
Drug repurposing using gene expression signature matching 
 

Introduc)on:  
 
Drug discovery is a process spanning from the identification of disease mechanisms to the 

development of a drug that can be safely administered to humans. This process typically takes over 

a decade and only about 10-20% of the drugs succeed in being approval for market used1. Drug 

repurposing aims to side-step this process and find new indications for existing drugs. A well-

known example of drug repurposing is Sildenafil, which is a PDE5 inhibitor originally developed 

to  treat hypertension and angina, but is now widely used to treat erectile dysfunction2. Drug 

repurposing has therefore the potential to both reduce research time and cost needed to develop 

new drugs.  

Several wet-lab and computational approaches are available to investigate drug repurposing 

opportunities3. In this practical, we aim to identify drugs candidates that can be repurposed for 

treating high cholesterol, by applying a signature matching approach between LDL association 

genes and on drug-induced gene expression signatures. The reasoning behind signature matching 

is the following: if a drug induces a change in gene expression inverse to the one observed in a 

diseased state, then this drug could potentially be used to treat the disease4–6. Different metrics can 

be used to calculate the relationship between disease state and drug signature with no one being 

considered as gold standard7.  

Gene expression signatures observed following drug exposure can be measured in model cell lines 

related to the disease of interest. This cell line model allows for the generation of large dataset 

containing gene expression signature stemming from the exposure of hundreds of different drugs.  

The Connectivity Map (CMap) is a one such drug signature database that contains the gene 

expression signatures of diverse drugs, profiled in a wide range of human model cell lines8 and 

can be used for drug repurposing. 

Disease signatures can be identified by RNA-seq experiments comparing the transcriptome 

between disease and healthy patients, or can be imputed from GWAS datasets using tissue-specific 

eQTL data, such as those from the GTEx covered extensively during the previous practical.   

https://www.gtexportal.org/home/


Another approach to create a disease signature is to infer a gene expression from genome wide 

association studies4–6. Several tools, such as MultiXcan9 and S-PrediXcan10, can be used to impute 

gene expression signatures using eQTL (expression quantitative trait loci) data. However, while 

QTL data can be used to infer gene expression from GWAS results, eQTL are tissue specific11, a 

selection of the appropriate tissue based on prior knowledge of the disease etiology or through 

functional annotation of the GWAS used using tissue enrichment such as FUMA12 is therefore 

necessary. 

In this practical, we will perform drug repurposing by using a signature matching approach to 

identify drug candidates for high cholesterol. More specifically, we will impute a disease signature 

using the publicly available GWAS summary statistics of LDL-Cholesterol from the Global Lipids 

Genetics Consortium, and compare it against drug signatures from the CMap database.  

Objec)ves: 
 
This practical is composed of three main steps: 

1. Imputation of gene expression signatures associated with LDL cholesterol. 

To impute a gene expression signature from a LDL cholesterol GWAS, we first need to 

select eQTLs from a tissue relevant to LDL cholesterol levels. We will use the FUMA tool 

to investigate which tissue(s) are associated with our GWAS summary and can be used for 

gene expression inference.  

  

2. Selection of genes significantly associated with LDL cholesterol. 

In this step, we will select genes associated with LDL cholesterol to form the associated 

gene expression signature used for drug repurposing. 

 

3. Identification of drug repurposing candidates by performing signature matching. 

To achieve this objective, our LDL cholesterol gene expression signature previously 

defined will be used as the query signature to conduct a signature matching analysis. We 

will use the precomputed drug-induced gene expression signatures from the CMap 

database to perform this step.   

 
 

https://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry_specific/
https://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry_specific/
https://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry_specific/


Methods used in this prac)cal: 
 

The overall workflow chart for the current analysis is shown below. 

 
Figure 1. Step-wise workflow chart to identify drug-repurposing candidates 

 

In this practical, we are using S-PrediXcan (a python tool) that infers a gene expression signature 

associated with a GWAS from eQTL stemming from a specific tissue.  

 

While we are not performing this analysis in this practical, eQTLs from multiple tissues can be 

aggregated by first performing S-PrediXcan for each tissue followed by S-MultiXcan for all 

selected tissues (we are not using S-MultiXcan in this practical due to time limitations). This 

approach can be used when several tissues are associated with the phenotype of interest.  
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Finally, the number of genes to be included in the gene expression signatures is an arbitrary 

decision. In this practical, we will include 50 most upregulated and 50 most downregulated genes 

in our disease-associated gene expression signatures. Other choices can range from between 100 

and 500 up and downregulated genes4. 

 

Data and tool descrip)ons with path for analysis: 
 
The python tool and its anaconda environment has been installed on the cluster. The environment 

can be activated using the following command: 

 

 

The data needed for this practical can be found in the following folder with the following 

architecture: 

 

Data analysis  
 

1. Tissue Selection:  

To infer the gene expression signature associated with LDL cholesterol, we first need to identify 

the appropriate tissue-specific eQTL model. To do this, we will utilize the FUMA (Functional 

Mapping and Annotation) tool that we explored in the previous practical. However, FUMA 

analysis is time-consuming, we have therefore already performed it and made it publicly available. 

