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Motivation

• Best prediction methods take genetic values as random effect 
(e.g., BLUP and BayesR).

• These methods require individual genotypes and phenotypes.

• These data are often not publicly accessible. 

• Computationally demanding with large # individuals/SNPs.

• Could be addressed by using GWAS summary statistics (sumstats).

• Methodology in human genetics has moved forward to use GWAS 
sumstats only.
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analyses have many more researcher degrees of free-
dom and are, nowadays, more determinant of publica-
tion than the mere number of GWAS hits. Hence, there 
are more incentives and possibilities for questionable 
research practices206 and the benefit of preregistration 
is greater for these analyses. Analysis plans can be 
uploaded at the Open Science Framework with a preset 
moratorium. In a format known as registered reports207, 
peer review occurs before data are collected or analysed 
and is based on the introduction and methods sections 
alone. As a consequence, publication is conditional on 
methodological rigour as opposed to results, which aids 
in attenuating publication bias208. In contrast to preregis-
tration, registered reports are submitted to specific jour-
nals that offer this scheme (more details can be found 
at the Open Science Framework Registered Reports 
resource). Preregistrations and registered reports are 
mostly used in data- generating research but can also be 
beneficial for the more common analysis of secondary 
data209,210.

Limitations and optimizations
GWAS have proven to be a highly successful method 
for identifying trait- associated variants, yet several 
outstanding methodological challenges still need to be 
addressed, such as population stratification and high 
polygenicity. Additionally, GWAS raise a range of eth-
ical issues that require careful consideration, which we 
discuss below.

Methodological challenges
Population stratification. Although current methods 
can address unaccounted- for population stratification, 
it can still cause spurious or biased associations — par-
ticularly in the meta- analyses of multiple cohorts211,212. 
Effects are most pronounced in the analyses of polygenic 
scores that include thousands of SNPs below genome- 
wide significance29,213. Population stratification can 
occur even in homogeneous populations; for example, 
studies have uncovered population stratification and 
related bias in the UK Biobank, which is predominantly 

composed of white British participants214,215. As cur-
rent methods for correcting the effects of stratifica-
tion are based on common variants, such as principal 
component analysis or linear mixed models, they are 
insufficient when many rare variants are included in 
the analyses, especially when population stratification 
is driven by recent demographic changes26,30. Family- 
based association studies31,50,216 can avoid stratification, 
although they tend to be underpowered compared with 
population- based studies. Significant variants can be 
identified in population- based GWAS and effect sizes 
re- estimated in family- based studies to try to obtain 
estimates that are not confounded by population struc-
ture50,51,211,217. However, this approach cannot completely 
eliminate population stratification in PRS data if the lead 
SNPs identified in the original GWAS are correlated with 
the environment30,51. Further work is needed to better 
correct for population structure in GWAS and associ-
ated analyses. Methods based on principal component 
analysis of rare variants or identity by descent may be 
appropriate in cases of recently acquired population  
substructure.

Polygenicity. The extreme polygenicity of many 
traits8,11,218–220 can pose a challenge when attempting to 
uncover underlying biological mechanisms, particularly 
in cases where thousands of variants each have a small 
effect on a trait13,221. To avoid these issues, WES and WGS 
studies are increasingly being used to discover rare var-
iants of large effect — particularly coding variants from 
exome sequencing — for which causal mechanisms 
are generally easier to elucidate87,222–224. Rare variants 
of large effect have yet to be reported for all traits and 
looking for convergence of the effects of thousands of 
variants remains the best strategy for traits not linked 
to rare variants of large effect. Further novel methods 
are needed that address polygenicity and facilitate trans-
lating the findings of GWAS into mechanistic insight. 
High polygenicity also implies that individuals with the 
same disease may have unique genetic profiles that map 
distinct biological routes towards the same disease. If 
genetic heterogeneity is also linked to treatment sensi-
tivity, the development of novel treatments should take 
this into account. However, as it is mostly unknown how 
patients should be genetically stratified, this remains an 
outstanding challenge, with treatments not yet fully  
tailored to relevant genetic profiles.

Ethical challenges
In addition to the data protection and equity issues 
discussed in the Reproducibility and data deposition 
section, GWAS raise ethical issues relating to consent 
for future use of samples and data, storage and reuse of 
samples and data, privacy challenges and sharing data 
with individual participants. Over the past decade, 
apparent consensus amongst researchers and bioeth-
icists suggests that broad and tiered consent models 
that seek permission for sample and data storage and 
unspecified future use are appropriate225–227. There is 
also apparent agreement in the research community that 
individual genetic research results that are medically 
actionable, robustly associated with the phenotype and 

Identity by descent
The property of two identical 
segments of DNA having been 
inherited from a common 
ancestor without 
recombination.

Table 3 | Databases of GWAS summary statistics

Database Content

GWAS Catalog110 GWAS summary statistics and GWAS lead SNPs reported in 
GWAS papers

GeneAtlas8 UK Biobank GWAS summary statistics

Pan UKBB UK Biobank GWAS summary statistics

GWAS Atlas273 Collection of publicly available GWAS summary statistics 
with follow- up in silico analysis

FinnGen results GWAS summary statistics released from FinnGen, a project 
that collected biological samples from many sources in 
Finland

dbGAP Public depository of National Institutes of Health- funded 
genomics data including GWAS summary statistics

OpenGWAS database GWAS summary data sets

Pheweb.jp GWAS summary statistics of Biobank Japan and 
cross- population meta- analyses

For a comprehensive list of genetic data resources, see REF.13. GWAS, genome- wide 
association studies; SNP, single- nucleotide polymorphism.
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Genome- wide association studies (GWAS) aim to iden-
tify associations of genotypes with phenotypes by testing 
for differences in the allele frequency of genetic variants 
between individuals who are ancestrally similar but dif-
fer phenotypically. GWAS can consider copy- number 
variants or sequence variations in the human genome, 
although the most commonly studied genetic variants 
in GWAS are single- nucleotide polymorphisms (SNPs). 
GWAS typically report blocks of correlated SNPs that all 
show a statistically significant association with the trait 
of interest, known as genomic risk loci. After 15 years of 
GWAS1, many replicated genomic risk loci have been 
associated with diseases and traits1, such as FTO2 for 
obesity and PTPN22 (REF.3) for autoimmune diseases.  
These results have sometimes provided hints into dis-
ease biology; for example, a GWAS implicated the  
IL-12/IL-23 pathway in the development of Crohn’s 
disease4, which supported subsequent clinical trials for 
drugs targeting the IL-12/IL-23 pathway5.

Results from GWAS can be used for a range of appli-
cations. For example, trait- associated genetic variants 
can be used as control variables in epidemiology studies 
to account for confounding genetic group differences6. 
Further, results can be used to predict an individual’s risk 
for physical and mental disease based on their genetic 
profile. Indeed, a recent study showed that genomic 
risk prediction using genome- wide polygenic risk scores 
(PRSs) for coronary artery disease, atrial fibrillation, 
type 2 diabetes, inflammatory bowel disease and breast 
cancer can identify disease risk as well as monogenic 
risk prediction strategies based on rare, highly pene-
trant mutations7. Genomic risk prediction may soon 

be allowed for clinical use as a stratification tool and a 
genetically based biomarker7.

More than 5,700 GWAS have now been conducted 
for more than 3,300 traits8 and a push for more statistical 
power has thrust GWAS sample sizes well beyond a mil-
lion participants9,10, yielding numerous associated and 
replicable variants for many heritable traits. Now that 
reliable genetic associations for various phenotypes are 
known, we are faced with the next big challenge: inter-
preting these associations in a biological and genomic 
context. Previous GWAS have shown that most traits are 
influenced by thousands of causal variants11 that indi-
vidually confer very little risk, are often associated with 
many other traits8 and are correlated with causal and 
non- causal variants that are physically close as a result 
of linkage disequilibrium12, making direct biological, causal 
inferences complicated13. Further, genetic associations 
may differ across ancestries, complicating direct compar-
isons between groups of individuals. Some of these limi-
tations hamper drawing unambiguous conclusions about 
the biological meaning of GWAS results, sometimes lim-
iting their utility to produce mechanistic insights or to 
serve as starting points for drug development1.

In this Primer, we aim to provide the reader with a 
comprehensive overview of GWAS, covering practical 
considerations, such as experimental design, robust 
data analysis and data deposition, ethical implications 
and reproducibility of results. We also provide guidance 
on how to interpret results from GWAS using several 
post- GWAS strategies and functional follow- up exper-
iments, as well as a discussion of the above- mentioned 
limitations and future challenges of GWAS.

Polygenic risk scores
(PRSs). Scores that provide  
an indication of an individual’s 
genetic liability to a trait or 
disease, calculated using an 
individual’s genome, weighted 
by effect sizes obtained from 
genome- wide association 
studies (GWAS).

Linkage disequilibrium
The non- independent 
association of two alleles  
in a population.
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SUMMARY

Genome-wide association studies (GWASs) have enabled robust mapping of complex traits in humans. The
open sharing of GWAS summary statistics (SumStats) is essential in facilitating the larger meta-analyses
needed for increased power in resolving the genetic basis of disease. However, most GWAS SumStats are
not readily accessible because of limited sharing and a lack of defined standards. With the aim of increasing
the availability, quality, and utility of GWAS SumStats, the National Human Genome Research Institute-
European Bioinformatics Institute (NHGRI-EBI) GWAS Catalog organized a community workshop to address
the standards, infrastructure, and incentives required to promote and enable sharing. We evaluated the bar-
riers to SumStats sharing, both technological and sociological, and developed an action plan to address
those challenges and ensure that SumStats and study metadata are findable, accessible, interoperable,
and reusable (FAIR). We encourage early deposition of datasets in the GWAS Catalog as the recognized cen-
tral repository. We recommend standard requirements for reporting elements and formats for SumStats and
accompanying metadata as guidelines for community standards and a basis for submission to the GWAS
Catalog. Finally, we provide recommendations to enable, promote, and incentivize broader data sharing,
standards and FAIRness in order to advance genomic medicine.

