the heterogeneity in LD between the GWAS and LD ref samples.

Assumptior

LD reference performance with GWAS population in genetics

- No systematic interence LD interence ancestry and population structure
- Minimum sarrighting variance in LD I ref sample size cannot be too small

LD decays to zero between distant SNPs

• Can use sparse or block-wide LD matrices

Lloyd-Jones et al (2019) used chromosome-wide shrunk LD matrices.

Zheng et al (2024) used eigen-decomposed matrices from LD blocks.

- More robust to LD heterogeneity \rightarrow better prediction performance
- Faster \rightarrow allows us to fit multi-million SNPs simultaneously

nature geneucs	6
Article	https://doi.org/10.1038/s41588-024-01704-y
Leveraging functional	genomic annotations

Received: 1 October 2022	Zhili Zheng @ ^{12,3} 🖂, Shouye Liu ¹ , Julia Sidorenko @ ¹ , Ying Wang @ ¹ , Tian Lin @ ¹ ,
Accepted: 5 March 2024	Loic Yengo [©] ¹ , Patrick Turley ^{© 45} , Alireza Ani ^{© 67} , Rujia Wang ^{© 6} , Ilia M. Nolte ^{© 6} Harold Spieder ^{© 6} Lifel ines Cobort Study* Jian Yang ^{© 89}
Published online: 30 April 2024	Naomi R. Wray 1 ¹¹⁰ , Michael E. Goddard ^{11,12} , Peter M. Visscher 1 ¹¹³
Check for updates	& Jian Zeng ©¹⊠

Low-rank model (fits 7M SNPs or more)

In each quasi-independent LD block:

It only requires the top 20% PCs to explain 99.5% of the variance in LD! Low-rank model

Other information critical to quality control (QC)

Which allele is the effect allele in GWAS?

e.g., A1 allele

Need to match with the allele used to calculate the LD matrix in the reference sample

Other information critical to quality control (QC)

Per-SNP sample size

Heterogeneity in per-SNP sample size (usually due to meta-analysis) may result in a convergence problem in MCMC.

We recommend to visualise the per-SNP sample size distribution and remove the outliers.

Critical information from GWAS summary data

- Marginal SNP effects
- (Per-SNP) GWAS sample sizes
- Standard errors
- Effect alleles and alternate alleles (A1 and A2)
- Effect allele frequencies

Input file (.ma)

SNP A1 A2 freq b se p N
rs1001 A G 0.8493 0.0024 0.0055 0.6653 129850
rs1002 C G 0.0306 0.0034 0.0115 0.7659 129799
rs1003 A C 0.5128 0.0045 0.0038 0.2319 129830

- Minimum data required for sumstat-based methods are
 - > GWAS effects, standard errors, GWAS sample size, LD matrix
- Other information are critical/useful to quality control.
- SBayes an approx. to Bayes when LD is estimated from a reference sample, but unleashes the power of large GWAS sample size.
- Matrix regulation/factorisation can better model LD.

Incorporating functional annotations

Functional genomic annotations provide orthogonal information useful for polygenic prediction.

• Chromatin states

۲

.

- Biological functions
- Molecular quantitative trait loci (xQTL)

Opportunities/challenges

Functional annotations are informative on both the presence of causal variants and the distribution of causal effect sizes.

When causal variants are not observed, SNP markers can tag the causal variant by LD but may not tag by annotation.

It's best to model all SNPs simultaneously with their annotations!

Literature

nature communications

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > nature communications > articles > article

Article | Open Access | Published: 18 October 2021

Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets

<u>Carla Márquez-Luna</u> [⊡], <u>Steven Gazal</u>, <u>Po-Ru Loh</u>, <u>Samuel S. Kim</u>, <u>Nicholas Furlotte</u>, <u>Adam Auton</u>, <u>23andMe Research Team</u> & <u>Alkes L. Price</u> [⊡]

LDpred-funct

PLOS COMPUTATIONAL BIOLOGY

🔓 OPEN ACCESS 尨 PEER-REVIEWED

RESEARCH ARTICLE

Leveraging functional annotations in genetic risk prediction for human complex diseases

Yiming Hu 🚾, Qiongshi Lu 🚾, Ryan Powles, Xinwei Yao, Can Yang, Fang Fang, Xinran Xu, Hongyu Zhao 🖾

AnnoPred

Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data

Jianxin Shi 🔄, Ju-Hyun Park, Jubao Duan, Sonja T. Berndt, Winton Moy, Kai Yu, Lei Song, William Wheeler, Xing Hua, Debra Silverman, Montserrat Garcia-Closas, Chao Agnes Hsiung, Jonine D. Figueroa, [...], Nilanjan Chatterjee 🕥 [view all]

P+T-funct-LASSO

nature genetics

Explore content V About the journal V Publish with us V

<u>nature</u> > <u>nature genetics</u> > <u>articles</u> > article

Article | Published: 07 April 2022

Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores

PolyPred

Omer Weissbrod ^{III}, Masahiro Kanai, Huwenbo Shi, Steven Gazal, Wouter J. Peyrot, Amit V. Khera, Yukinori Okada, The Biobank Japan Project, Alicia R. Martin, Hilary K. Finucane & Alkes L. Price ^{III}

Nature Genetics 54, 450–458 (2022) | Cite this article

Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits

I. M. MacLeod ^[], P. J. Bowman, C. J. Vander Jagt, M. Haile-Mariam, K. E. Kemper, A. J. Chamberlain, C. Schrooten, B. J. Hayes & M. E. Goddard

BMC Genomics 17, Article number: 144 (2016) Cite this article 6209 Accesses 146 Citations 9 Altmetric Metrics