The FUMA results can be accessed on the for our LDL cholesterol GWAS can be accessed on the 

FUMA website by following the steps below. 

 

• Select “Browse Public Results” then type “GLGC_Willeretl” in the search tab 
• Click on the “GLGC_Willeretl_Submission2” results. 
• Go to the MAGMA Tissue Expression Analysis section. 

 

conda activate imlabtools 

tree -d /data/module6/Practicals/Practical4_Drug_Repurposing/ 

https://fuma.ctglab.nl/


Note: In case of FUMA website outage, we have saved the results locally here: 

/data/module6/Practicals/Practical4_Drug_Repurposing/2_Fuma_Results/LDL.jpeg 

 

2. Gene expression inference:  

We will infer a gene expression signature associated with LDL cholesterol using S-PrediXcan. 

The instructions below will get you to run this tool with the tissue of your choice.  

 

We need to select an eQTL model to infer a gene expression signature associated with LDL 

cholesterol. Start by inspecting the available tissue eQTL models from GTEx using the following 

command: 

 
 
The code below will perform the S-PrediXcan analysis, modify it with the tissue of your choice as 

well as your output directory then run it to infer gene expression for LDL cholesterol.  

ls /data/module6/Practicals/Practical4_Drug_Repurposing/3_elastic_net_models_v8/ 
 
Question: Based on the previous FUMA analysis and the availability of eQTL models from the 
GTEx database, which tissue should be selected to infer the gene expression signature 
associated with LDL cholesterol? 

Question: Which tissue(s) is/are identified to be associated with LDL cholesterol?  

Do the results make sense? 
 



 

 

 
3. Defining the LDL cholesterol-associated gene expression signature:  

In this practical, we will perform a signature matching analysis using data from the CMap database. 

Each drug signature in the CMap database contains the gene expression changes of a total of 

12,328 unique genes, induced by exposure to the specific drug of interest. This includes 978 are 

landmark genes (measured directly through microarray), 11,350 computationally inferred genes, 

of which 9,196 are inferred with high-fidelity8. We have retained only the 10,174 directly measured 

or confidently inferred genes, referred to as the Best Inferred Genes (BING), for the current 

analysis.  

 

# change the text in red to select the tissue-specific eQTL model of your choice, and to create 
your own output directory 
 
conda activate imlabtools 
python /software/MetaXcan/SPrediXcan.py \ 
--model_db_path 
/data/module6/Practicals/Practical4_Drug_Repurposing/3_elastic_net_models_v8/eQTLtissueMo
del.db \  
--covariance 
/data/module6/Practicals/Practical4_Drug_Repurposing/3_elastic_net_models_v8/eQTLtissueMo
del.txt.gz \ 
--gwas_folder /data/module6/Practicals/Practical4_Drug_Repurposing/1_GWAS_LDL \ 
--gwas_file_pattern ".*txt" \ 
--snp_column rsID \ 
--effect_allele_column ALT \ 
--non_effect_allele_column REF \ 
--beta_column EFFECT_SIZE \ 
--pvalue_column pvalue \ 
--output_file /scratch/username/DirectoryToChange/LDL_model.csv 
 
# After running the previous code, you can download the data using the following scp command 
# on your local machine.  
# Change the username, server IP, and directory to download the data. 
scp user@203.101.225.xxx:/scratch/username/DirectoryToChange/LDL_model.csv . 

Question: Based on the output, which genes were identified to be significantly associated with 
LDL cholesterol? Do the findings align with existing evidence from the literature? 



However, not all genes predicted by S-PrediXcan in the previous step have been profiled by CMap. 

Therefore, we need to first identify genes that are profiled in both CMap and our S-PrediXcan 

results and construct an LDL cholesterol signature from these genes.  

 

First, we will have a look at the genes profiled in CMap 

Run the following code in R: 

 

Next, we will identify genes that are present in both the CMap drug signatures and the S-PrediXcan 

results, and rank them according to their z-score, a measurement of the association between the 

genes and LDL cholesterol levels. 

 

We will construct a signature for LDL cholesterol by selecting the top 50 most upregulated and 

top 50 most downregulated genes based on their association with LDL cholesterol levels (z-

scores). Once constructed, this signature will be formatted to suit the requirements of iLINCs, a 

platform we will use to compare the LDL cholesterol signature against drug signatures.  