INTRODUCTION

Genome-wide association studies (GWASs) have brought
enormous progress in mapping the genetic basis of com-
mon diseases or traits,1,2 where genetic predisposition is
shared across thousands of mostly common variants with
individually modest effects on population risk. Since 2005,3

GWASs have successfully identified thousands of genomic
regions significantly associated with common diseases,
with notable successes in type 2 diabetes (T2D)4 and coro-
nary artery disease.5 This approach was successfully
applied at the start of the coronavirus disease (COVID)
global pandemic in 2020, with newly established interna-
tional collaborations driving COVID-19 GWASs and making
all data publicly available.6 GWAS datasets are increasingly
publicly shared, and these datasets are widely used to

further basic research, as well as translation, including in
drug-discovery pipelines.7

The number of published GWASs has continually increased,
with 265 new publications in the first 6 months of 2021
compared with 209 in the same period of 2019. In addition,
the complexity and scale of the data grow. This includes the
interrogation of larger sample sizes, driven by prospective co-
horts and biobanks. Studies also increasingly include a broader
range of data types in a single publication, with deep phenotyp-
ing or health information, including newer -omic phenotypes
(e.g., lipidomic, proteomic, metabolomic, etc.).8–10 Recent pub-
lications have included GWASs of !4,000 brain-imaging
traits,11 !1,500 protein biomarkers,12 and 778 traits in the UK
Biobank (UKBB).13 Dense imputation panels have increased
the number of variants analyzed, with a typical GWAS now
including more than 8 million variants. GWAS analytical
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research or license restriction. Many of those restrictions are
participant or cohort centric and reflect an attempt to protect
research participants, for example, restrictions on attempting
to identify participants, research that may lead to stigmatizing in-
dividuals or groups, or the use of data for commercial purposes.
Attendees agreed that it would be useful to have a ‘‘recommen-
ded license,’’ which would enable reuse but protect research
participants (see Box 1, Workshop recommendations 7, ‘‘Diver-
sity and privacy’’ working group). On the other hand, some data
generators imposed investigator-centric restrictions that inher-
ently limit reuse, for example, by prohibiting redistribution.
Ways to overcome barriers for data generators who are reluctant
to share without such restrictions are discussed in more detail in
the Incentivization of sharing session section below.
We also agreed that improved linking among databases is

required, for example, linking among different datasets hosted
in different repositories for the same cohort or sample set (see
Box 1, Workshop recommendations 6).

Incentivization of sharing
The aim of this session, chaired by Orli Bahcall, was to identify
barriers to sharing of GWAS data and define strategies to over-
come those barriers, including identifying incentives for data
sharing. From her experience in working on the development
of data-sharing programs and with a broad range of GWAS pro-
ducers, she proposed that the barriers to sharing and the strate-
gies required to overcome them differ among GWAS producers
who want to share the dataset but meet challenges and those
who are reluctant to share from the outset.
Most of the challenges faced by GWAS producers who are

amenable to data sharing can be reduced or eliminated by the

Table 1. Recommended standard reporting elements for GWAS
SumStats

Data element Column header Mandatory/Optional

variant id variant_id One form of variant ID

is mandatory, either rsID

or chromosome, base pair

location, and genome builda

chromosome chromosome

base pair

location

base_pair_

location

p value p_value Mandatory

effect allele effect_allele Mandatory

other allele other_allele Mandatory

effect allele

frequency

effect_allele_

frequency

Mandatory

effect (odds

ratio or beta)

odds_ratio or

beta

Mandatory

standard error standard_error Mandatory

upper confidence

interval

ci_upper Optional

lower confidence

interval

ci_lower Optional

Data elements have been recommended as mandatory if >50% of pre-

workshop survey respondents indicated that preference.
aWe agreed that other variant ID formats should be supported. Imple-

mentation of those standards will be addressed by the working group

‘‘Data Content and Format.’’

Box 1. Workshop recommendations on sharing of GWAS sum-
mary statistics

We recommend these actions to enable broader sharing of GWAS

SumStats and to ensure that SumStats and study metadata are

FAIR. These recommendations were compiled by the organizers and

session chairs, with feedback gathered during the workshop and the

wider community in the pre-workshop survey.

1. Establish a comprehensive, central resource of GWAS
SumStats

We recommend establishing a comprehensive and sustainable

resource for all GWASs and propose that the GWASCatalog be recog-

nized as the central resource for all human GWASs.

2. Submit all GWAS SumStats to the GWAS Catalog
GWAS SumStats and supporting metadata should be submitted to

the GWAS Catalog at the time of submission of a manuscript to a

journal and/or a preprint server. Accession IDs for GWAS SumStats

should be cited in the relevant manuscript and any other relevant

material.

3. Promote or require submission to the GWAS Catalog

We call on journal editors, funders, and cohort representatives to pro-

mote or require early submission to the GWAS Catalog, pointing au-

thors to the GWAS Catalog and expecting submission before journal

submission (journal editors) or as a requirement for sample use (cohort

representatives) or funding (funders).

4. Ensure GWAS SumStats and metadata meet FAIR indica-
tors

GWAS SumStats should be made available following the FAIR indica-

tors (Table 2). These FAIR indicators will be adopted by the GWAS

Catalog.

5. Adopt a standard format and elements for GWAS Sum-
Stats

GWAS SumStats should include these standard elements: variant ID

or chromosome plus base pair location, p value, effect allele, other

allele, effect allele frequency, effects (odds ratio or beta), and standard

error (Table 1).

6. Data should be versioned and linked to relevant resources
GWAS SumStats and accompanying metadata should be versioned to

enable users to identify the most recent dataset. The GWAS Catalog

will develop a data update and versioning strategy to meet those

needs. Linking from GWAS SumStats and metadata to relevant data-

sets in other databases (e.g., dbGaP, EGA, BioData Catalyst, and

AnVIL) should be improved. The GWAS Catalog will develop improved

cross-linking to relevant databases.

Areas for further discussion:

7. Diversity and privacy
To ensure the Catalog can meet the needs of all studies, including

those with more-sensitive datasets or alternative study designs, we

will convene working groups to gather additional evidence and identify

additional functionality required. We recommend that different data-

sharing requirements be considered for datasets determined to be

sensitive, where required for privacy or regulatory reasons. We are

convening a working group to provide guidance on communicating

and mitigating the risks associated with sharing of SumStats (‘‘Diver-

sity and privacy’’ working group).

8. Data content and format
To further assess and finalize metadata content, variant identification,

and file format requirements, including for association testing with

multiple variants in a region, we are convening a working group

(‘‘Data content and format’’ working group).
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Given the standard GWAS with genotypes being allelic counts (0/1/2),
the minimum data required for PGS prediction include:

• SNP marginal effect estimates
• Standard errors
• GWAS sample size

• LD correlations among SNPs

What are the minimum data required?

Sumstats for PGS prediction

GWAS sumstats

LD matrix
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SNP marginal effect estimates
GWAS estimates effect of each SNP one at a time from single SNP regression, so the 
estimate is marginal to (unconditional on) other SNPs.

𝑏! = 𝐗!"𝐗!
#$𝐗!"𝐲

𝑏! 	=
1
𝑛
𝐗!"𝐲

Assuming 𝐗 has been standardised with column 
mean zero and variance one, then

𝐗!"𝐗! = 𝑛𝑉𝑎𝑟 𝐗! = 𝑛

And

Note that it has the inner product of the SNP genotypes and the phenotypes.

Sumstats for PGS prediction
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SNP marginal effect estimates
For diseases, GWAS is done using logistic regression

𝑏! = log(𝑂𝑅)

The SNP effect is log odds ratio (OR), i.e., 
difference in log odds for cases vs. controls

log
𝑝%

1 − 𝑝%
= 𝜇 + 𝑋𝒊!𝑏!

0        1        2
GenotypeApproximately equal to the 𝑏! from the linear 

model when true effect size is small.

Sumstats for PGS prediction
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Linkage disequilibrium (LD) correlations
Usually obtained from a reference population
LD correlation matrix

𝐑 = +
,
𝐗′𝐗 

assuming 𝐗 is standardised 
with mean zero and 
variance one

LD matrix for PGS prediction



8

The principle of sumstats-based methods
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Use of summary data only - how does it work?

GWAS results and LD correlations are sufficient statistics for the 
estimation of SNP joint effects!

Principle of sumstats-based methods
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A statistic is sufficient if no other statistics provides any additional 
information as to the value of the parameter.

e.g., 𝑥$, 𝑥', … , 𝑥(	~	𝑁(𝜇, 𝜎') and we want to estimate 𝜇	and 𝜎' 

• ∑%)$( 𝑥% and 𝑛 are sufficient statistics for 𝜇

• ∑%)$( 𝑥%' , ∑%)$( 𝑥%	and 𝑛 are sufficient 
statistics for 𝜎' 

�̂� =
∑%)$( 𝑥%
𝑛

;𝜎' =
∑%)$( 𝑥%'

𝑛
−

∑%)$( 𝑥%
𝑛

'

We don’t need to know the value of each x!

Sufficient statistics
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For simplicity, let’s assume that when running GWAS,

• the genotypes of each SNP are standardised with column mean 
zero and variance one.

• the phenotypes are standardised with mean zero and variance one.