BayesRC

Need new method that can

- simultaneously fit all SNPs and annotation data in a unified model
- account for variations in both causal variant proportion and causal effect distribution

Leveraging functional annotations for cross-ancestry prediction

nature genetics	6
Article	https://doi.org/10.1038/s41588-024-01704
Leveraging	inctional genomic annotations
and genome prediction of between and	coverage to improve polygenic complex traits within and estries

ved: 1 October 2022	Zhili Zheng @ ^{1,2,3} ⊠, Shouye Liu¹, Julia Sidorenko @¹, Ying Wang @¹, Tian Lin @¹,
oted: 5 March 2024	Loic Yengo ^{® 1} , Patrick Turley ^{® 4.5} , Alireza Ani ^{® 6.7} , Rujia Wang ^{® 6} , Ilja M. Nolte ^{® 6} , Harold Snieder ^{® 6} , LifeLines Cohort Study*, Jian Yang ^{® 8.9} ,
hed online: 30 April 2024	Naomi R. Wray () ¹¹⁰ , Michael E. Goddard ^{11,12} , Peter M. Visscher () ^{1,13}
eck for updates	₩ Jian Zeng @ '⊠

Publis

SBayesRC

Incorporate functional annotations through a hierarchical prior:

- The annotation effects are estimated from the data.
- A positive annotation effect increases the probability of the SNP belong to that distribution.

SBayesRC

Incorporate functional annotations through a hierarchical prior:

Assumption

• Annotation effects are additive at the GLM scale.

Pros

- Estimation of conditional effects.
- Allow annotation overlap.
- Interpretation.

Cons

- # annotation effect parameters x 5.
- $\pi_{j1} + \pi_{j2} + \pi_{j3} + \pi_{j4} + \pi_{j5} = 1.$

SBayesRC

Model annotation effects (suppose 4 components for simplicity)

- A set of 2-component independent models:
- For all SNPs

$$\beta_j \sim (1-p_2)$$
 + p_2

• For SNPs with nonzero effects

$$\beta_j \sim (1 + p_3) + p_3$$

• For SNPs with at least medium effects

$$\beta_j \sim (1-p_4) + p_4$$

Model annotation effects

• Probit link function:

$$\Phi^{-1}(p) = \sum$$
 SNP annotation × annotation effect

where Φ is the CDF of the standard normal distribution.

• It is straightforward to compute $p = \Phi(\cdot)$

and $\pi_1 = 1 - p_2$; $\pi_2 = (1 - p_3)p_2$; $\pi_3 = (1 - p_4)p_3p_2$; $\pi_4 = p_2p_3p_4$

- Assume a normal prior distribution for each annotation effect.
- Gibbs sampling for all parameters.

 π_3

0.6

0.02

0.2

0.01

0.6

 π_4

0.1

0.16

0.6

0.01

0.1

 π_1

0.2

0.8

0.2

0.9

0.2

SNP 1

SNP 2

SNP 3

SNP 4

SNP 5

p

 π_2

0.1

0.02

0.0

80.0

0.1

Toy example

	Genome	Region 1	Region 2	Region 3	
SNP 1	1	1	0	0	
SNP 2	1	0	1	0	
SNP 3	1	1	1	0	Х
SNP 4	1	0	0	1	
SNP 5	1	1	0	0	

Estimate from the data

Anno Effect

Matrix

sum is PrIP (prior inclusion probability)

Input data

Toy example

Prior distribution of SNP effect is annotation dependent.

PrIP: Prior Inclusion Probability = $\pi_2 + \pi_3 + \pi_4 = 1 - \pi_1$

Real data analysis

GWAS datasets

Multiple ancestries

- European (EUR)
- East Asian (EAS)
- South Asian (SAS)
- African (AFR)

lifelines

PAGE

SNP panels (MAF>0.01)

- 1M HM3 SNPs
- 7M imputed SNPs

Annotation data

- BaselineLDv2.2 (Gazal et al 2017 NG)
- 96 genomic annotations

Methods compared

- SBayesR
- LDpred2
- LDpred-funct
- MegaPRS
- PolyPred-S
- PRS-CSx

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS

Improvement (%) in prediction accuracy with vs. without annotations:

$$\frac{R_{\rm annot}^2 - R_{\rm wo}^2}{R_{\rm wo}^2}$$

Category

- Behavior
- Blood cell count
- e Cognitive Disease
- Physical measure
- Reproductive
- using 7M imputed SNPs (y-axis) or 1M HapMap3 SNPs (x-axis).

Annotations help more with more SNPs - Why?

SNP markers can tag the causal variant by LD but may not tag by annotation.

Contributions of functional categories to prediction accur

Regions conserved across 29 mammals covers 3% genome but contributed 41% prediction accuracy!

Summary (3)

Methodology

- Develop a low-rank method that fits all SNPs to better model LD (more robust & efficient).
- Incorporate functional annotations to better capture causal effects (improved accuracy).

Science

- For trans-ancestry prediction, functional annotations with genome coverage provide comparable and additive information to the use of additional GWAS dataset of target ancestry.
- Significant interaction between SNP density and annotation information, suggesting wholegenome sequence variants with annotations may further improve prediction.
- Functional partitioning highlights a major contribution of evolutionary constrained regions to prediction accuracy and the largest per-SNP contribution from non-synonymous SNPs.

Practical 5: Polygenic prediction using SBayes

https://cnsgenomics.com/data/teaching/GNGWS24/module5/Practical5_SBayes.html

To log into your server, type command below in **Terminal** for Mac/Linux users or in **Command Prompt** or **PowerShell** for Windows users.

ssh username@hostname

And then key in the provided password.