 

library(corrplot) 
library(dplyr) 
library(reshape2) 
library(ggstatsplot) 
library(tidyverse) 
CMAP <- read.delim( 
"/data/module6/Practicals/Practical4_Drug_Repurposing/4_CMAP_Genes/GSE92742_Broad_LI
NCS_gene_info.txt" 
) # Read the genes available in CMAP  
print(nrow(CMAP)) # print the number of genes prior to filtering 
CMAP <- filter(CMAP, CMAP$pr_is_bing == "1") #Select only the best inferred genes (BING)  
colnames(CMAP)[2]  <- "gene_name" #Rename the gene column to be in common with the  
sPrediXcan data 
print(nrow(CMAP)) # print the number of genes after filtering 
 

Model <- read.csv("/scratch/username/DirectoryToChange/LDL_model.csv") # Read SprediXcan 
data   
Model_cmap <- inner_join(Model, CMAP, by = "gene_name") %>% arrange(zscore) 
print(nrow(Model)) 
print(nrow(Model_cmap)) 

Question: How many genes are profiled by both CMap and S-PrediXcan? 
 



Download the gene signature file from the cluster to your local system by using the following 

command: 

 

4. Validation of identified signature based on disease-associated genes from DisGeNet:  

DisGeNET is the largest publicly available database which consists of genes and variants 

associated to human diseases, collated from expert curated repositories such as GWAS catalogues, 

animal models13. We will utilize this information to validate the gene expression signature selected 

in the previous step. A login is required to access the DisGeNet database. Therefore, we have pre-

downloaded the genes identified to be associated with hyperlipidaemia and will access them in the 

subsequent steps of the practical. 

 

 

Top_up50_LDL <- tail(Model_cmap, 50) #Top 50 most upregulated genes 
Top_down50_LDL <- head(Model_cmap, 50) #Top 50 most downregulated genes 
Gene_Signatures_LDL <- bind_rows(Top_up50_LDL, Top_down50_LDL) #Combine top 
expressing gene signatures 
Gene_Signatures_LDL_output <- Gene_Signatures_LDL[,c(2,3,5)] # select the columns gene 
name, z-score and p-value 
write_csv(Gene_Signatures_LDL_output 
,"/scratch/username/DirectoryToChange/Gene_signatures_LDL.csv") # Write to the disk 

scp user@203.101.xxx.xxx:/scratch/username/DirectoryToChange/Gene_signatures_LDL.csv . 
 

Hyperlipidimia_genes <-read.csv( 
"/data/module6/Practicals/Practical4_Drug_Repurposing/DisGeNet_Hyperlipidimia/Hyperlipidimia
_genes.csv" 
) # Load genes associated with hyperlipidemia 
common_genes_Model <- inner_join(Model_cmap, Hyperlipidimia_genes, by = "gene_name") 
%>% arrange(zscore) # identify genes in common between S-PrediXcan and DisGeNet 
write.csv(common_genes_Model, 
"/scratch/username/DirectoryToChange/Hyperlipidemia_Signatures_Model.csv") # write to the 
disk 
print(dim(common_genes_Model)) 
common_genes_Model[1:5,] 

Question: What genes are in common between the S-PrediXcan signature and the DisGeNet 
hyperlipidaemia-associated genes? 

https://www.disgenet.org/search


5. Querying The CMap database with LDL cholesterol-associated gene expression 

signature:  

We will use the iLINCS platform to compare the LDL cholesterol signature (from our previous 

steps) against the drug signatures from the CMap database. iLINCS is an integrative user-friendly 

web platform for performing similarity analysis between user-defined gene expression signatures 

and the pre-computed drug perturbation signatures. 

 

Go to the signature tab on the iLINCs website, and click on “Submit a Signature”. Under “Upload 

signature file and compare it with signatures library”, click on “select file”, upload the 

“Gene_signatures_LDL.csv” file that we created in the previous steps, and submit signatures.  

 

 
 

After completion of the analysis, click on “Connected Perturbations” and “Use Selected Genes”. 

We can access the list of drugs signatures matched against our query signature by clicking on the 

“Connected LINCS Chemical Perturbagens”.  

http://www.ilincs.org/ilincs/signatures/main


  
 
 

 

Conclusions: 
 
In this practical we went over the basic steps for drug repurposing using signature matching. We 

highlighted the possible use of genetic evidence by inferring gene expression signatures from 

GWAS. We showed that both known drugs and possible drug repurposing candidates can be 

identified following this approach. However, drug repurposing is often more complex especially 

for diseases with unknown aetiologies and requires extensive clinical validation prior to market 

use. Nevertheless, signature matching is a powerful tool for prioritizing drug repurposing 

candidates.  

  

Questions: 
Are any drugs associated with our signature known to treat high cholesterol? (hint: statins) 
Based on the results, what would be the most likely candidate drug for repurposing? 
Is there any evidence within the literature for this drug? 



 

 

  

Extension Questions: 
1. In this practical, we demonstrated the use of single tissue gene expression inference 

with a phenotype of known aetiology.  
How would you perform gene expression inference when disease aetiology is either 
unknown or involves multiple tissues? 
 

2. Many people stop using cholesterol lowering statins due to muscle pain, a common side 
effect. 
How would you identify drug repurposing candidates for further investigation that 
could potentially provide an alternative to statins?  

 
3. In this practical, we inferred a gene expression signature for LDL cholesterol from 

GWAS summary statistics. 
Can you think of alternatives that could be used to identify a disease associated gene 
expression signature? 
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