We will come back to deal with this assumption later.

Sumstats for PGS prediction
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BLUP

BLUP solutions:
%𝜷 = 𝐗-𝐗 + 𝐈𝜆 .+𝐗-𝒚

where 𝜆 = /!"

/#
"

R (LD matrix), b (marginal effects) and 𝑛 are sufficient 
statistics for the estimation of 𝜷.

𝐲 = 𝐗𝜷 + 𝐞

𝑛	𝐑 𝑛	𝐛

Principle of sumstats-based methods

Recall

𝐑 =
1
𝑛 𝐗

!𝐗

𝑏" 	=
1
𝑛 𝐗"

!𝐲
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BLUP
• Model: 

𝐲 = 𝐗𝜷 + 𝐞

• Estimator:

A𝜷 = 𝐗"𝐗 + 𝐈𝜆 #𝟏𝐗"𝒚

SBLUP (sumstats-based BLUP)
• Model:

b	= 𝐑𝜷 + 𝝐

• Estimator:
A𝜷 = 𝑛𝐑 + 𝐈𝜆 #𝟏𝑛𝐛

Genotype 
matrix

Phenotypes LD 
correlation 
matrix

GWAS effectsGWAS 
sample 
size

Compare BLUP and SBLUP
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Individual-level data 
analysis

𝐲 = 𝐗𝜷 + 𝐞 𝐛 = 𝐑𝜷 + 𝛜
A primary tool - genome-wide association studies (GWAS)

Simple linear regression model

Yi = —0 + —1Xi + Ái ,

i = 1, . . . , n, where n is the number of individuals and Xi contains
the reference allele count for individual i . Estimate —0 and —1 via
least squares. Perform this p times for all the genotyped SNPs in
the population

Summary-level data 
analysis

Can we use summary statistics and why?
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Biological insights from 108
schizophrenia-associated genetic loci
Schizophrenia Working Group of the Psychiatric Genomics Consortium*

Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common
alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizo-
phrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent asso-
ciations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been
previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for
the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2
and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic
relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed
in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing
support for the speculated link between the immune system and schizophrenia.

Schizophrenia has a lifetime risk of around 1%, and is associated with
substantial morbidity and mortality as well as personal and societal costs1–3.
Although pharmacological treatments are available for schizophrenia,
their efficacy is poor for many patients4. All available antipsychotic drugs
are thought to exert their main therapeutic effects through blockade of
the type 2 dopaminergic receptor5,6 but, since the discovery of this mech-
anism over 60 years ago, no new antipsychotic drug of proven efficacy
has been developed based on other target molecules. Therapeutic stasis
is in large part a consequence of the fact that the pathophysiology of
schizophrenia is unknown. Identifying the causes of schizophrenia is
therefore a critical step towards improving treatments and outcomes
for those with the disorder.

High heritability points to a major role for inherited genetic variants
in the aetiology of schizophrenia7,8. Although risk variants range in fre-
quency from common to extremely rare9, estimates10,11 suggest half to a
third of the genetic risk of schizophrenia is indexed by common alleles
genotyped by current genome-wide association study (GWAS) arrays.
Thus, GWAS is potentially an important tool for understanding the
biological underpinnings of schizophrenia.

To date, around 30 schizophrenia-associated loci10–23 have been iden-
tified through GWAS. Postulating that sample size is one of the most
important limiting factors in applying GWAS to schizophrenia, we created
the Schizophrenia Working Group of the Psychiatric Genomics Con-
sortium (PGC). Our primary aim was to combine all available schizo-
phrenia samples with published or unpublished GWAS genotypes into
a single, systematic analysis24. Here we report the results of that analysis,
including at least 108 independent genomic loci that exceed genome-
wide significance. Some of the findings support leading pathophysio-
logical hypotheses of schizophrenia or targets of therapeutic relevance,
but most of the findings provide new insights.

108 independent associated loci
We obtained genome-wide genotype data from which we constructed 49
ancestry matched, non-overlapping case-control samples (46 of European
and three of east Asian ancestry, 34,241 cases and 45,604 controls) and
3 family-based samples of European ancestry (1,235 parent affected-
offspring trios) (Supplementary Table 1 and Supplementary Methods).

These comprise the primary PGC GWAS data set. We processed the
genotypes from all studies using unified quality control procedures fol-
lowed by imputation of SNPs and insertion-deletions using the 1000
Genomes Project reference panel25. In each sample, association testing
was conducted using imputed marker dosages and principal components
(PCs) to control for population stratification. The results were combined
using an inverse-variance weighted fixed effects model26. After quality
control (imputation INFO score $ 0.6, MAF $ 0.01, and successfully
imputed in $ 20 samples), we considered around 9.5 million variants.
The results are summarized in Fig. 1. To enable acquisition of large sam-
ples, some groups ascertained cases via clinician diagnosis rather than a
research-based assessment and provided evidence of the validity of this
approach (Supplementary Information)11,13. Post hoc analyses revealed
the pattern of effect sizes for associated loci was similar across different
assessment methods and modes of ascertainment (Extended Data Fig. 1),
supporting our a priori decision to include samples of this nature.

For the subset of linkage-disequilibrium-independent single nucleotide
polymorphisms (SNPs) with P , 1 3 1026 in the meta-analysis, we next
obtained results from deCODE genetics (1,513 cases and 66,236 controls
of European ancestry). We define linkage-disequilibrium-independent
SNPs as those with low linkage disequilibrium (r2 , 0.1) to a more sig-
nificantly associated SNP within a 500-kb window. Given high linkage
disequilibrium in the extended major histocompatibility complex (MHC)
region spans ,8 Mb, we conservatively include only a single MHC SNP
to represent this locus. The deCODE data were then combined with those
from the primary GWAS to give a data set of 36,989 cases and 113,075
controls. In this final analysis, 128 linkage-disequilibrium-independent
SNPs exceeded genome-wide significance (P # 5 3 1028) (Supplemen-
tary Table 2).

As in meta-analyses of other complex traits which identified large num-
bers of common risk variants27,28, the test statistic distribution from our
GWAS deviates from the null (Extended Data Fig. 2). This is consistent
withthe previouslydocumentedpolygeniccontributiontoschizophrenia10,11.
The deviation in the test statistics from the null (lGC 5 1.47,l1000 5 1.01)
is only slightly less than expected (lGC 5 1.56) under a polygenic model
given fully informative genotypes, the current sample size, and the life-
time risk and heritability of schizophrenia29.

*A list of authors and affiliations appears at the end of the paper.
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I Results generated from a meta-analysis of 52 individual GWAS datasets
I Individual level analysis di�cult due to consent and privacy issues and data

ownership. Technical burden of data transfer, storage, management and
harmonisation

I Consortia often share and make publicly available {‚—j ,‚‡2
j , qj , nj}, where qj and

nj is the allele frequency and individual count (missing genotypes) for each
variant respectively

BLUP

Bayes

SBLUP

SBayes
à

Covariates, such as age and sex, are accounted for when running GWAS.

From individual- to summary-level model
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From individual- to summary-level model

Consider an individual-data model with a standardised genotype 
matrix X:

𝐲 = 𝐗𝜷 + 𝐞
Multiply both sides by $

(
𝐗′ gives
1
𝑛
𝐗′𝐲 =

1
𝑛
𝐗′𝐗𝜷 +

1
𝑛
𝐗′𝐞

𝐛 = 𝐑 𝜷 𝝐+

LD correlation matrix

𝑉𝑎𝑟 𝝐 =
1
𝑛
𝐑𝜎!"

GWAS marginal SNP effects
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SBayes

Prior distribution for each SNP effect

𝐛 = 𝐑 𝜷 𝝐+
𝑉𝑎𝑟 𝝐 =

1
𝑛
𝐑𝜎!"SNP marginal effects

from GWAS
LD correlation matrix SNP joint effects

1
6

LDpred-Inf
SBLUP

LDpred2
SBayesC

SBayesRBSLMM

Sumstats-based Bayesian methods
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SBayesR

Each SNP effect has a mixture distribution:

𝜎#"	~	𝜒$%& 𝜐, 𝜏"𝝅	~	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝟏

𝛾! = 0
Null effect

𝛾" = 0.01
Small effects

𝛾# = 0.1
Medium effects

𝛾$ = 1
Large effects

𝛽'	~	:
()&

*

	𝜋(	𝑁 0, 𝛾(𝜎#"

ARTICLE

Improved polygenic prediction by Bayesian multiple
regression on summary statistics
Luke R. Lloyd-Jones 1,9*, Jian Zeng 1,9*, Julia Sidorenko1,2, Loïc Yengo1, Gerhard Moser3,4,
Kathryn E. Kemper1, Huanwei Wang 1, Zhili Zheng1, Reedik Magi2, Tõnu Esko2, Andres Metspalu2,5,
Naomi R. Wray 1,6, Michael E. Goddard7, Jian Yang 1,8* & Peter M. Visscher 1*

Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great

promises of genomics and precision medicine. We extend a powerful individual-level data

Bayesian multiple regression model (BayesR) to one that utilises summary statistics from

genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using

12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR

improves prediction accuracy relative to commonly used state-of-the-art summary statistics

methods at a fraction of the computational resources. Furthermore, using summary statistics

for variants from the largest GWAS meta-analysis (n ≈ 700, 000) on height and BMI, we

show that on average across traits and two independent data sets that SBayesR improves

prediction R2 by 5.2% relative to LDpred and by 26.5% relative to clumping and p value

thresholding.
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Gibbs sampling
Full conditional distribution for 𝛽!, if it is nonzero, 

𝑓 𝛽!	 𝐛, 𝑒𝑙𝑠𝑒) = 𝑁
𝑟!
𝐶!
,
𝜎8'

𝐶!
where

Individual-level data

𝑟! = 𝐗!" 𝐲 −N
9:!

𝐗9𝛽9

𝐶!𝐗!"𝐗! +
𝜎8'

𝛾!𝜎;
'

Summary-level data

𝑟! = 𝑛𝑏! −N
9:!

𝑅!9𝛽9	

𝐶! = 𝑛 +
𝜎8'

𝛾!𝜎;
'

Compare BayesR and SBayesR algorithm
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All X’y and X’X can be replaced by nb and nR

Algorithm 1 – Individual level data algorithm
Initialise parameters and read genotypes and phenotypes in PLINK binary format
Initialise y

⇤ = y � Xb
for i :=1 to number of iterations do

for i :=1 to p do

Calculate r⇤j = x
0
jy

⇤

Calculate rj = r⇤j + x
0
jxj b

(i�1)
j

Calculate s2
c = s2

bgdj=c for each of C classes (e.g., BayesR C=4 and g = (0, 0.0001, 0.001, 0.01))

Calculate the left hand side ljc = x
0
jxj +

s2
#

s2
c

for each of the C classes

Calculate the log densities of given dj = c using log(Lc) = � 1
2


log

✓
s2

c ljc
s2

#

◆
�

r2
j

s2
# ljc

�
+ log(pc), where pc is the current

Calculate the full conditional posterior probability for dj = c for C classes with P(dj = c|q, y) = 1
ÂC

l=1 exp[log(Ll )�log(Lc)]

Using full conditional posterior probabilities sample class membership for b
(i)
j using categorical random variable sampler

Given class sample SNP effect b
(i)
j from N

⇣ rj
ljc

, s2
#

ljc

⌘

Given SNP effect adjust corrected phenotype side (y⇤)(i) = (y⇤)(i�1) � xj

⇣
b
(i)
j � b

(i�1)
j

⌘

od

Sample update from full conditional for s2
b from scaled inverse chi-squared distribution enb = nb + q and eS2

b =
nbS2

b+Â
q
j=1

b2
j

gc
nb+q ,

where q is the number of non-zero variants
Sample update from full conditional for s2

# from scaled inverse chi-squared distribution ene = n + ne

and scale parameter eS2
# = SSE+n#S2

#
n+n#

and SSE = y
⇤0

y
⇤

Sample update from full conditional for p, which is Dirichlet(C, c + a), where c is a vector of length C and contains the counts
of the number of variants in each variance class and a = (1, . . . , 1)

Calculate genetic variance for h2
SNP calculation using s2

g = Var(Xb)

Calculate h2
SNP =

s2
g

s2
g+s2

e
od

36 LLJ et al.

Lloyd-Jones & Zeng et al. 2019 NC supplement

Compare BayesR and SBayesR algorithm
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Now we deal with the condition of unstandardised genotypes/phenotypes:

• Typically, GWAS are performed using allele counts (0/1/2) as genotypes 
(𝑋!<(=)

• often with unstandardised phenotypes (Var(y) ≠ 1).

The solutions is to ‘scale’ the GWAS marginal effects before the analysis and 
‘unscale’ the estimated joint effects after the analysis.

Scaling GWAS effects



Let 𝜎! be the SD of genotypes for SNP j and	𝜎> be the SD of phenotypes. 
The genotypic value

All we need to do is to get 

where 𝑠! can be estimated by

𝑏0 = 𝑠0𝑏01,2 

?&
@'
= 𝑋!

@&
@'

 𝑏!<(= = 𝑋! 𝑠!𝑏!<(= = 𝑋! 𝑏!
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Scaling GWAS effects

𝑔! = 𝑋!<(=𝑏!<(= =
𝑋!<(=

𝜎!
	×𝜎!𝑏!<(=

This is in the SD units

Output from GWAS

𝑠!=
1

𝑛𝑆𝐸!' + 𝑏!'
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• Minimum data required for sumstat-based methods are 
Ø GWAS effects, standard errors, GWAS sample size, LD matrix

• In principle, SBayes and Bayes are equivalent methods when same 
data are used.

• However, when LD is estimated from a reference sample, SBayes is 
only an approximation to Bayes.

• Whether the difference is negligible depends on the heterogeneity 
in LD between the GWAS and LD ref samples.

Summary (1)
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LD reference population matches with GWAS population in genetics
• No systematic differences in LD à same ancestry and population structure

• Minimum sampling variance in LD à LD ref sample size cannot be too small

LD decays to zero between distant SNPs
• Can use sparse or block-wide LD matrices 

PERSPECTIVE NATURE GENETICS

and heterogeneity of sub-phenotypes among countries must also be 
considered.

Differences in environmental exposure, gene–gene interactions, 
gene–environment interactions, historical population-size dynam-
ics, statistical noise, some potential causal effect differences and/or 
other factors further limit the generalizability of PRS in an unpre-
dictable, trait-specific fashion46–49. Complex traits do not behave in 
a genetically deterministic manner: some environmental factors 
dwarf individual genetic effects, thus creating outsized issues of 
comparability across globally diverse populations. Among psychi-
atric disorders, for example, schizophrenia has a nearly identical 
genetic basis across East Asians and Europeans (rg = 0.98) (ref. 40),  
whereas the substantially different rates of alcohol-use disorder 
across populations are partially explained by differences in avail-
ability and genetic differences affecting alcohol metabolism50. 
Although nonlinear genetic factors explain little variation in com-
plex traits beyond a purely additive model51, some unrecognized 
nonlinearities and gene–gene interactions can also induce chal-
lenges to genetic-risk prediction, because pairwise interactions 
are likely to vary more across populations than individual SNPs. 
Mathematically, this scenario can simplistically be considered in 
terms of a two-SNP model, in which the sum of two SNP effects 
is likely to explain more phenotypic variance than the product of 
the same SNPs. Some machine-learning approaches may thus mod-
estly improve PRS accuracy beyond current approaches for some 
phenotypes52, but improvement is most likely for atypical traits with 
simpler architectures, known interactions and poor prediction gen-
eralizability across populations, such as skin pigmentation53.

Limited generalizability of PRS across diverse populations
To date, multi-ancestral work has been slow in most disease areas54, 
thus limiting even the opportunity to assess PRS in non-European 
cohorts. Nonetheless, some previous work has assessed prediction 
accuracy across diverse populations in several traits and diseases 
for which GWAS summary statistics are available and has identified 

large disparities across populations (Supplementary Note). These 
disparities are not simply methodological issues, because various 
approaches (for example, pruning and thresholding versus LDPred) 
and accuracy metrics (R2 for quantitative traits and various pseudo-
R2 metrics for binary traits) illustrate this consistently poorer per-
formance in populations distinct from discovery samples across a 
range of polygenic traits (Supplementary Table 1). These assess-
ments are becoming increasingly feasible with the growth and pub-
lic availability of global biobanks as well as diversifying priorities 
from funding agencies55,56. We assessed how prediction accuracy 
decayed across globally diverse populations for 17 anthropometric 
and blood-panel traits in the UK Biobank (UKBB) when European-
derived summary statistics were used (Supplementary Note). In 
agreement with findings from previous studies, we found that the 
genetic prediction accuracy was far lower for other populations 
than for European populations: 1.6-fold lower in Hispanic/Latino 
Americans, 1.6-fold lower in South Asians, 2.0-fold lower in East 
Asians and 4.5-fold lower in Africans, on average (Fig. 3).

Prioritizing diversity shows early promise for PRS
Early diversifying GWAS efforts have been especially productive 
in addressing questions surrounding risk prediction. Rather than 
varying the prediction target dataset, some GWAS in diverse popu-
lations have increased the scale of non-European summary statistics 
and also varied the study dataset in multi-ancestral PRS studies23,24,40. 
These studies have shown that even when non-European cohorts 
are only a fraction of the size of the largest European study, they are 
likely to have disproportionate value for predicting polygenic traits 
in other individuals of similar ancestry.

Given this background, we performed a systematic evaluation 
of polygenic prediction accuracy across 17 quantitative anthropo-
metric and blood-panel traits and five disease endpoints in British 
and Japanese individuals23,57,58 by performing GWAS with the exact 
same sample sizes in each population. We symmetrically demon-
strate that prediction accuracy is consistently higher with GWAS 
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Fig. 2 | Demographic relationships, allele frequency differences and local LD patterns between population pairs. Data analyzed from 1000 Genomes. 
Population labels: AFR, continental African; EUR, European; EAS, East Asian. a, Cartoon relationships among AFR, EUR and EAS populations. b, Allele 
frequency distributions in AFR, EUR and EAS populations of variants from the GWAS catalog. c–e, Color axis shows LD scale (r2) for the indicated LD 
comparisons between pairs of populations; the same region of the genome for each comparison (representative region is chromosome 1, 51572–52857 
kilobases) among pairs of SNPs polymorphic in both populations is shown, illustrating that different SNPs are polymorphic across some population pairs 
and that these SNPs have variable LD patterns across populations.
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Assumptions regarding LD reference
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Lloyd-Jones et al (2019) used chromosome-wide shrunk LD matrices.
Zheng et al (2024) used eigen-decomposed matrices from LD blocks.

• More robust to LD heterogeneity à better prediction performance

• Faster à allows us to fit multi-million SNPs simultaneously

Regulation of LD matrix

Nature Genetics
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Leveraging functional genomic annotations 
and genome coverage to improve polygenic 
prediction of complex traits within and 
between ancestries

Zhili Zheng    1,2,3  , Shouye Liu1, Julia Sidorenko    1, Ying Wang    1, Tian Lin    1, 
Loic Yengo    1, Patrick Turley    4,5, Alireza Ani    6,7, Rujia Wang    6, 
Ilja M. Nolte    6, Harold Snieder    6, LifeLines Cohort Study*, Jian Yang    8,9, 
Naomi R. Wray    1,10, Michael E. Goddard11,12, Peter M. Visscher    1,13  
& Jian Zeng    1 

We develop a method, SBayesRC, that integrates genome-wide association 
study (GWAS) summary statistics with functional genomic annotations to 
improve polygenic prediction of complex traits. Our method is scalable 
to whole-genome variant analysis and re!nes signals from functional 
annotations by allowing them to a"ect both causal variant probability 
and causal e"ect distribution. We analyze 50 complex traits and diseases 
using ∼7 million common single-nucleotide polymorphisms (SNPs) and 96 
annotations. SBayesRC improves prediction accuracy by 14% in European 
ancestry and up to 34% in cross-ancestry prediction compared to the 
baseline method SBayesR, which does not use annotations, and outperforms 
other methods, including LDpred2, LDpred-funct, MegaPRS, PolyPred-S and 
PRS-CSx. Investigation of factors a"ecting prediction accuracy identi!es a 
signi!cant interaction between SNP density and annotation information, 
suggesting whole-genome sequence variants with annotations may further 
improve prediction. Functional partitioning analysis highlights a major 
contribution of evolutionary constrained regions to prediction accuracy 
and the largest per-SNP contribution from nonsynonymous SNPs.

Polygenic scores (PGSs) for complex traits are playing increasingly 
important roles in research and medical applications of the fast-growing 
genomic data from genome-wide association studies (GWASs)1. PGSs 
are used to provide evidence of polygenic adaptation of populations to 
different environments2, explore putative causal relationships between 
traits3, improve cost and efficiency of clinical trials4 and, perhaps most 
importantly, identify individuals with high genetic risk of complex 
diseases5–10, which opens up opportunities for preventative medicine, 
early intervention and personalized treatment11–13. However, the clinical 

application of PGSs is currently limited by the modest prediction accu-
racy for most complex diseases. Moreover, a substantial loss of predic-
tion accuracy is observed when applying PGSs across ancestries14–20.

The prediction accuracy of PGSs depends on the selection of SNPs 
in the model and the estimation of their effects. For cross-ancestry 
prediction, the accuracy further depends on the extent to which the 
linkage disequilibrium (LD) in the GWAS population matches that in the 
target population. Although mounting evidence suggests that com-
mon causal variants are shared across ancestry groups20,21, selecting 
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Improved robustness

Nature Genetics
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probability that SNPs are causal variants and the probability distribu-
tion of their effect sizes, SBayesRC can better capture the causal effects 
if the distributions of effect sizes truly differ between annotations. 
The method has been implemented in an R package and the software 
GCTB23 (see Code availability).

Genome-wide simulation based on real genotypes and 
annotation data
We first calibrated the low-rank model with simulation in HapMap3 SNPs 
to determine the best parameter setting for polygenic prediction (Section 
9 of the Supplementary Note). We then tested our method under two 
common issues encountered in practice: (1) differences in LD between 
GWAS and LD reference datasets and (2) unequal GWAS sample sizes 
across SNPs (Section 11 of the Supplementary Note), in comparison to 
two state-of-the-art methods using summary statistics, LDpred2 (ref. 36) 
and SBayesR34. For all methods, a decrease in prediction accuracy was 
observed when the LD reference sample size was too small relative to the 
GWAS sample size, indicating an important variation in LD by chance 
(Fig. 2a and Extended Data Fig. 2). However, SBayesRC (without annota-
tion) preserved more prediction accuracy than the other methods. In an 
extreme case where LD correlations were estimated using individuals of 

African ancestry, SBayesRC achieved a preservation of ∼70% prediction 
accuracy, whereas SBayesR and LDpred2 (default settings) were unable 
to reach convergence. Regarding the scenario of unequal per-SNP sam-
ple sizes, as the proportion of overlapped SNPs decreased, SBayesR 
more frequently failed to converge, and LDpred2 exhibited a faster rate 
of decrease in prediction accuracy compared to SBayesRC (Fig. 2b). It 
is noteworthy that the impact of model misspecification was mostly 
absorbed in the nuisance residual variance in SBayesRC, resulting in less 
bias in the genetic architecture parameters, such as SNP-based herit-
ability and polygenicity, compared to LDpred2 (Extended Data Fig. 3).

We next assessed the benefits of using functional annotation data 
by expanding the simulation to include 7,356,518 imputed common 
SNPs and incorporating functional annotations to simulate the causal 
effects (Methods). As expected, the result demonstrated a significant 
improvement in prediction accuracy when using more SNPs and/or 
annotation data in SBayesRC (Fig. 2c). Compared to using 1 M HapMap3 
SNPs, using all 7 M SNPs led to a 14.4% increase in prediction accuracy 
(calculated as (R2

7M

− R

2

1M

)/R

2

1M

, where R2 is the prediction R2 in the vali-
dation sample). Compared to the no-annotation model, the model 
incorporating annotation data improved the prediction accuracy by 
2.0% and 3.8% when using 1 M HapMap3 and 7 M common SNPs, 
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Fig. 2 | Assessing the performance of different methods by simulations. 
a, Robustness of SBayesRC to the choice of LD reference (ukb20k, a random 
sample of 20,000 unrelated individuals of European (EUR) ancestry from the 
UKB; uk10k, 3,642 unrelated EUR individuals from the UK10K dataset; 1kg0.5k, 
494 unrelated EUR individuals from the 1000 Genomes Project; afr4k, a random 
sample of 4,000 unrelated individuals of African ancestry from the UKB).  
b, Robustness of SBayesRC to the unequal per-SNP sample sizes in the meta-
analysis. c, The prediction R2 from SBayesRC, LDpred-funct and MegaPRS with 
different SNP densities and with or without annotations. The dashed line shows 
the prediction R2 from the benchmarking method SBayesR using HapMap3 SNPs 
without annotations. d, Power of identifying causal variants using SBayesRC with 

or without high-density SNPs or annotation data. e, False discovery rate (FDR) of 
identifying causal variants using SBayesRC with or without high-density SNPs or 
annotation data. f, Correlations between the SBayesRC estimated and true effect 
sizes at SNPs with posterior inclusion probability (PIP) greater than a threshold. 
Results were from simulations (n = 10 independent replicates) with trait 
heritability h2 = 0.5 (the upper bound of the prediction accuracy). See Extended 
Data Figs. 2 and 3 and Supplementary Figs. 3–5 for results from the simulation 
with h2 = 0.1. Each box plot in a–c shows the spread of data; the line is the middle 
(median), the box covers the middle half (IQR), the whiskers extend to 1.5 times 
the IQR, and dots show outliers. Data in d–f are presented as mean values (center 
point) ± standard error of the mean (s.e.m.) (error bar) in each PIP bin.
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respectively. Although a similar pattern was observed in LDpred-funct 
and MegaPRS, SBayesRC consistently outperformed both methods in 
each scenario (Fig. 2c and Supplementary Fig. 5). We hypothesize that 
the advantage of exploiting annotations arises from both better iden-
tification of causal variants and better estimation of their effect sizes. 
This hypothesis is supported by the results that incorporating annota-
tions in the model led to higher power and lower false discovery rate 
(FDR) for identifying the causal variants (Fig. 2d, e) and a stronger 
correlation in the estimated and true SNP effects (Fig. 2f). Coupled with 
the higher prediction accuracy, the SNP-based heritability estimation 
approached the true value in the simulation when more SNPs with 
annotation data were used (Extended Data Fig. 4). Moreover, we dem-
onstrated through sensitivity analyses that SBayesRC is robust in 

various circumstances, including a misspecification of mixture distri-
bution scaling factors or the number of mixture components, and using 
an alternative data-generative model for simulation (Supplementary 
Figs. 9–11 and Section 12 of the Supplementary Note).

Improved prediction accuracy within European ancestry
For the evaluation of prediction accuracy within European ancestry, 
we conducted ten-fold cross-validation in the 28 approximately inde-
pendent traits from the UKB and cross-biobank prediction using data 
from the LifeLines cohort37 and the FinnGen project38 (Methods and 
Supplementary Table 1). We used 96 genomic annotations from Base-
lineLD v2.2 (ref. 24) and 7 M imputed common SNPs in the UKB after 
matching with validation and annotation datasets (Methods).

2.8%

−0.7%

14.2%

3.7%

Marginal−e"ect model Joint−e"ect model

1 M SNPs 7 M SNPs 1 M SNPs
without annot

1 M SNPs
with annot

7 M SNPs
without annot

7 M SNPs
with annot

−20

0

20

40

−75

−50

−25

0

Re
la

tiv
e 

pr
ed

ic
tio

n 
ac

cu
ra

cy
 (%

)

Method

C + PT

LDpred2

LDpred−funct

MegaPRS

SBayesRC

a

UKB FinnGen META−GWAS

T2D Height BMI Asthma HBP GLAUC T2D Asthma BC HBP GLAUC DBP T2D Height BMI

0

10

20

30

40

−50

−25

0

25

0

20

40

60

Trait

Re
la

tiv
e 

pr
ed

ic
tio

n 
ac

cu
ra

cy
 (%

)
Method

LDpred−funct

MegaPRS

SBayesRC

b

0.39 0.40

0.23

0.30

0.36 0.14

0.16

0.06

0.08

0.12

Height BMI

0.05M 0.1M 0.2M 0.3M 0.7M 0.05M 0.1M 0.2M 0.3M 0.7M

0

0.05

0.10

0.15

0

0.1

0.2

0.3

0.4

Training sample size

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 (R

2 )

Method

LDpred2

LDpred−funct

MegaPRS

SBayesRC

c

Fig. 3 | Prediction performance using SBayesRC with 7 M SNPs and 
annotation data in European populations. a, Relative prediction accuracy of 
different methods to SBayesR using 1 M HapMap3 SNPs, averaged from ten-fold 
cross-validation in the UKB (n = 28 traits). Each box plot shows the spread of data; 
the line is the middle (median), the box covers the middle half (IQR), the whiskers 
extend to 1.5 times the IQR, and dots show outliers. b, Relative prediction 
accuracy of different methods to LDpred2 (grid of models) using 1 M HapMap3 

SNPs for six traits in the UKB cross-validation (average value), five traits in the 
cross-biobank prediction analysis using the FinnGen data as training and the 
UKB data as validation, and four traits in the out-of-sample prediction analysis 
using the published meta-GWAS as training and the LifeLines data as validation. 
c, Out-of-sample prediction accuracy for height and BMI, using the UKB (n = 0.05 
to 0.3 M by downsampling) or the GIANT dataset40 (n = 0.7 M) as training and the 
LifeLines data as validation.
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probability that SNPs are causal variants and the probability distribu-
tion of their effect sizes, SBayesRC can better capture the causal effects 
if the distributions of effect sizes truly differ between annotations. 
The method has been implemented in an R package and the software 
GCTB23 (see Code availability).

Genome-wide simulation based on real genotypes and 
annotation data
We first calibrated the low-rank model with simulation in HapMap3 SNPs 
to determine the best parameter setting for polygenic prediction (Section 
9 of the Supplementary Note). We then tested our method under two 
common issues encountered in practice: (1) differences in LD between 
GWAS and LD reference datasets and (2) unequal GWAS sample sizes 
across SNPs (Section 11 of the Supplementary Note), in comparison to 
two state-of-the-art methods using summary statistics, LDpred2 (ref. 36) 
and SBayesR34. For all methods, a decrease in prediction accuracy was 
observed when the LD reference sample size was too small relative to the 
GWAS sample size, indicating an important variation in LD by chance 
(Fig. 2a and Extended Data Fig. 2). However, SBayesRC (without annota-
tion) preserved more prediction accuracy than the other methods. In an 
extreme case where LD correlations were estimated using individuals of 

African ancestry, SBayesRC achieved a preservation of ∼70% prediction 
accuracy, whereas SBayesR and LDpred2 (default settings) were unable 
to reach convergence. Regarding the scenario of unequal per-SNP sam-
ple sizes, as the proportion of overlapped SNPs decreased, SBayesR 
more frequently failed to converge, and LDpred2 exhibited a faster rate 
of decrease in prediction accuracy compared to SBayesRC (Fig. 2b). It 
is noteworthy that the impact of model misspecification was mostly 
absorbed in the nuisance residual variance in SBayesRC, resulting in less 
bias in the genetic architecture parameters, such as SNP-based herit-
ability and polygenicity, compared to LDpred2 (Extended Data Fig. 3).

We next assessed the benefits of using functional annotation data 
by expanding the simulation to include 7,356,518 imputed common 
SNPs and incorporating functional annotations to simulate the causal 
effects (Methods). As expected, the result demonstrated a significant 
improvement in prediction accuracy when using more SNPs and/or 
annotation data in SBayesRC (Fig. 2c). Compared to using 1 M HapMap3 
SNPs, using all 7 M SNPs led to a 14.4% increase in prediction accuracy 
(calculated as (R2

7M

− R

2

1M

)/R

2

1M

, where R2 is the prediction R2 in the vali-
dation sample). Compared to the no-annotation model, the model 
incorporating annotation data improved the prediction accuracy by 
2.0% and 3.8% when using 1 M HapMap3 and 7 M common SNPs, 
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Fig. 2 | Assessing the performance of different methods by simulations. 
a, Robustness of SBayesRC to the choice of LD reference (ukb20k, a random 
sample of 20,000 unrelated individuals of European (EUR) ancestry from the 
UKB; uk10k, 3,642 unrelated EUR individuals from the UK10K dataset; 1kg0.5k, 
494 unrelated EUR individuals from the 1000 Genomes Project; afr4k, a random 
sample of 4,000 unrelated individuals of African ancestry from the UKB).  
b, Robustness of SBayesRC to the unequal per-SNP sample sizes in the meta-
analysis. c, The prediction R2 from SBayesRC, LDpred-funct and MegaPRS with 
different SNP densities and with or without annotations. The dashed line shows 
the prediction R2 from the benchmarking method SBayesR using HapMap3 SNPs 
without annotations. d, Power of identifying causal variants using SBayesRC with 

or without high-density SNPs or annotation data. e, False discovery rate (FDR) of 
identifying causal variants using SBayesRC with or without high-density SNPs or 
annotation data. f, Correlations between the SBayesRC estimated and true effect 
sizes at SNPs with posterior inclusion probability (PIP) greater than a threshold. 
Results were from simulations (n = 10 independent replicates) with trait 
heritability h2 = 0.5 (the upper bound of the prediction accuracy). See Extended 
Data Figs. 2 and 3 and Supplementary Figs. 3–5 for results from the simulation 
with h2 = 0.1. Each box plot in a–c shows the spread of data; the line is the middle 
(median), the box covers the middle half (IQR), the whiskers extend to 1.5 times 
the IQR, and dots show outliers. Data in d–f are presented as mean values (center 
point) ± standard error of the mean (s.e.m.) (error bar) in each PIP bin.
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probability that SNPs are causal variants and the probability distribu-
tion of their effect sizes, SBayesRC can better capture the causal effects 
if the distributions of effect sizes truly differ between annotations. 
The method has been implemented in an R package and the software 
GCTB23 (see Code availability).

Genome-wide simulation based on real genotypes and 
annotation data
We first calibrated the low-rank model with simulation in HapMap3 SNPs 
to determine the best parameter setting for polygenic prediction (Section 
9 of the Supplementary Note). We then tested our method under two 
common issues encountered in practice: (1) differences in LD between 
GWAS and LD reference datasets and (2) unequal GWAS sample sizes 
across SNPs (Section 11 of the Supplementary Note), in comparison to 
two state-of-the-art methods using summary statistics, LDpred2 (ref. 36) 
and SBayesR34. For all methods, a decrease in prediction accuracy was 
observed when the LD reference sample size was too small relative to the 
GWAS sample size, indicating an important variation in LD by chance 
(Fig. 2a and Extended Data Fig. 2). However, SBayesRC (without annota-
tion) preserved more prediction accuracy than the other methods. In an 
extreme case where LD correlations were estimated using individuals of 

African ancestry, SBayesRC achieved a preservation of ∼70% prediction 
accuracy, whereas SBayesR and LDpred2 (default settings) were unable 
to reach convergence. Regarding the scenario of unequal per-SNP sam-
ple sizes, as the proportion of overlapped SNPs decreased, SBayesR 
more frequently failed to converge, and LDpred2 exhibited a faster rate 
of decrease in prediction accuracy compared to SBayesRC (Fig. 2b). It 
is noteworthy that the impact of model misspecification was mostly 
absorbed in the nuisance residual variance in SBayesRC, resulting in less 
bias in the genetic architecture parameters, such as SNP-based herit-
ability and polygenicity, compared to LDpred2 (Extended Data Fig. 3).

We next assessed the benefits of using functional annotation data 
by expanding the simulation to include 7,356,518 imputed common 
SNPs and incorporating functional annotations to simulate the causal 
effects (Methods). As expected, the result demonstrated a significant 
improvement in prediction accuracy when using more SNPs and/or 
annotation data in SBayesRC (Fig. 2c). Compared to using 1 M HapMap3 
SNPs, using all 7 M SNPs led to a 14.4% increase in prediction accuracy 
(calculated as (R2

7M

− R

2

1M

)/R

2

1M

, where R2 is the prediction R2 in the vali-
dation sample). Compared to the no-annotation model, the model 
incorporating annotation data improved the prediction accuracy by 
2.0% and 3.8% when using 1 M HapMap3 and 7 M common SNPs, 
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Fig. 2 | Assessing the performance of different methods by simulations. 
a, Robustness of SBayesRC to the choice of LD reference (ukb20k, a random 
sample of 20,000 unrelated individuals of European (EUR) ancestry from the 
UKB; uk10k, 3,642 unrelated EUR individuals from the UK10K dataset; 1kg0.5k, 
494 unrelated EUR individuals from the 1000 Genomes Project; afr4k, a random 
sample of 4,000 unrelated individuals of African ancestry from the UKB).  
b, Robustness of SBayesRC to the unequal per-SNP sample sizes in the meta-
analysis. c, The prediction R2 from SBayesRC, LDpred-funct and MegaPRS with 
different SNP densities and with or without annotations. The dashed line shows 
the prediction R2 from the benchmarking method SBayesR using HapMap3 SNPs 
without annotations. d, Power of identifying causal variants using SBayesRC with 

or without high-density SNPs or annotation data. e, False discovery rate (FDR) of 
identifying causal variants using SBayesRC with or without high-density SNPs or 
annotation data. f, Correlations between the SBayesRC estimated and true effect 
sizes at SNPs with posterior inclusion probability (PIP) greater than a threshold. 
Results were from simulations (n = 10 independent replicates) with trait 
heritability h2 = 0.5 (the upper bound of the prediction accuracy). See Extended 
Data Figs. 2 and 3 and Supplementary Figs. 3–5 for results from the simulation 
with h2 = 0.1. Each box plot in a–c shows the spread of data; the line is the middle 
(median), the box covers the middle half (IQR), the whiskers extend to 1.5 times 
the IQR, and dots show outliers. Data in d–f are presented as mean values (center 
point) ± standard error of the mean (s.e.m.) (error bar) in each PIP bin.
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respectively. Although a similar pattern was observed in LDpred-funct 
and MegaPRS, SBayesRC consistently outperformed both methods in 
each scenario (Fig. 2c and Supplementary Fig. 5). We hypothesize that 
the advantage of exploiting annotations arises from both better iden-
tification of causal variants and better estimation of their effect sizes. 
This hypothesis is supported by the results that incorporating annota-
tions in the model led to higher power and lower false discovery rate 
(FDR) for identifying the causal variants (Fig. 2d, e) and a stronger 
correlation in the estimated and true SNP effects (Fig. 2f). Coupled with 
the higher prediction accuracy, the SNP-based heritability estimation 
approached the true value in the simulation when more SNPs with 
annotation data were used (Extended Data Fig. 4). Moreover, we dem-
onstrated through sensitivity analyses that SBayesRC is robust in 

various circumstances, including a misspecification of mixture distri-
bution scaling factors or the number of mixture components, and using 
an alternative data-generative model for simulation (Supplementary 
Figs. 9–11 and Section 12 of the Supplementary Note).

Improved prediction accuracy within European ancestry
For the evaluation of prediction accuracy within European ancestry, 
we conducted ten-fold cross-validation in the 28 approximately inde-
pendent traits from the UKB and cross-biobank prediction using data 
from the LifeLines cohort37 and the FinnGen project38 (Methods and 
Supplementary Table 1). We used 96 genomic annotations from Base-
lineLD v2.2 (ref. 24) and 7 M imputed common SNPs in the UKB after 
matching with validation and annotation datasets (Methods).
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Fig. 3 | Prediction performance using SBayesRC with 7 M SNPs and 
annotation data in European populations. a, Relative prediction accuracy of 
different methods to SBayesR using 1 M HapMap3 SNPs, averaged from ten-fold 
cross-validation in the UKB (n = 28 traits). Each box plot shows the spread of data; 
the line is the middle (median), the box covers the middle half (IQR), the whiskers 
extend to 1.5 times the IQR, and dots show outliers. b, Relative prediction 
accuracy of different methods to LDpred2 (grid of models) using 1 M HapMap3 

SNPs for six traits in the UKB cross-validation (average value), five traits in the 
cross-biobank prediction analysis using the FinnGen data as training and the 
UKB data as validation, and four traits in the out-of-sample prediction analysis 
using the published meta-GWAS as training and the LifeLines data as validation. 
c, Out-of-sample prediction accuracy for height and BMI, using the UKB (n = 0.05 
to 0.3 M by downsampling) or the GIANT dataset40 (n = 0.7 M) as training and the 
LifeLines data as validation.

GWAS: FinnGen

LDref: UK Biobank
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Which allele is the effect allele in GWAS?
e.g., A1 allele

Other information critical to quality control (QC)

A2A2               A1A2               A1A1

Need to match with the allele used to 
calculate the LD matrix in the reference 
sample

Other critical information
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Per-SNP sample size 
Heterogeneity in per-SNP sample size (usually due to meta-analysis) 
may result in a convergence problem in MCMC.

We recommend to visualise the per-SNP sample size distribution and 
remove the outliers.

Other information critical to quality control (QC)

Other critical information
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Critical information from GWAS summary data
• Marginal SNP effects
• (Per-SNP) GWAS sample sizes
• Standard errors
• Effect alleles and alternate alleles (A1 and A2)
• Effect allele frequencies

Input file (.ma)

Other critical information
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• Minimum data required for sumstat-based methods are 
Ø GWAS effects, standard errors, GWAS sample size, LD matrix

• Other information are critical/useful to quality control.

• SBayes an approx. to Bayes when LD is estimated from a reference 
sample, but unleashes the power of large GWAS sample size.

• Matrix regulation/factorisation can better model LD.

Summary (2)
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Incorporating functional annotations



CRICOS code 00025B

Functional genomic annotations provide orthogonal information useful for polygenic 
prediction.

• Chromatin states
• Biological functions
• Molecular quantitative trait loci (xQTL)
• ……

Functional genomic annotations
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Image from ENCODE



CRICOS code 00025B

Functional genomic annotations provide orthogonal information useful for polygenic 
prediction.

• Chromatin states
• Biological functions
• Molecular quantitative trait loci (xQTL)
• ……

Functional genomic annotations
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CRICOS code 00025B

Functional annotations are informative on both the presence of causal variants and the 
distribution of causal effect sizes.
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When causal variants are not observed, SNP markers can tag the causal variant 
by LD but may not tag by annotation.

It’s best to model all SNPs simultaneously with their annotations!
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LDpred-funct

AnnoPred

P+T-funct-LASSO

BayesRC
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Gaps

Need new method that can 

• simultaneously fit all SNPs and annotation data in a 
unified model

• account for variations in both causal variant proportion 
and causal effect distribution

Nature Genetics

nature genetics

https://doi.org/10.1038/s41588-024-01704-yArticle

Leveraging functional genomic annotations 
and genome coverage to improve polygenic 
prediction of complex traits within and 
between ancestries

Zhili Zheng    1,2,3  , Shouye Liu1, Julia Sidorenko    1, Ying Wang    1, Tian Lin    1, 
Loic Yengo    1, Patrick Turley    4,5, Alireza Ani    6,7, Rujia Wang    6, 
Ilja M. Nolte    6, Harold Snieder    6, LifeLines Cohort Study*, Jian Yang    8,9, 
Naomi R. Wray    1,10, Michael E. Goddard11,12, Peter M. Visscher    1,13  
& Jian Zeng    1 

We develop a method, SBayesRC, that integrates genome-wide association 
study (GWAS) summary statistics with functional genomic annotations to 
improve polygenic prediction of complex traits. Our method is scalable 
to whole-genome variant analysis and re!nes signals from functional 
annotations by allowing them to a"ect both causal variant probability 
and causal e"ect distribution. We analyze 50 complex traits and diseases 
using ∼7 million common single-nucleotide polymorphisms (SNPs) and 96 
annotations. SBayesRC improves prediction accuracy by 14% in European 
ancestry and up to 34% in cross-ancestry prediction compared to the 
baseline method SBayesR, which does not use annotations, and outperforms 
other methods, including LDpred2, LDpred-funct, MegaPRS, PolyPred-S and 
PRS-CSx. Investigation of factors a"ecting prediction accuracy identi!es a 
signi!cant interaction between SNP density and annotation information, 
suggesting whole-genome sequence variants with annotations may further 
improve prediction. Functional partitioning analysis highlights a major 
contribution of evolutionary constrained regions to prediction accuracy 
and the largest per-SNP contribution from nonsynonymous SNPs.

Polygenic scores (PGSs) for complex traits are playing increasingly 
important roles in research and medical applications of the fast-growing 
genomic data from genome-wide association studies (GWASs)1. PGSs 
are used to provide evidence of polygenic adaptation of populations to 
different environments2, explore putative causal relationships between 
traits3, improve cost and efficiency of clinical trials4 and, perhaps most 
importantly, identify individuals with high genetic risk of complex 
diseases5–10, which opens up opportunities for preventative medicine, 
early intervention and personalized treatment11–13. However, the clinical 

application of PGSs is currently limited by the modest prediction accu-
racy for most complex diseases. Moreover, a substantial loss of predic-
tion accuracy is observed when applying PGSs across ancestries14–20.

The prediction accuracy of PGSs depends on the selection of SNPs 
in the model and the estimation of their effects. For cross-ancestry 
prediction, the accuracy further depends on the extent to which the 
linkage disequilibrium (LD) in the GWAS population matches that in the 
target population. Although mounting evidence suggests that com-
mon causal variants are shared across ancestry groups20,21, selecting 
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𝑓 𝜋!# =:SNP	annotation	×	annotation	effect

SNP annotations

SBayesRC

• The annotation effects are estimated from the data.

• A positive annotation effect increases the probability of the SNP belong to that distribution.

𝛽!	 ~	 𝜋$ 	 +	𝜋'             +	𝜋K             +	𝜋L	 +	𝜋M

Incorporate functional annotations through a hierarchical prior:
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𝑓 𝜋!# =:SNP	annotation	×	annotation	effect

SNP annotations

SBayesRC

𝛽!	 ~	 𝜋$ 	 +	𝜋'             +	𝜋K             +	𝜋L	 +	𝜋M

Incorporate functional annotations through a hierarchical prior:

Assumption

• Annotation effects are additive at 
the GLM scale.

Pros

• Estimation of conditional effects.
• Allow annotation overlap.
• Interpretation.

Cons

• # annotation effect parameters x 5.
• 𝜋'& + 𝜋'"+ 𝜋'++ 𝜋'* + 𝜋', = 1.



• A set of 2-component independent models:

• For all SNPs

• For SNPs with nonzero effects

• For SNPs with at least medium effects

Model annotation effects (suppose 4 components for simplicity)

[Presentation Title] | [Date] 40

[Entity Name]

(1 − 𝑝%) +	 𝑝%𝛽" 	 ~

(1 − 𝑝&) +	 𝑝&𝛽" 	 ~

(1 − 𝑝') +	 𝑝'𝛽" 	 ~

SBayesRC



• Probit link function:

Φ$% 𝑝 =:SNP	annotation	×	annotation	effect

     where Φ is the CDF of the standard normal distribution. 

• It is straightforward to compute  𝑝 = Φ I

     and  𝜋% = 1 − 𝑝&; 	 𝜋& = 1 − 𝑝' 𝑝&; 	 𝜋'= 1 − 𝑝( 𝑝'𝑝&; 	𝜋(= 𝑝&𝑝'𝑝(

• Assume a normal prior distribution for each annotation effect. 

• Gibbs sampling for all parameters.

Model annotation effects
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[Entity Name]SBayesRC



Toy example
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[Entity Name]

Genome Region 1 Region 2 Region 3

SNP 1 1 1 0 0

SNP 2 1 0 1 0

SNP 3 1 1 1 0

SNP 4 1 0 0 1

SNP 5 1 1 0 0

𝜋% 𝜋& 𝜋' 𝜋(

SNP 1 0.2 0.1 0.6 0.1

SNP 2 0.8 0.02 0.02 0.16

SNP 3 0.2 0.0 0.2 0.6

SNP 4 0.9 0.08 0.01 0.01

SNP 5 0.2 0.1 0.6 0.1

☓ Anno Effect

Matrix

𝒑

sum is PrIP 
(prior inclusion probability)

SBayesRC

Input data Estimate from 
the data



Toy example

[Entity Name]

[Presentation Title] | [Date] 43

PrIP = 0.8 PrIP = 0.2 PrIP = 0.8 PrIP = 0.1 PrIP = 0.8

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5

PrIP: Prior Inclusion Probability = 𝜋% + 𝜋& + 𝜋' = 1 − 𝜋$

Prior distribution of SNP effect is annotation dependent.

SBayesRC
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Real data analysis

PAGE

GWAS datasets Multiple ancestries
• European (EUR)
• East Asian (EAS)
• South Asian (SAS)
• African (AFR)

SNP panels (MAF>0.01)

• 1M HM3 SNPs
• 7M imputed SNPs

Annotation data
• BaselineLDv2.2 

(Gazal et al 2017 NG)
• 96 genomic annotations

Methods compared
• SBayesR
• LDpred2
• LDpred-funct
• MegaPRS
• PolyPred-S
• PRS-CSx
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Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS

45

Trans-ancestry prediction

ARTICLES NATURE GENETICS

compare the predictive performance of PRS-CSx with existing PRS 
construction methods across traits with a wide range of genetic 
architectures, cross-population genetic overlaps and discovery 
GWAS sample sizes via simulations. We further apply PRS-CSx 
to predict quantitative traits using data from the UK Biobank 
(UKBB)28, Biobank Japan (BBJ)29,30, the Population Architecture 
using Genomics and Epidemiology Consortium (PAGE) study31 
and the Taiwan Biobank (TWB)32,33, and predict schizophrenia risk 
using cohorts of European and East Asian ancestries15,34.

Results
Overview of PRS-CSx. PRS-CSx extends PRS-CS19—a recently 
developed Bayesian polygenic modeling and prediction frame-
work—to improve cross-population polygenic prediction by inte-
grating GWAS summary statistics from multiple ancestry groups 
(Methods). PRS-CSx uses a shared continuous shrinkage prior to 
couple SNP effects across populations, which enables more accu-
rate effect size estimation by sharing information between summary 
statistics and leveraging LD diversity across discovery samples. The 
shared prior allows for correlated but varying effect size estimates 
across populations, retaining the flexibility of the modeling frame-
work. In addition, PRS-CSx explicitly models population-specific 
allele frequencies and LD patterns, and inherits from PRS-CS the 
computational advantages of CS priors, and the efficient and robust 
posterior inference algorithm (Gibbs sampling). Given GWAS sum-
mary statistics and ancestry-matched LD reference panels, PRS-CSx 
calculates one polygenic score for each discovery sample, and inte-
grates them by learning an optimal linear combination to produce 
the final PRS (Fig. 1).

Overview of PRS analysis. We have broadly classified polygenic 
prediction methods into two categories: single-discovery meth-
ods, which train PRS using GWAS summary statistics from a 
single-discovery sample; and multi-discovery methods, which com-
bine GWAS summary statistics from multiple discovery samples for 
PRS construction. In this work, in addition to PRS-CSx, we assess 
and compare within- and cross-population predictive performance 
of three representative single-discovery (LD-informed pruning 
and P value thresholding (PT)35, LDpred2 (ref. 20) and PRS-CS19) 
and four multi-discovery (PT-meta, PT-mult26, LDpred2-mult and 
PRS-CS-mult) methods. PT-meta applies PT to the meta-analyzed 

discovery GWAS summary statistics. The three ‘mult’ methods 
respectively apply PT, LDpred2 and PRS-CS to each discovery 
GWAS separately, and linearly combine the resulting PRS. PT-mult 
has been demonstrated to improve the prediction in recently 
admixed populations26. Here, we have extended the idea of PT-mult 
to LDpred2-mult and PRS-CS-mult, creating two new methods to 
quantify the benefits of jointly modeling multiple GWAS summary 
statistics via the coupled shrinkage prior. The workflow for each 
PRS construction method is shown in Fig. 1. In all the PRS anal-
yses, we use the discovery dataset to estimate the marginal effect 
sizes of genetic variants and generate GWAS summary statistics for 
each population; we use the validation dataset, with individual-level 
genotypes and phenotypes, to tune hyperparameters for different 
polygenic prediction methods; and we use the testing dataset, with 
individual-level genotypes and phenotypes, to evaluate the pre-
diction accuracy of PRS and compute performance metrics using 
hyperparameters learnt in the validation dataset. The three data-
sets comprise nonoverlapping individuals. For convenience, we 
use the target dataset to refer to the combination of validation and 
testing datasets, which have matched ancestry. For fair comparison, 
throughout the paper we use 1000 Genomes Project (1KG) Phase 
3 (ref. 36) superpopulation samples (European (EUR) N = 503; East 
Asian (EAS) N = 504; African (AFR) N = 661; admixed American 
(AMR) N = 347) as the LD reference panels across different PRS 
construction methods.

Simulations. We first evaluated the predictive performance of dif-
ferent polygenic prediction methods via simulations. We simulated 
individual-level genotypes of EUR, EAS and AFR populations for 
HapMap3 variants with minor allele frequency (MAF) >1% in at 
least one of the three populations using HAPGEN2 (ref. 37), with 
the 1KG Phase 3 samples as the reference panel. In our primary 
simulation setting, we randomly sampled 1% HapMap3 variants 
as causal variants, which, in aggregation, explained 50% of pheno-
typic variation in each population. We assumed that causal variants 
are shared across populations but allowed for varying effect sizes, 
which were sampled from a multivariate normal distribution with 
the cross-population genetic correlation (rg) set to 0.7. The simula-
tion was repeated 20 times.

We first applied single-discovery methods to GWAS summary 
statistics generated by 100,000 simulated EUR samples and 20,000 

Validation

Testing

Input

Method

GWAS sumstats
LD ref pop A

Final PRS

PRS

PT, LDpred2,
PRS-CS

Single-discovery method

PRS-CSx

Final PRS

PRS A PRS B PRS C+ +

PRS-CSx

GWAS sumstats
LD ref pop A

GWAS sumstats
LD ref pop B

GWAS sumstats
LD ref pop C

GWAS sumstats
pop A

GWAS sumstats
pop B

Meta GWAS

Final PRS

PT-meta

PT

PRS A PRS B

Choose one

LD ref
pop A

LD ref
pop B

Final PRS

PRS A PRS B+

PT-/LDpred2-/PRS-CS-mult

GWAS sumstats
LD ref pop A

GWAS sumstats
LD ref pop B

PT, LDpred2,
PRS-CS

PT, LDpred2,
PRS-CS

Fig. 1 | Overview of polygenic prediction methods. The predictive performances of three representative single-discovery (PT, LDpred2 and PRS-CS) and 
five multi-discovery (PT-meta, PT-mult, LDpred2-mult, PRS-CS-mult and PRS-CSx) methods are compared in this study. LDpred2-mult and PRS-CS-mult 
depicted here are not published methods but are helpful for comparing potential improvements from PRS-CSx, which uses a coupled CS prior for the effect 
sizes of genetic variants. The discovery samples (to generate GWAS summary statistics (sumstats)), validation samples (to tune hyperparameters in PRS 
construction methods) and testing samples (to assess prediction accuracy) are nonoverlapping. LD ref, LD reference panel; pop A/B/C, Population A/B/C.
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How important is functional 
annotation data compare to 
another GWAS dataset from 
the target ancestry?
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33%

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS
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Trans-ancestry prediction

1.1%
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29%
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Improvement (%) in prediction 
accuracy with vs. without 
annotations:

𝑅!""#$% 	− 	𝑅&#%

𝑅&#%

using 7M imputed SNPs (y-axis) or 
1M HapMap3 SNPs (x-axis).
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Regions conserved across 29 mammals covers 3% genome but contributed 41% prediction accuracy!
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Contributions of functional categories to prediction accuracy
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Functional genetic architecture
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Methodology

• Develop a low-rank method that fits all SNPs to better model LD (more robust & efficient).

• Incorporate functional annotations to better capture causal effects (improved accuracy).

Summary (3)

Science

• For trans-ancestry prediction, functional annotations with genome coverage provide 
comparable and additive information to the use of additional GWAS dataset of target ancestry.

• Significant interaction between SNP density and annotation information, suggesting whole-
genome sequence variants with annotations may further improve prediction.

• Functional partitioning highlights a major contribution of evolutionary constrained regions to 
prediction accuracy and the largest per-SNP contribution from non-synonymous SNPs.
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Practical 5: Polygenic prediction using SBayes

https://cnsgenomics.com/data/teaching/GNGWS24/module5/Practical5_SBayes.html

https://cnsgenomics.com/data/teaching/GNGWS24/module5/Practical5_SBayes.html

